Добірка наукової літератури з теми "Lithium deposition"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Lithium deposition".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Lithium deposition"
Tuttle, B. A., and R. W. Schwartz. "Solution Deposition of Ferroelectric Thin Films." MRS Bulletin 21, no. 6 (June 1996): 49–54. http://dx.doi.org/10.1557/s088376940004608x.
Повний текст джерелаKühnle, Hannes, Edwin Knobbe, and Egbert Figgemeier. "In Situ Optical and Electrochemical Investigations of Lithium Depositions as a Function of Current Densities." Journal of The Electrochemical Society 169, no. 4 (April 1, 2022): 040528. http://dx.doi.org/10.1149/1945-7111/ac644e.
Повний текст джерелаAssegie, Addisu Alemayehu, Cheng-Chu Chung, Meng-Che Tsai, Wei-Nien Su, Chun-Wei Chen, and Bing-Joe Hwang. "Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries." Nanoscale 11, no. 6 (2019): 2710–20. http://dx.doi.org/10.1039/c8nr06980h.
Повний текст джерелаTakeuchi, Esther S., and William C. Thiebolt. "Lithium Deposition in Prismatic Lithium Cells during Intermittent Discharge." Journal of The Electrochemical Society 138, no. 9 (September 1, 1991): L44—L45. http://dx.doi.org/10.1149/1.2086072.
Повний текст джерелаAngarita-Gomez, Stefany, and Perla B. Balbuena. "Insights into lithium ion deposition on lithium metal surfaces." Physical Chemistry Chemical Physics 22, no. 37 (2020): 21369–82. http://dx.doi.org/10.1039/d0cp03399e.
Повний текст джерелаHuang, Zhijia, Guangmin Zhou, Wei Lv, Yaqian Deng, Yunbo Zhang, Chen Zhang, Feiyu Kang, and Quan-Hong Yang. "Seeding lithium seeds towards uniform lithium deposition for stable lithium metal anodes." Nano Energy 61 (July 2019): 47–53. http://dx.doi.org/10.1016/j.nanoen.2019.04.036.
Повний текст джерелаFan, Lei, Houlong L. Zhuang, Lina Gao, Yingying Lu, and Lynden A. Archer. "Regulating Li deposition at artificial solid electrolyte interphases." Journal of Materials Chemistry A 5, no. 7 (2017): 3483–92. http://dx.doi.org/10.1039/c6ta10204b.
Повний текст джерелаGao, Yue, Daiwei Wang, Yun Kyung Shin, Zhifei Yan, Zhuo Han, Ke Wang, Md Jamil Hossain, et al. "Stable metal anodes enabled by a labile organic molecule bonded to a reduced graphene oxide aerogel." Proceedings of the National Academy of Sciences 117, no. 48 (November 16, 2020): 30135–41. http://dx.doi.org/10.1073/pnas.2001837117.
Повний текст джерелаYao, Zhujun, Xinhui Xia, Yu Zhong, Yadong Wang, Bowei Zhang, Dong Xie, Xiuli Wang, Jiangping Tu, and Yizhong Huang. "Hybrid vertical graphene/lithium titanate–CNTs arrays for lithium ion storage with extraordinary performance." Journal of Materials Chemistry A 5, no. 19 (2017): 8916–21. http://dx.doi.org/10.1039/c7ta02511d.
Повний текст джерелаFang, Chengcheng, Bingyu Lu, Gorakh Pawar, Minghao Zhang, Diyi Cheng, Shuru Chen, Miguel Ceja, et al. "Pressure-tailored lithium deposition and dissolution in lithium metal batteries." Nature Energy 6, no. 10 (October 2021): 987–94. http://dx.doi.org/10.1038/s41560-021-00917-3.
Повний текст джерелаДисертації з теми "Lithium deposition"
Kim, Jong-Chul. "Lithium deposition in solid polymer electrolyte batteries." Thesis, University College London (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287985.
Повний текст джерелаMangham, Rebecca Ruth. "Electrophoretic deposition of binder free electrodes for lithium ion batteries." Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/419057/.
Повний текст джерелаKhoshnevisan, B., and H. Pourghasemian. "Nanoporous Ag-Cnts foamed electrode for lithium intercalation." Thesis, Sumy State University, 2011. http://essuir.sumdu.edu.ua/handle/123456789/20610.
Повний текст джерелаWang, Ziqiang Ph D. Massachusetts Institute of Technology. "Lithium deposition and stripping in solid-state battery via coble creep." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/127717.
Повний текст джерелаCataloged from the PDF of thesis.
Includes bibliographical references (pages 104-107).
