Добірка наукової літератури з теми "LITHIUM /PVDF"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "LITHIUM /PVDF".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "LITHIUM /PVDF"
Hu, Yinglu, Li Liu, Jingwei Zhao, Dechao Zhang, Jiadong Shen, Fangkun Li, Yan Yang, et al. "Lithiophilic Quinone Lithium Salt Formed by Tetrafluoro-1,4-Benzoquinone Guides Uniform Lithium Deposition to Stabilize the Interface of Anode and PVDF-Based Solid Electrolytes." Batteries 9, no. 6 (June 12, 2023): 322. http://dx.doi.org/10.3390/batteries9060322.
Повний текст джерелаBarbosa, João, José Dias, Senentxu Lanceros-Méndez, and Carlos Costa. "Recent Advances in Poly(vinylidene fluoride) and Its Copolymers for Lithium-Ion Battery Separators." Membranes 8, no. 3 (July 19, 2018): 45. http://dx.doi.org/10.3390/membranes8030045.
Повний текст джерелаKim, Min Ji, Chang Hee Lee, Mun Hui Jo, and Soon Ki Jeong. "Electrochemical Decomposition of Poly(Vinylidene Fluoride) Binder for a Graphite Negative Electrode in Lithium-Ion Batteries." Materials Science Forum 893 (March 2017): 127–31. http://dx.doi.org/10.4028/www.scientific.net/msf.893.127.
Повний текст джерелаNikodimos, Yosef, Wei-Nien Su, and Bing-Joe Hwang. "Lithium Dendrite Growth Suppression in Anode-Free Lithium Battery Using Bifunctional Electrospun Gel Polymer Electrolyte Membrane." ECS Meeting Abstracts MA2023-01, no. 6 (August 28, 2023): 998. http://dx.doi.org/10.1149/ma2023-016998mtgabs.
Повний текст джерелаWang, Zhiqun, Shaokang Tian, Shangda Li, Lei Li, Yimei Yin, and Zifeng Ma. "Lithium sulfonate-grafted poly(vinylidenefluoride-hexafluoro propylene) ionomer as binder for lithium-ion batteries." RSC Advances 8, no. 36 (2018): 20025–31. http://dx.doi.org/10.1039/c8ra02122h.
Повний текст джерелаCastillo, Julen, Adrián Robles-Fernandez, Rosalía Cid, José Antonio González-Marcos, Michel Armand, Daniel Carriazo, Heng Zhang, and Alexander Santiago. "Dehydrofluorination Process of Poly(vinylidene difluoride) PVdF-Based Gel Polymer Electrolytes and Its Effect on Lithium-Sulfur Batteries." Gels 9, no. 4 (April 14, 2023): 336. http://dx.doi.org/10.3390/gels9040336.
Повний текст джерелаYang, Shan Shan, Xiong Liu, Jiang Nan Shen, and Cong Jie Gao. "Comparison Study of PVDF-HMn2O4 and PES-HMn2O4 Membrane-Type Adsorbents for Lithium Adsorption/Desorption." Applied Mechanics and Materials 633-634 (September 2014): 517–20. http://dx.doi.org/10.4028/www.scientific.net/amm.633-634.517.
Повний текст джерелаZhu, Shu Guang, and Wen Zhi He. "Removal of Organic Impurities in Lithium Cobalt Oxide from Spent Lithium Ion Batteries by Ultrasonic Irradiation." Advanced Materials Research 864-867 (December 2013): 1937–40. http://dx.doi.org/10.4028/www.scientific.net/amr.864-867.1937.
Повний текст джерелаZhu, Pei, Jiadeng Zhu, Jun Zang, Chen Chen, Yao Lu, Mengjin Jiang, Chaoyi Yan, Mahmut Dirican, Ramakrishnan Kalai Selvan, and Xiangwu Zhang. "A novel bi-functional double-layer rGO–PVDF/PVDF composite nanofiber membrane separator with enhanced thermal stability and effective polysulfide inhibition for high-performance lithium–sulfur batteries." Journal of Materials Chemistry A 5, no. 29 (2017): 15096–104. http://dx.doi.org/10.1039/c7ta03301j.
