Добірка наукової літератури з теми "LNMO films"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "LNMO films".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "LNMO films"

1

Wang, Yan, Guang Yang, Qian Peng, and Pei Xiang Lu. "Excellent Electrochemical Performance and Thermal Stability of LiNi0.5Mn1.5O4 Thin-Film Cathode Prepared by Pulsed Laser Deposition." Advanced Materials Research 853 (December 2013): 83–89. http://dx.doi.org/10.4028/www.scientific.net/amr.853.83.

Повний текст джерела
Анотація:
Lithium secondary batteries using LiNi0.5Mn1.5O4 (LNMO) films as a cathode material were prepared by pulsed laser deposition on stainless steel substrates. X-ray diffraction and Field-emission Scanning Electron Microscope results show that the film deposited at 750°C exhibits good crystallinity with well-defined grains structure. Galvanostatic charge/discharge measurement results revealed that the reversible capacity maintains 116.8mAhg-1 after 100 cycles at 0.5C. It also exhibits excellent rate capability, as the rates increase to 5 and 10 C, about 95.4% and 92.3% of its initial capacity at 0.2C can be retained. In additional, thermal stability of the Al2O3 coated LNMO thin film cathodes were also explored. The high temperature cyclic performance of LNMO thin film electrode was significantly enhanced by the coating.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Solchenbach, Sophie, Morten Wetjen, Daniel Pritzl, K. Uta Schwenke, and Hubert A. Gasteiger. "Lithium Oxalate as Capacity and Cycle-Life Enhancer in LNMO/Graphite and LNMO/SiG Full Cells." Journal of The Electrochemical Society 165, no. 3 (2018): A512—A524. http://dx.doi.org/10.1149/2.0611803jes.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Palakkal, Jasnamol P., Thorsten Schneider, and Lambert Alff. "Oxygen defect engineered magnetism of La2NiMnO6 thin films." AIP Advances 12, no. 3 (March 1, 2022): 035116. http://dx.doi.org/10.1063/9.0000360.

Повний текст джерела
Анотація:
The double perovskite La2NiMnO6 (LNMO) exhibits complex magnetism due to the competition of magnetic interactions that are strongly affected by structural and magnetic inhomogeneities. In this work, we study the effect of oxygen annealing on the structure and magnetism of epitaxial thin films grown by pulsed laser deposition. The key observations are that a longer annealing time leads to a reduction of saturation magnetization and an enhancement in the ferromagnetic transition temperature. We explain these results based upon epitaxial strain and oxygen defect engineering. The oxygen enrichment by annealing caused a decrease in the volume of the perovskite lattice. This increased the epitaxial strain of the films that are in-plane locked to the SrTiO3 substrate. The enhanced strain caused a reduction in the saturation magnetization due to randomly distributed anti-site defects. The reduced oxygen defects concentration in the films due to the annealing in oxygen improved the ferromagnetic long-range interaction and caused an increase in the magnetic transition temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Niketic, Svetlana, Gina Filoso, Mohamed Houache, Zouina Karkar, Chae-Ho Yim, and Yaser Abu-Lebdeh. "5V Solid-State Lithium Batteries Using Garnet-Based Electrolytes and LiNi0.5Mn1.5O4 Spinel Cathode Composite." ECS Meeting Abstracts MA2022-01, no. 2 (July 7, 2022): 303. http://dx.doi.org/10.1149/ma2022-012303mtgabs.