Solid-state Li metal batteries require accommodation of electrochemically generated mechanical pressure inside Li metal. In this thesis it shows, through in situ transmission electron microscopy experiment of Li and Na deposition/stripping in mixed ionic-electronic conductor (MIEC) hollow tubules, an intriguing result that (a) Li metal can flow and retract inside 3D MIEC channels as a single crystal, (b) Coble creep dominates via interfacial diffusion along the MIEC/metal phase boundary, (c) this MIEC electrochemical tubular matrix can effectively relieve stress, maintain electronic and ionic contact, eliminate solid-electrolyte interphase (SEI) debris, reduce the possibility of "dead lithium", and allow the reversible deposition/stripping of Li metal across a distance of many microns, for 100 cycles. This thesis proposes quantitative design rules for MIEC electrochemical cell and shows that interfacial diffusion greatly liberates MIEC material choices when using ~100 nm wide and 10-100[mu]m deep channels. A centimeter-scale, ~10¹⁰ MIEC cylinders/solid electrolyte/LiFePO₄ full cell shows high capacity of ~ 164 mAh/g(LiFePO₄ and almost no degradation for over 50 cycles, starting with 1x excess Li.
by Ziqiang Wang.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Materials Science and Engineering
Vega, Jose A. "Electrochemical comparison and deposition of lithium and potassium from phosphonium- and ammonium-tfsi ionic liquids." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28223.
Повний текст джерелаDhanabalan, Abirami. "Tin Oxide Based Composites Derived Using Electrostatic Spray Deposition Technique as Anodes for Li-Ion Batteries." FIU Digital Commons, 2012. http://digitalcommons.fiu.edu/etd/801.
Повний текст джерелаBaumann, Annika [Verfasser]. "Lithium-ion conducting thin-films for solid-state batteries prepared by chemical solution deposition / Annika Baumann." Gießen : Universitätsbibliothek, 2019. http://d-nb.info/1185976930/34.
Повний текст джерелаKenny, Leo Thomas. "Preparation and characterization of lithium cobalt oxide by chemical vapor deposition for application in thin film battery and electrochromic devices /." Thesis, Connect to Dissertations & Theses @ Tufts University, 1996.
Знайти повний текст джерелаAdviser: Terry E. Haas. Submitted to the Dept. of Chemistry. Includes bibliographical references. Access restricted to members of the Tufts University community. Also available via the World Wide Web;
Zhou, Sa. "Nanonet-Based Materials for Advanced Energy Storage." Thesis, Boston College, 2012. http://hdl.handle.net/2345/3739.
Повний текст джерелаWhen their electrodes are made of nanomaterials or materials with nanoscale features, devices for energy conversion and energy storage often exhibit new and improved properties. One of the main challenges in material science, however, is to synthesize these nanomaterials with designed functionality in a predictable way. This thesis presents our successes in synthesizing TiSi₂ nanostructures with various complexities using a chemical vapor deposition (CVD) method. Attention has been given to understanding the chemistry guiding the growth. The governing factor was found to be the surface energy differences between various crystal planes of orthorhombic TiSi₂ (C54 and C49). This understanding has allowed us to control the growth morphologies and to obtain one-dimensional (1D) nanowires, two-dimensional (2D) nanonets and three-dimensional (3D) complexes with rational designs by tuning the chemical reactions between precursors. Among all these morphologies, the 2D nanonet, which is micrometers wide and long but only approximately 15 nm thick, has attracted great interest because it is connected by simple nanostructures with single-crystalline junctions. It offers better mechanical strength and superior charge transport while preserving unique properties associated with the small-dimension nanostructure, which opens up the opportunity to use it for various energy related applications. In this thesis we focus on its applications in lithium ion batteries. With a unique heteronanostructure consisting of 2D TiSi₂ nanonets and active material coating, we demonstrate the performances of both anode and cathode of lithium ion batteries can be highly improved. For anode, Si nanoparticles are deposited as the coating and at a charge/discharge rate of 8400 mA/g, we measure specific capacities >1000 mAh/g with only an average of 0.1% decay per cycle over 100 cycles. For cathode, V₂O₅ is employed as an example. The TiSi₂/V₂O₅ nanostructures exhibit a specific capacityof 350 mAh/g, a power rate up to 14.5 kW/kg, and 78.7% capacity retention after 9800 cycles. In addition, TiSi₂ nanonet itself is found to be a good anode material due to the special layer-structure of C49 crystals
Thesis (PhD) — Boston College, 2012
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Mergo, Mbeya Karrick. "Contribution à la modélisation de batteries lithium ion : optimisation des charges rapides par rapport à la réaction de dépôt de lithium métal." Thesis, Compiègne, 2021. http://www.theses.fr/2021COMP2595.