Повний текст джерелаKim, Gyuyoung, Jin-Hee Noh, Horim Lee, Jaehak Shin, and Dongjin Lee. "Roll-to-Roll Gravure Coating of PVDF on a Battery Separator for the Enhancement of Thermal Stability." Polymers 15, no. 20 (October 16, 2023): 4108. http://dx.doi.org/10.3390/polym15204108.
Повний текст джерелаДисертації з теми "LITHIUM /PVDF"
Eschbach, Julien. "Etude de nanocomposites hybrides en vue d'application dans les microsystèmes : de la synthèse des nanoparticules à l'élaboration de films minces piézoélectriques." Thesis, Nancy 1, 2009. http://www.theses.fr/2009NAN10104/document.
Повний текст джерелаThis work aims at the elaboration of new hybrid nanocomposites with specific properties (piezoelectricity, non-linear optic). First, simple numeric modelings on mechanical properties of nanocomposites are presented, as well as simulation of deformation in nanocomposites with piezoelectric nanoparticles. Experimental results on tribological and mechanical (performed by Brillouin Spectroscopy) characterization of different nanocomposites are exposed. The influence of nanoparticles and their fonctionalization on the polymer matrix is discussed, and in particular the incidence on free volume in nanocomposites. Several piezoelectric nanoparticles synthesis processes have been also studied. In particular, a LiNbO3 nanoparticles synthesis protocol has been worked out. These nanoparticles were characterized by structural, chemical and imaging techniques. Finally, these works leads to the elaboration of PVDF-TrFE matrix thin films nanocomposites filled with commercial or produced in laboratory nanoparticles. The methods used to polarize the films are described. The piezoelectric properties of the nanocomposites have been measured. More particularly, PVDF-TrFE/Al2O3 nanocomposites thin films with a good piezoelectric response have been elaborated
Djian, Damien. "Etude et développement de séparateurs pour une nouvelle architecture de batteries Li-ion à charge rapide." Phd thesis, Grenoble INPG, 2005. http://tel.archives-ouvertes.fr/tel-00011543.
Повний текст джерелаAfin d'augmenter les capacités chargées par rapport aux séparateurs commerciaux, des membranes à squelette poly(fluorure de vinylidène) et poly(fluorure de vinylidène) co poly(hexafluoropropylène) ont été élaborées par inversion de phase en utilisant la méthodologie des plans d'expériences. Les processus de formation ont été explicités à partir de la thermodynamique des systèmes ternaires polymère/solvant/non-solvant. Les membranes obtenues ont permis de gagner 20% de capacité chargée en 3 minutes par rapport aux séparateurs commerciaux.
Enfin, les limitations en charge rapide dues aux séparateurs ont été étudiées et identifiées à l'aide d'un code de modélisation d'accumulateurs Li-ion.
Lu, ming-yi, and 呂明怡. "New polymer electrolyte for lithium battery base PVDF-HFP system." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/38861348742433695363.
Повний текст джерела國立中央大學
化學研究所
92
Abstract Rechargeable lithium ionic battery, compared to other secondary batteries, has the advantages of high working potential, high specific energy, wide applied temperature and no memory effect. However, in order to make a small light-weight batteries, a solid electrolyte was needed. Solid polymer electrolytes can be categorized into three types: dry-type polymer electrolyte, gel-type polymer electrolyte, and porous-type polymer electrolyte. In this studies, two systems were studied: polyaniline derivative was blended with PEO-LiClO4 electrolyte to increase the ionic conductivity of the dry-type polymer electrolyte and PVDF-HFP was mixed with polyalkoxy block copolymer such as P123 (Mw=5750) or F108 (Mw=14600) to form porous-type polymer membranes. The porous polymer membranes were then sock in LiClO4-EC/PC solution to form porous-type electrolytes. It was found that the ionic conductivity of dry-type polymer electrolyte is too low to be commercially viable. Therefore, the study is mainly focused on the porous-type polymer electrolyte. The porous membranes were prepared by both phase inversion and evaporating methods. They were then immersed in 1 M LiClO4 –EC/PC (1:1) solution to form porous polymer electrolytes. The pore structure and density of polymer membrane varied with the ratios of P123 (or F108). Low solution leakage, high conductivity polymer electrolyte was found when 30 ~ 50 wt% of P123 was blend with PVDF-HFP. The room temperature conductivity of these hybrid porous polymer electrolytes was up to 4 × 10-3 S/cm and they can stand up to 5.0 V. They have great potential to be applied in lithium ion batteries.