Повний текст джерела
Анотація:
There is an ever increasing demand to increase the gravimetric and volumetric energy density of Lithium batteries as well as enhancing their safety cycle life and lower safety. Solid-State batteries (SSB) enjoy a great attention nowadays due to their potential to meet all those requirements and power the EV revolution. The use of solid electrolytes (SE) in commercial batteries has been solely limited to polymer electrolytes based on poly(ethylene oxide), PEO, coupled with LiFePO4 (LFP) that are limited by the oxidative stability of PEO to < 3.6 V and the low potential of LFP at 3.4 V. The commercial cells are cycled at high temperature (45 ⁰C) to overcome the modest ambient ionic conductivity of the SE and under a stack pressure and a cathode composite to overcome the high interfacial resistances of the solid-solid interfaces. A cathode composite is made of conventional cathode components with a "catholyte" added to the formulation. The catholyte is made of an optimized amount of an ionic conductor that is mostly derived from the solid electrolyte formulation. Very recent studies by our research group (1) and others (2) have shown that higher voltage cells can be made by using garnet or perovskite-based ceramic/polymer composites and LiNi0.5Mn0.3Co0.2O2 (NMC532) or LiNi0.6Mn0.2Co0.2O2 (NMC 622) layered cathodes reaching 4.2 V and can operate for few cycles. Herein, we extend the work in order to further increase the voltage of the SSB cells by using LiNi0.5Mn1.5O4 (LNMO) spinel cathode with its high potential of 4.7 V. The Tantalum-doped Lithium Lanthanum Zirconate, Li6.4La3Zr1.4Ta0.6O12 (Ta-doped LLZO, LLZTO), of the garnet family of solid electrolytes has been selected as a SE due to their high ambient ionic conductivity, wide electrochemical stability window and good chemical stability against Li metal. PEO and other compatible polymers have been used to formulate composite SEs in thin films and their properties were studied and compared with LLZTO pellets. Cells have been made using composite cathode formulations composed of LNMO cathode as an active material, carbon black, conventional and novel binders and a SE-based and proprietary catholyte coupled with the SE films or pellets and thick/thin Li films. The short-term cycling performance of the cells assembled with selected SEs and composite cathodes along with other electrochemical results will be presented. References: (1) Hilal Al-Salih, Allan Huang, Chae-Ho Yim, Annica I. Freytag, Gillian R. Goward, Elena Baranova and Yaser Abu-Lebdeh, 2020, J. Electrochem. Soc. 167 070557. (2) P. López-Aranguren, X. Judez, M. Chakir, M. Armand and L. Buannic, 2020, J. Electrochem. Soc. 167 020548.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Koshtyal, Yury, Denis Olkhovskii, Aleksander Rumyantsev, and Maxim Maximov. "Applications and Advantages of Atomic Layer Deposition for Lithium-Ion Batteries Cathodes: Review." Batteries 8, no. 10 (October 15, 2022): 184. http://dx.doi.org/10.3390/batteries8100184.

Повний текст джерела
Анотація:
Nowadays, lithium-ion batteries (LIBs) are one of the most convenient, reliable, and promising power sources for portable electronics, power tools, hybrid and electric vehicles. The characteristics of the positive electrode (cathode active material, CAM) significantly contribute to the battery’s functional properties. Applying various functional coatings is one of the productive ways to improve the work characteristics of lithium-ion batteries. Nowadays, there are many methods for depositing thin films on a material’s surface; among them, one of the most promising is atomic layer deposition (ALD). ALD allows for the formation of thin and uniform coatings on surfaces with complex geometric forms, including porous structures. This review is devoted to applying the ALD method in obtaining thin functional coatings for cathode materials and includes an overview of more than 100 publications. The most thoroughly investigated surface modifications are lithium cobalt oxide (LCO), lithium manganese spinel (LMO), lithium nickel-cobalt-manganese oxides (NCM), lithium-nickel-manganese spinel (LNMO), and lithium-manganese rich (LMR) cathode materials. The most studied processes of deposition are aluminum oxide (Al2O3), titanium dioxide (TiO2) and zirconium dioxide (ZrO2) films. The primary purposes of such studies are to find the synthesis parameters of films, to find the optimal coating thickness (e.g., ~1–2 nm for Al2O3, ~1 nm for ZrO2, <1 nm for TiO2, etc.), and to reveal the effect of the coating on the electrochemical parameters of batteries. The review summarizes synthesis conditions, investigation results of deposited films on CAMs and positive electrodes and some functional effects observed due to films obtained by ALD on cathodes.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Milien, Mickdy S., Hans Beyer, Witali Beichel, Petra Klose, Hubert A. Gasteiger, Brett L. Lucht, and Ingo Krossing. "Lithium Bis(2,2,2-trifluoroethyl)phosphate Li[O2P(OCH2CF3)2]: A High Voltage Additive for LNMO/Graphite Cells." Journal of The Electrochemical Society 165, no. 11 (2018): A2569—A2576. http://dx.doi.org/10.1149/2.0541811jes.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pritzl, Daniel, Johannes Landesfeind, Sophie Solchenbach, and Hubert A. Gasteiger. "An Analysis Protocol for Three-Electrode Li-Ion Battery Impedance Spectra: Part II. Analysis of a Graphite Anode Cycled vs. LNMO." Journal of The Electrochemical Society 165, no. 10 (2018): A2145—A2153. http://dx.doi.org/10.1149/2.0461810jes.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kalinina, Elena, Alexander Kolchugin, Kirill Shubin, Andrei Farlenkov, and Elena Pikalova. "Features of Electrophoretic Deposition of a Ba-Containing Thin-Film Proton-Conducting Electrolyte on a Porous Cathode Substrate." Applied Sciences 10, no. 18 (September 18, 2020): 6535. http://dx.doi.org/10.3390/app10186535.