Повний текст джерелаLithium deposition reaction is a local and undesirable phenomenon within Li-ion batteries. It is widely describe in the literature as one of the major limiting phenomena of rapid Li-ion cell loading. The control ofthis reactio in real time therefore seems to be a key factor for an optmal fast charging. This is classically studied by ve complex physical models and using experimental techniques requiring invasive tests on battery. As part of th study ofthis thesis, a methodology has been established, including a simplified modelling as well as non-invasiv experimental characterizations of Li-ion, to estimate all charging currents close to the limit of the lithiu deposition reaction. Experimental studies have been conducted on a graphite/LFP cell to validate these current and this resulted in a charging protocol where the current evolves With the load state and temperature of the cel It has been observed that these currents allow the cell to be charged ultra quickly without triggering the lithiu metal deposition reaction. For a charge at 0°, the cell has been recharged in 11 minutes between 10% and 87% of the state of charge. It has been validated that the estimated currents are close to, less than 10%, the « real » lim for triggering the lithium deposition reaction. Finally, by comparing cycling With these estimated limit curren and the charge at IC, no additional aging has been observed after more than 100 cycles at 0°
Частини книг з теми "Lithium deposition"
Gregor, V., J. Pridal, J. Pracharova, J. Bludska, I. Jakubec, L. Papadimitriou, and Y. Samaras. "Amorphous Carbon Films: Magnetron Sputter Deposition and Li-Intercalation Properties." In Materials for Lithium-Ion Batteries, 599–601. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4333-2_51.
Повний текст джерелаNilsen, Ola, Knut B. Gandrud, Ruud Amund, and Fjellvåg Helmer. "Atomic Layer Deposition for Thin-Film Lithium-Ion Batteries." In Atomic Layer Deposition in Energy Conversion Applications, 183–207. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527694822.ch6.
Повний текст джерелаSong, Jun Hye, Won Kyu Han, Yang Kook Sun, and Sung Goon Kang. "Ag Deposition on Si-C Composite Anodes for Lithium Ion Batteries." In Solid State Phenomena, 1035–38. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-31-0.1035.
Повний текст джерелаHeard, David W., Julien Boselli, Raynald Gauvin, and Mathieu Brochu. "Rapid Solidification of a New Generation Aluminum-Lithium Alloy via Electrospark Deposition." In ICAA13 Pittsburgh, 1469–74. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-319-48761-8_223.
Повний текст джерелаHeard, David W., Julien Boselli, Raynald Gauvin, and Mathieu Brochu. "Rapid Solidification of a New Generation Aluminum-Lithium Alloy via Electrospark Deposition." In ICAA13: 13th International Conference on Aluminum Alloys, 1469–74. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118495292.ch223.
Повний текст джерелаSchmickler, Wolfgang. "Metal deposition and dissolution." In Interfacial Electrochemistry. Oxford University Press, 1996. http://dx.doi.org/10.1093/oso/9780195089325.003.0015.
Повний текст джерелаKUWATA, N., J. KAWAMURA, K. TORIBAMI, T. HATTORI, and N. SATA. "THIN-FILM LITHIUM ION BATTERIES WITH AMORPHOUS SOLID ELECTROLYTE FABRICATED BY PULSED LASER DEPOSITION." In Solid State Ionics, 637–44. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702586_0071.
Повний текст джерелаMeng, Xiangbo, and Zonghai Chen. "Constituting robust interfaces for better lithium-ion batteries and beyond using atomic and molecular layer deposition." In Reference Module in Materials Science and Materials Engineering. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-822425-0.00093-2.
Повний текст джерела"Post-depositional surface modification." In Understanding Lithic Recycling at the Late Lower Palaeolithic Qesem Cave, Israel, 89–96. Archaeopress Publishing Ltd, 2019. http://dx.doi.org/10.2307/j.ctvndv827.10.
Повний текст джерелаDaniel, I. Randolph, and Michael Wisenbaker. "Site Stratification and Cultural Stratification." In Harney Flats. University Press of Florida, 2017. http://dx.doi.org/10.5744/florida/9781683400226.003.0003.
Повний текст джерелаТези доповідей конференцій з теми "Lithium deposition"
Choi, SangHyeon, Jiwoong Kim, and Byunghyuk Kim. "Lithium deposition control with electric field in lithium ion battery." In 4th International Conference on Modern Approaches in Science, Technology & Engineering. Acavent, 2019. http://dx.doi.org/10.33422/4ste.2019.02.15.