Wu, Ming-Long, and 吳明龍. "The Melioration of Solid Polymer Electrolyte(PVdF-HFP) in Lithium Batteries." Thesis, 2000. http://ndltd.ncl.edu.tw/handle/35564862101413381408.
Повний текст джерела國立臺灣大學
化學工程學研究所
88
This study is focus on the melioration of PVdF-HFP(Poly (vinylidene defluoride)-co-Hexafluoropylene) polymer electrolyte. By adding some porous zeolite A、Y、ZSM-5、mordenite and MCM-41 in the electrolyte, the conductivity of it can be improved. Because the additives can adsorb a great quantity of plasticizer(EC/PC), which is a more valuable medium for the transmission of lithium ion in electrolyte. We synthesized the solid polymer electrolyte by solvent casting method. The additives in the electrolyte can be classified into three groups by the methods of pretreatment. The first group includes the fresh zeolite A、Y、ZSM-5、mordenite and MCM-41. The second contains zeolite A and Y after lithium ion exchanging procedure. The last kind of additives are these zeolites which are surface modified with CF3CH2CH2Si(OCH3)3. From a series of our study, we found that the additives zeolite A and Y can facilitate the conductivity of electrolyte more well than other additives. By the silane pre-treating procedure, the zeolites can even enhance the conducting ability of lithium ion in electrolyte, since the silane promote the dispersion of zeolites well in the organic polymer medium. At room temperature(25oC), the conductivity of the prototype electrolyte(without any additives) that we synthesized is 3.69×10-4(±0.20×10-4)S/cm. After surface modifying the fresh zeolite A by silane, the maximum conductivity we obtained is 1.20×10-3S/cm, about 3.5 times of the conductivity of the prototype electrolyte. Except electrolyte conductivity, we also investigated the mechanical strength of electrolyte by testing the relation between resistance loss and time, we found that the mechanical strength of electrolyte and the amount of additives are in direct proportion. By linear scanning voltage (LSV) testing, we can check the decomposing voltage of electrolytes. The decomposing voltage of the electrolytes that we synthesized is from 4.7V to 5.2V, which is above the average working voltage of lithium battery. That is, the electrolytes we synthesized can charge and discharge stably in the high working voltage environment of lithium battery.
Ren-JunLiu and 劉人儁. "Synthesis of PVdF-graft-PAN as high cycle life polymer electrolyte of lithium batteries." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/2646de.
Повний текст джерелаChen, WeiLi, and 陳韋利. "Effect of Zeolite or SiO2 Additives on Solid Polymer Electrolyte (PVdF-HFP) in Lithium Batteries." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/06988224838107907351.
Повний текст джерела國立臺灣大學
化學工程學研究所
90
This study is focus on the effect of zeolite or SiO2 additives on PVdF-HFP (poly(vinylidene fluoride)-co-hexafluoropropylene). polymer electrolyte. According to Wu’s thesis, adding some porous zeolite A、Y、ZSM-5、mordenite and MCM-41 in the electrolyte, the conductivity of it can be improved. This is because the additives can adsorb a great quantity of plasticizer(EC/PC), which is a more valuable medium for the transition of lithium ion in the electrolyte. From the characterization of zeolites, such as the adsorption of plasticizer, thermal gravimetry analysis, particle size measurement, we found that a good additives should be small with uniform particle size distribution, should contain trace aluminum, and it is not necessary to be porous. In addition, some organic compound on the additives can increase the adsorption of EC/PC. However, the additives do not help the conductivity significantly when the electrolyte is rich in plasticizer (EC/PC). In this research, solvent casting method was used for making the solid polymer electrolyte. The additives studied can be classified into three groups. The first group includes the fresh zeolite A、Y、ZSM-5、mordenite. The second contains SiO2 (0.040mm-0.063mm). The last is TEOS which is used for the synthesis of small SiO2 particles in the film. It was found that the addition of SiO2 did not improve the conductivity. For TEOS, the conductivity of electrolyte seems increased. However, the films were bumpy and fragile, and did not have good mechanical strength.