Повний текст джерела
Анотація:
This paper presents the study of electrophoretic deposition (EPD) of a proton-conducting electrolyte of BaCe0.89Gd0.1Cu0.01O3-δ (BCGCuO) on porous cathode substrates of LaNi0.6Fe0.4O3−δ (LNFO) and La1.7Ba0.3NiO4+δ (LBNO). EPD kinetics was studied in the process of deposition of both a LBNO sublayer on the porous LNFO substrate and a BCGCuO electrolyte layer. Addition of iodine was shown to significantly increase the deposited film weight and decrease the number of EPD cycles. During the deposition on the LNFO cathode, Ba preservation in the electrolyte layer after sintering at 1450 °C was achieved only with a film thickness greater than 20 μm. The presence of a thin LBNO sublayer (10 μm) did not have a pronounced effect on the preservation of Ba in the electrolyte layer. When using the bulk LBNO cathode substrate as a Ba source, Ba was retained in a nominal amount in the BCGCuO film with a thickness of 10 μm. The film obtained on the bulk LBNO substrate, being in composition close to the nominal composition of the BCGCuO electrolyte, possessed the highest electrical conductivity among the films deposited on the various cathode substrates. The technology developed is a base step in the adaptation of the EPD method for fabrication of cathode-supported Solid Oxide Fuel Cells (SOFCs) with dense barium-containing electrolyte films while maintaining their nominal composition and functional characteristics.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Атанова, А. В., О. М. Жигалина, Д. Н. Хмеленин, Д. С. Серегин та К. А. Воротилов. "Кристаллизация слоев в гетероструктурах PZT/LNO/Si". Физика твердого тела 61, № 12 (2019): 2442. http://dx.doi.org/10.21883/ftt.2019.12.48575.03ks.

Повний текст джерела
Анотація:
The microstructure of the layers of the Pb(Zr0.52Ti0.48)O3–LaNiO3–Si composition and LaNiO3 thin films obtained by chemical solution deposition was studied using transmission electron microscopy. It was revealed that the polycrystalline, porous structure of LaNiO3 leads to a breakdown of the columnar structure of the lead zirconate titanate. The effect of heat treatment on the structure and phase composition of lanthanum nickelate is considered. It is shown that such morphological features of the structure of the LaNiO3 film, such as foliation, porosity and disorientation, are observed during annealing at T = 550 ° C and aggravated when the temperature rises to T = 800 ° C. The sample structure study was financially supported by the Ministry of Science and Higher Education within the State assignment FSRC “Crystallography and Photonics” RAS. This work was performed using the equipment of the Shared Research Center FSRC “Crystallography and Photonics” RAS and was supported by the Russian Ministry of Education and Science. Heterostructures were synthesized in Federal State Budgetary Institution of Higher Education "MIREA - Russian Technological University" with partial support from the RFBR grant 19-29-03058.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Xu, Xiao-Yu, and Bing Yan. "Nanoscale LnMOF-functionalized nonwoven fibers protected by a polydimethylsiloxane coating layer as a highly sensitive ratiometric oxygen sensor." Journal of Materials Chemistry C 4, no. 36 (2016): 8514–21. http://dx.doi.org/10.1039/c6tc02569b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "LNMO films"

1

Salian, Girish Dayanand. "Fabrication and characterization of thin-film microbatteries based on self-organized titania nanotubes." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0396/document.