Повний текст джерелаAgrawal, Richa, Chunhui Chen, and Chunlei Wang. "Electrostatic spray deposition based lithium ion capacitor." In SPIE Commercial + Scientific Sensing and Imaging, edited by Nibir K. Dhar and Achyut K. Dutta. SPIE, 2016. http://dx.doi.org/10.1117/12.2228899.
Повний текст джерелаCanale, L., C. Girault-Di Bin, F. Cosset, A. Bessaudou, A. Celerier, J. Louis Decossas, and J. C. Vareille. "Pulsed laser deposition of lithium niobate thin films." In 2000 International Conference on Application of Photonic Technology (ICAPT 2000), edited by Roger A. Lessard and George A. Lampropoulos. SPIE, 2000. http://dx.doi.org/10.1117/12.406370.
Повний текст джерелаGan, X. F., F. Zhang, X. Y. He, Y. Z. Cao, J. Z. Yang, and X. D. Huang. "Sio2by chemical vapor deposition as lithium diffusion barrier layer for integrated lithium-ion battery." In 2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC). IEEE, 2017. http://dx.doi.org/10.1109/edssc.2017.8333232.
Повний текст джерелаZhang, H. X., C. H. Kam, Y. Zhou, X. Q. Han, S. D. Cheng, J. Zhou, M. B. Yu, Z. Sun, Y. C. Chan, and Y. L. Lam. "Deposition of potassium lithium niobate films for nonlinear optics applications." In Conference on Lasers and Electro-Optics (CLEO 2000). Technical Digest. Postconference Edition. TOPS Vol.39. IEEE, 2000. http://dx.doi.org/10.1109/cleo.2000.907060.
Повний текст джерелаZhang, Hong X., Yan Zhou, Chan Hin Kam, X. Q. Han, Shi De Cheng, Boon Siew Ooi, Yee Loy Lam, et al. "Deposition of potassium lithium niobate films by sol-gel method." In International Symposium on Photonics and Applications, edited by Marek Osinski, Soo-Jin Chua, and Shigefusa F. Chichibu. SPIE, 1999. http://dx.doi.org/10.1117/12.370342.
Повний текст джерелаIshitama, Shintaro, Yuji Baba, Ryo Fujii, Masaru Nakamura, and Yoshio Imahori. "Lithium Nitride Synthesized by in situ Lithium Deposition and Ion Implantation for Boron Neutron Capture Therapy." In Proceedings of the 12th Asia Pacific Physics Conference (APPC12). Journal of the Physical Society of Japan, 2014. http://dx.doi.org/10.7566/jpscp.1.012035.
Повний текст джерелаCho, Jeong-Ju, and M. Urquidi-Macdonald. "Study of Lithium Polymer Interface to Enhance Efficiency and Safety in Lithium/Water Batteries." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1361.
Повний текст джерелаLiang, Jie. "Electrical dynamic switching of magnetic plasmon resonance based on selective lithium deposition." In Photonics for Energy, edited by Rui Zhu, Jianpu Wang, and Samuel D. Stranks. SPIE, 2021. http://dx.doi.org/10.1117/12.2601369.
Повний текст джерелаMaiwa, H., T. Kogure, K. Ishizaka, and T. Hayashi. "Preparation and Properties of Lithium-doped K0.5Na0.5NbO3 Thin Films by Chemical Solution Deposition." In 2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics. IEEE, 2007. http://dx.doi.org/10.1109/isaf.2007.4393184.
Повний текст джерелаЗвіти організацій з теми "Lithium deposition"
Kugel, H. W., J. Gorman, D. Johnson, G. Labik, G. Lemunyan, D. Mansfield, J. Timberlake, and M. Vocaturo. Development of lithium deposition techniques for TFTR. Office of Scientific and Technical Information (OSTI), October 1997. http://dx.doi.org/10.2172/304221.
Повний текст джерелаGorman, J., D. Johnson, H. W. Kugel, G. Labik, G. Lemunyan, and et al. Development of Lithium Deposition Techniques for TFTR. Office of Scientific and Technical Information (OSTI), October 1997. http://dx.doi.org/10.2172/3679.
Повний текст джерелаRubin, M., S. J. Wen, T. Richardson, J. Kerr, K. von Rottkay, and J. Slack. Electrochromic lithium nickel oxide by pulsed laser deposition and sputtering. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/446407.
Повний текст джерелаWirth, Brian. University of Tennessee, Knoxville (UTK) contribution to: Deciphering the role of mixed-material deposition and temperature on lithium-coated PFCs in NSTX-U high-performance plasmas: Collaborative UIUC & UTK Proposal (Final Report). Office of Scientific and Technical Information (OSTI), May 2019. http://dx.doi.org/10.2172/1511155.
Повний текст джерела