Si-XianWu and 吳思賢. "Studies on plasma modification of carbon nanotube and PVDF binder for lithium ion battery cathode." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/78964069137111649920.
Повний текст джерела國立成功大學
化學工程學系碩博士班
101
In this study, we used the plasma-treated MWNT in the fabrication of lithium ion batteries cathode. After the plasma modification, entanglement in MWNT caused by MWNT’s van der Waals force could be improved and hence enhanced dispersal in solvent. At the same time, we used the plasma treatment method to prepare the binder polyvinylidene difluoride (PVDF) grafted with maleic anhydride (MA). PVDF would change the surface polarity and it could avoid MWNT from flaking off the cathode. First, we prepared the Multi-walled carbon nanotubes that have been treated by the plasma then grafted MA and methyl methacrylate (MMA) on the surface of the MWNT. Also, PVDF grafted MA by plasma modification was also prepared using similar method. There are two approaches to enhance electronic conductibility of the cathode. We dispersed CNT-MMA in NMP and well mixed with the binder PVDF-MA. The electronic conductibility of binder can be increased by CNT-MMA. Furthermore, we disperse both CNT-MA and LiFePO4 in NMP. With the electronic conductivity contributed by CNT-MA, electronic conductivity of LiFePO4 also increases. After mixing the two slurries, the cathode materials were coated onto aluminum foil followed by subsequent drying at a vacuum oven. The dried electrode was compressed by a roller at room temperature to produce a smooth and compact film structure. When the amount of CNT-MA reached 4.7%, the resistance of the cathode electrode measured by four-point probe was 0.27Ω. With well dispersed CNT, the measuring resistance on the electrode was close throughout the entire sample. Obtaining from the coin-cell testing, the first discharge capacity was 148.8mAh/g at 0.1C rate and 116mAh/g at 1C rate. And there was still 96.3% discharge capacity after the long-term stability test. To overcome the charge-transfer resistance problem in LiFePO4, we used wet ball-mill technique to decrease the particle size of LiFePO4. Thus, we could obtain the LiFePO4 with particle size of 233 nm. Using the same fabrication conditions, the cathode electrode resistance measured was about 0.3Ω. Comparing with aforementioned cathodes, the first discharge capacity enhanced to 153.9mAh/g at 0.1C rate, 120.6mAh/g at 1C rate and 103mAh/g at 2C rate, respectively. After the long-term stability test, there was still 98.4% discharge capacity. Finally, we used unmodified MWNT to replace plasma-treated MWNT. As shown from the result, we observed the promotion of plasma obviously.
江冠廷. "Influence of Pt Nanoparticles and Fraction of PVdF on the Electrochemical Performance of Lithium Air Battery." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/73559759936387099862.
Повний текст джерелаLiao, Bo-Hao, and 廖柏豪. "Fabrication and analysis of near-field electrospinning PVDF fibers with sol-gel coating for lithium ion battery separator." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/2d259h.
Повний текст джерелаLai, Bo-Yu, and 賴柏宇. "Lithium Sulfur Battery Materials Development and Electrochemical Analysis – Effects of PVDF Based Gel Polymer Electrolyte on Dendrite Formation and Carbon Based Protection Layer on Lithium Sulfur Electrodes." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/g7qbwe.
Повний текст джерела國立臺灣大學
生物產業機電工程學研究所
103
This research is dedicating to one of the most promising lithium metal battery, lithium sulfur battery. The development of this kind of lithium metal battery is facing some challenges recently, which can split to two parts. One of them is dendrite growth on the lithium metal negative electrode, which may cause some safety issue, including short-circuited and energy capacity decay. We designed a symmetric cell to in-situ observe dendrite growth when applying a constant current. In order to study the relationship between mechanical strength and dendrite growth, we fabricated the cell with different gel polymer electrolyte with different Young’s modulus. We found that when using the gel polymer electrolyte which Young’s modulus is 0.05548MPa and the current density is 0.1mA/cm2, dendrite would not grow in the first 3000 minutes. We also found that the mechanism of oxidation of lithium metal is very similar to pitting corrosion. When using the electrolyte which diffusivity is lower, the phenomena of pitting corrosion is less apparent. The other part is the dissolution of sulfur electrode. Due to its physic properties, the lithium sulfide would gradually dissolve into the electrolyte. This may cause some energy capacity decay. We add an additional layer into the cell to be a protect layer. This layer could efficiently adsorb the lithium sulfide that dissolved into the solution, reducing the decay rate of the cell. We also mixed MWCNT with carbonized lignin, and found that 50% 900℃ carbonized lignin MWCNT film could make the cell remain 1000mAh/g S capacity after 60 cycles(0.1C).
Частини книг з теми "LITHIUM /PVDF"
Jishnu, N. S., S. K. Vineeth, Akhila Das, Neethu T. M. Balakrishnan, Anjumole P. Thomas, M. J. Jabeen Fatima, Jou-Hyeon Ahn, and Raghavan Prasanth. "Electrospun PVdF and PVdF-co-HFP-Based Blend Polymer Electrolytes for Lithium Ion Batteries." In Electrospinning for Advanced Energy Storage Applications, 201–34. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8844-0_8.
Повний текст джерелаJishnu, N. S., Neethu T. M. Balakrishnan, Akhila Das, Jarin D. Joyner, Jou-Hyeon Ahn, Fatima M. J. Jabeen, and Prasanth Raghavan. "Poly(Vinylidene Fluoride) (PVdF)-Based Polymer Electrolytes for Lithium-Ion Batteries." In Polymer Electrolytes for Energy Storage Devices, 111–32. First edition | Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781003144793-5.
Повний текст джерелаDas, Akhila, Neethu T. M. Balakrishnan, N. S. Jishnu, Jarin D. Joyner, Jou-Hyeon Ahn, Fatima M. J. Jabeen, and Prasanth Raghavan. "Poly(Vinylidene Fluoride- co-Hexafluoropropylene) (PVdF-co-HFP)-Based Gel Polymer Electrolyte for Lithium-Ion Batteries." In Polymer Electrolytes for Energy Storage Devices, 133–48. First edition | Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781003144793-6.
Повний текст джерелаYang, Chun-Chen, and Zuo-Yu Lian. "Electrochemical Performance of LiNi1/3 Co1/3 Mn1/3 O2 Lithium Polymer Battery Based on PVDF-HFP/m-SBA15 Composite Polymer Membranes." In Ceramic Transactions Series, 181–202. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118771327.ch19.
Повний текст джерелаKulova, Tatiana, Alexander Mironenko, Alexander Rudy, and Alexander Skundin. "PVD Methods for Manufacturing All-Solid-State Thin-Film Lithium-Ion Batteries." In All Solid State Thin-Film Lithium-Ion Batteries, 74–88. First edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9780429023736-3.
Повний текст джерелаGuan, Hongjian, Ruilin Yang, Yi Tao, Huilin Tai, Yuanjie Su, Yang Wang, and Weizhi Li. "Flexible Humidity Sensor Based on Polyvinylidene Fluoride." In Advances in Transdisciplinary Engineering. IOS Press, 2022. http://dx.doi.org/10.3233/atde221203.
Повний текст джерелаSanchez, Jean-Yves, Fannie Alloin, and Johanna Saunier. "PVdF-based polymers for lithium batteries." In Fluorinated Materials for Energy Conversion, 305–33. Elsevier, 2005. http://dx.doi.org/10.1016/b978-008044472-7/50042-4.
Повний текст джерелаТези доповідей конференцій з теми "LITHIUM /PVDF"
Ren, Xumei, Hui Gu, Feng Wu, and Xuejie Huang. "Electric Properties of PVDF-HFP Microporous Membrane For Lithium Ion Battery." In Proceedings of the 7th Asian Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812791979_0064.
Повний текст джерелаZhu, Gaolong, Xiaopeng Jing, and Weidong He. "Composite MnCO3/PVDF-HFP separator towards high-performance lithium-ion batteries." In 2018 7th International Conference on Energy, Environment and Sustainable Development (ICEESD 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/iceesd-18.2018.330.
Повний текст джерелаMajor, K., G. Brisard, and J. Veilleux. "Lithium Iron Phosphate Coatings Deposited by Means of Inductively-Coupled Thermal Plasma." In ITSC2015, edited by A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen, and C. A. Widener. ASM International, 2015. http://dx.doi.org/10.31399/asm.cp.itsc2015p0566.
Повний текст джерелаSathyanathan, T., C. Revathy, and C. Pugazhendhi Sugumaran. "Analysis of Liquid, PVDF-Polymer and Polymer-Nanocomposite electrolyte for Lithium Battery." In 2019 7th International Electrical Engineering Congress (iEECON). IEEE, 2019. http://dx.doi.org/10.1109/ieecon45304.2019.8938834.
Повний текст джерелаArro, Christian, Mohammad Ibrahim Ahmad, and Nasr Bensalah. "Investigation on the effect of LiTFSI salt on PVDF-based Solid Polymer Electrolyte Membranes for Lithium-Ion Batteries." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0042.
Повний текст джерелаVickraman, P., A. Pandiraj, Alka B. Garg, R. Mittal, and R. Mukhopadhyay. "Provskite Structure Based Filler Impregnated Pvdf—Hfp Micro Composites For Lithium Ion Batteries." In SOLID STATE PHYSICS, PROCEEDINGS OF THE 55TH DAE SOLID STATE PHYSICS SYMPOSIUM 2010. AIP, 2011. http://dx.doi.org/10.1063/1.3606222.
Повний текст джерелаLiu, Wei, Ryan Milcarek, Kang Wang, and Jeongmin Ahn. "Novel Structured Electrolyte for All-Solid-State Lithium Ion Batteries." In ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2015 Power Conference, the ASME 2015 9th International Conference on Energy Sustainability, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/fuelcell2015-49384.
Повний текст джерелаPradeepa, P., S. Edwinraj, G. Sowmya, J. Kalaiselvimary, K. Selvakumar, and M. Ramesh Prabhu. "Composite polymer electrolyte based on PEO/Pvdf-HFP with MWCNT for lithium battery applications." In INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4946448.
Повний текст джерелаMICHAEL, M. S., and S. R. S. PRABAHARAN. "AMBIENT TEMPERATURE HYBRID POLYMER ELECTROLYTE BASED ON PVK + PVDF-HFP(CO-POLYMER) FOR LITHIUM BATTERIES." In Proceedings of the 8th Asian Conference. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776259_0026.
Повний текст джерелаVickraman, P., R. Jayaraman, and K. Purushothaman. "Blending effect of poly (ethyl methacrylate) on lithium bis(perfluoroethanesulfonyl) imide-ferroceramic PVdF-HFP composite." In PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS AND MATERIAL SCIENCE: RAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4810080.
Повний текст джерелаЗвіти організацій з теми "LITHIUM /PVDF"
Greenbaum, Steven G. Lithium Ion Transport Across and Between Phase Boundaries in Heterogeneous Polymer Electrolytes, Based on PVdF. Fort Belvoir, VA: Defense Technical Information Center, February 1998. http://dx.doi.org/10.21236/ada344887.
Повний текст джерела