Повний текст джерела
Анотація:
Un nanotube de dioxyde de titane autoporteur (TiO2 nts) est exploré en tant qu’électrode négative potentielle pour les microbatteries Li-ion 3D. Différentes modifications chimiques du TiO2 ont été explorées et étudiées, comme le TiO2 allié au Nb, le TiO2 revêtu d'ALD-Al2O3, le titanate de lithium-TiO2 et le TiO2 sulfuré. Le dépôt d'électrolyte polymère à base de PEO (oxyde d'éthylène) (PMMA-PEG) portant le sel de LiTFSI dans du TiO2 a été obtenu par la réaction d'électropolymérisation sur l'anode TiO2 et la cathode Lithum nickel oxyde de manganèse (LNMO). L'objectif principal ici était d'exploiter la surface active des électrodes par électrodéposition et d'améliorer ainsi l'interface électrode-électrolyte. Une telle micro-batterie contenant des électrodes revêtues de polymère révèle que les valeurs de capacité obtenues à différents taux de C sont doublées lorsque les électrodes sont complètement remplies par l'électrolyte polymère par rapport à la micro-batterie à électrodes brutes. Les excellentes performances électrochimiques sont attribuées aux interfaces électrode-électrolyte améliorées dans les deux électrodes
Self-supported titanium dioxide nanotube (TiO2 nts) is explored as a potential negative electrode for 3D Li-ion microbatteries. Different chemical modifications on the TiO2 nts have been explored and studied like Nb-alloyed TiO2 nts, ALD-Al2O3 coated TiO2 nts, Lithium titanate-TiO2 nts and sulphurized TiO2 nts. The deposition of PEO (polyethylene oxide) based polymer electrolyte (PMMA-PEG) carrying LiTFSI salt into TiO2 nts has been achieved by the electropolymerization reaction on the TiO2 nts anode and the Lithum nickel manganese oxide (LNMO) cathode. The main aim here was to exploit the active surface area of the electrodes using electrodeposition and there by enhance the electrode-electrolyte interface. Such a microbattery containing polymer-coated electrodes reveal that the capacity values obtained at different C-rates are doubled when the electrodes are completely filled by the polymer electrolyte compared with the microbattery with the raw electrodes. The excellent electrochemical performance is attributed to the improved electrode-electrolyte interfaces in both the electrodes
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chiou, Yi-Xun, and 邱義勳. "Electronic and photoelectronic property of conductive metallic LNO film." Thesis, 2000. http://ndltd.ncl.edu.tw/handle/61808472797500078957.

Повний текст джерела
Анотація:
碩士
國立清華大學
材料科學工程學系
88
Using RF magnetism sputtering deposited LaNiO3( LNO ) thin film on Si substrate . X-ray diffraction , Inductively couple plasma-Mass and Four-point probe measurement were used to determine the film as Text with LaNiO3 and LaNiO3-δ . We present electronic property of the contact with LNO and Al was Thermionic emission ; the barrier high was 0.15 eV ; Richardson constant was very low and lower with thickness of the contact . This result illustrates localization scaling effect . At last , the photovoltage was observed when our sample be illuminated .
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "LNMO films"

1

Breedlove, Shayla, Nancy Ruzycki, Yong-Kyu Yoon, and Henry Zmuda. "Effect of film quality on Surface Plasmon Polaritons at a Lanthanum Nickelate and Barium Titanate interface." In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/fio.2022.jw5a.87.

Повний текст джерела
Анотація:
Results of 2D FDTD simulation on the Lanthanum Nickelate (LNO) and Barium Titanate (BTO) interface support surface plasmon polaritons (SPPs) at telecommunication wavelengths. The importance of smooth sol gel thin films is presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sun, Ping, Tong Sun, Chao-Nan Xu, and Tadahiko Watanabe. "Sol-gel-derived PLZT (7/60/40) thin films on ITO/glass and LNO/glass substrates." In 4th International Conference on Thin Film Physics and Applications, edited by Junhao Chu, Pulin Liu, and Yong Chang. SPIE, 2000. http://dx.doi.org/10.1117/12.408339.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Upadhyay, R. B., K. Jalaja, and U. S. Joshi. "Structural and electrical properties of Ba0.6 Sr0.4 TiO3 thin film on LNO/Pt bottom electrode." In FUNCTIONAL OXIDES AND NANOMATERIALS: Proceedings of the International Conference on Functional Oxides and Nanomaterials. Author(s), 2017. http://dx.doi.org/10.1063/1.4982079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії