Статті в журналах з теми "Liquides poreux"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Liquides poreux.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Liquides poreux".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Murray, P., and J. de la Noüe. "Evaluation à l'échelle pilote d'un aérateur à cheminement prolongé." Revue des sciences de l'eau 1, no. 3 (April 12, 2005): 179–201. http://dx.doi.org/10.7202/705008ar.

Повний текст джерела
Анотація:
En vue d'optimiser l'aération de substrats liquides à forte charge organique dissoute, un système d'aération fonctionnant selon te principe du "cheminement prolongé" a été conçu et construit à l'échelle pilote (3 000 L). Le principe mis à l'essai consiste à injecter de l'air à la base de longs tuyaux enroulés. La dynamique hydraulique du système à cheminement prolongé a été caractérisée. Un système d'aération plus conventionnel, soit un injecteur d'air de type poreux, a été utilisé comme base de comparaison. Les performances d'oxygénation des deux systèmes ont été mesurées dans l'eau, sous les mêmes conditions, puis comparées entre elles et aux valeurs rapportées dans la littérature pour d'autres systèmes. Les principaux résultats montrent que le coefficient de transfert d'oxygène (KL.a) est bon à l'intérieur des tuyaux de l'aérateur à cheminement prolongé (jusqu'à 230 h-1). Le nouveau prototype démontre également une forte capacité d'emprisonnement de l'air puisque le gonflement atteint 20 %. Finalement, de bonnes efficacités énergétiques ont été obtenues : des valeurs brute de 1.9 kg O2/kWh et nette de 9.2 kg O2/kWh ont été atteintes. Le prototype, tel que construit, a offert des performances. d'oxygénation globales similaires à cettes démontrées par l'injecteur d'air de type poreux, le volume interne des tuyaux, qui présente un intérêt particulier pour le transfert d'oxygène, ne représentant que 26 % du volume liquide total. L'optimisation de l'aérateur à cheminement prolongé passe donc par l'accroissement maximal du volume interne des tuyaux par rapport au volume liquide total. Cette mesure se traduirait par une augmentation de la capacité d'oxygénation totale et des efficacités physique et énergétique du transfert d'oxygène, ainsi que par une diminution des puissances spécifiques requises. Les performances du système à cheminement prolone dans un liquide chargé en substrat organique restent à étudier, mais les résultats préliminaires obtenus dans l'eau du robinet sont encourageants.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Razakarisoa, O., P. Muntzer, P. Rimmenlin, and L. Zilliox. "Incidence de la source de pollution sur la dissolution et la rétention sélective d'hydrocarbures en milieu poreux saturé en eau." Revue des sciences de l'eau 5, no. 2 (April 12, 2005): 157–78. http://dx.doi.org/10.7202/705126ar.

Повний текст джерела
Анотація:
Des expérimentations menées sur des modèles-colonnes de milieu poreux, se localisant sur des études de lessivage du corps d'imprégnation formé par des mélanges d'hydrocarbures et sur des essais de propagation de leurs parties solubles, ont été réalisées au laboratoire. Il est montré que le comportement des hydrocarbures en solution pendant le lessivage est fonction de la nature de la source de pollution, et que le transport des traces solubles d'alcanes est fortement freiné par les effets de l'échange liquide-gaz masquant les propriétés adsorbantes de la matrice solide, ou pouvant entraîner une modification du processus de sorption des hydrocarbures par la phase solide. La solubilité n'est pas un critère suffisant pour expliquer la dissolution sélective et progressive des constituants d'un corps d'imprégnation formé par un mélange de plusieurs espèces d'hydrocarbures, et lors du transport des parties solubles d'une telle source de contamination, l'influence des paramètres solubilité, constante de Henry et coefficient de distribution doivent être pris en compte simultanément pour étudier leur rétention sélective.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

O'Reilly, Niamh, Nicola Giri, and Stuart L James. "Porous Liquids." Chemistry - A European Journal 13, no. 11 (April 5, 2007): 3020–25. http://dx.doi.org/10.1002/chem.200700090.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhang, Shiguo, Kaoru Dokko, and Masayoshi Watanabe. "Porous ionic liquids: synthesis and application." Chemical Science 6, no. 7 (2015): 3684–91. http://dx.doi.org/10.1039/c5sc01374g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Daghari, H., and L. DeBacker. "Transfert d'eau dans un milieu poreux non isotherme." Revue des sciences de l'eau 13, no. 1 (April 12, 2005): 75–84. http://dx.doi.org/10.7202/705382ar.

Повний текст джерела
Анотація:
Les transferts d'eau dans le sol sont généralement, pour des raisons de facilité, supposés se dérouler dans des conditions isothermes. Les modèles proposés couplant les transferts hydriques et thermiques se heurtent aux difficultés inhérentes à la détermination des coefficients de transfert. Disposant de l'évolution de la température, de la succion et de la teneur en eau dans les profils du sol de lysimètre, une comparaison portant sur l'importance des gradients hydriques et thermiques dans le transfert d'eau en phases liquide et vapeur a été menée. Il se dégage clairement, que dans le domaine de teneurs en eau qui intéressent l'agronome (teneur en eau supérieure à celle au point de flétrissement), l'essentiel des transferts se fait via la phase liquide. En effet, les flux dus aux gradients de teneur en eau dépassent d'au moins deux ordres de grandeur les flux induits par les gradients de température. Ce qui confirme bien la validité des équations de Darcy-Richards (DARCY, 1856; RICHARDS, 1931) où l'effet de température est négligé.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dreyer, Christian, Jacques Lahaye, and Pierre Ehrburger. "Pénétration d'une phase liquide dans un réseau poreux." Journal de Chimie Physique 83 (1986): 481–86. http://dx.doi.org/10.1051/jcp/1986830481.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lenormand, R. "Liquids in porous media." Journal of Physics: Condensed Matter 2, S (December 1, 1990): SA79—SA88. http://dx.doi.org/10.1088/0953-8984/2/s/008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shtyka, Olga, Łukasz Przybysz, and Jerzy Sęk. "Transport of emulsions in granular porous media driven by capillary force." Acta Innovations, no. 26 (January 1, 2018): 38–44. http://dx.doi.org/10.32933/actainnovations.26.4.

Повний текст джерела
Анотація:
The transport of liquids driven by capillary suction-pressure and balanced by both viscous drag force and gravity acceleration is known as spontaneous imbibition. The prediction of spontaneous imbibition in porous media is of importance due to its relevance as a fundamental phenomenon in numerous industrial technologies as well as in nature. A vast majority of the experimental results and mathematical models concerning the imbibition process of single-phase liquids are considered and analyzed in the literature. The present research focuses on two-phase liquids transport in porous medium driven by capillary force. The penetrating liquids were surfactant-stabilized emulsions with the different dispersed phase concentrations. The discussed issues are the influence of porous bed composition and inner phase concentration on the height of an emulsion penetration, which allows to predict the velocity of imbibition process. From a practical point of view, the experimental results give the possibility to evaluate: productivity of granular sorbents applied to recover the environment, efficiency of building materials wetting with multiphase liquids, process of oil-derived pollutants migration in porous media, e.g. soil and other rock structures, etc.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cooper, Andrew I. "Porous Molecular Solids and Liquids." ACS Central Science 3, no. 6 (May 18, 2017): 544–53. http://dx.doi.org/10.1021/acscentsci.7b00146.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fulvio, Pasquale Fernando, and Sheng Dai. "Porous Liquids: The Next Frontier." Chem 6, no. 12 (December 2020): 3263–87. http://dx.doi.org/10.1016/j.chempr.2020.11.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Li, Ying. "Research Progress of Porous Liquids." ChemistrySelect 5, no. 43 (November 19, 2020): 13664–72. http://dx.doi.org/10.1002/slct.202003957.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Keppert, Martin, Monika Čáchová, and Dana Koňáková. "Transport of Liquids in Porous Rocks." Materials Science Forum 824 (July 2015): 117–20. http://dx.doi.org/10.4028/www.scientific.net/msf.824.117.

Повний текст джерела
Анотація:
The rate of transport of liquids in porous environment is crucial engineering problem. It has importance in many fields like chemical engineering, hydropedology, economic geology and also in building materials science. The intensity of a liquid transport in porous body can be analyzed be means of three concepts – sorptivity, permeability and diffusivity. The approaches applied in field of porous rocks are discussed. Water absorption coefficients of set of sedimentary rocks of wide porosity range were determined experimentally and the relationship between them and specific pore volume of rocks was found.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

James, Stuart L. "The Dam Bursts for Porous Liquids." Advanced Materials 28, no. 27 (March 22, 2016): 5712–16. http://dx.doi.org/10.1002/adma.201505607.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Hemming, Ellen B., Anthony F. Masters, and Thomas Maschmeyer. "The encapsulation of metal nanoparticles within porous liquids." Chemical Communications 55, no. 75 (2019): 11179–82. http://dx.doi.org/10.1039/c9cc03546j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Jie, Kecheng, Yujuan Zhou, Hugh P. Ryan, Sheng Dai, and Jonathan R. Nitschke. "Porous Liquids: Engineering Permanent Porosity into Liquids (Adv. Mater. 18/2021)." Advanced Materials 33, no. 18 (May 2021): 2170136. http://dx.doi.org/10.1002/adma.202170136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Kearsey, Rachel J., Ben M. Alston, Michael E. Briggs, Rebecca L. Greenaway, and Andrew I. Cooper. "Accelerated robotic discovery of type II porous liquids." Chemical Science 10, no. 41 (2019): 9454–65. http://dx.doi.org/10.1039/c9sc03316e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Chala, Ayele Teressa, Svatopluk Matula, Kamila Báťková, and František Doležal. "Evaluation of methods for water and non-volatile LNAPL content measurement in porous media." Soil and Water Research 14, No. 1 (January 23, 2019): 47–56. http://dx.doi.org/10.17221/80/2018-swr.

Повний текст джерела
Анотація:
Proper characterization of contaminants in subsurface helps to clean up effectively the contaminated sites. In this study, different methods were used to quantify non-volatile light non-aqueous phase liquid (LNAPL) and water from sample columns subjected to different water to LNAPL ratios. The objective of the study was to evaluate methods for porous media water and LNAPL contents analysis. The liquids were sampled from the sample columns using activated carbon pellets (ACP). Sample columns water content was also measured using soil moisture sensors. Dielectric mixing model (DMM) was evaluated for the estimation of LNAPL content after water and LNAPL contents of the sample columns were determined through gravimetric analysis method. The result shows that it was possible to sample both water and LNAPL using ACP proportionally but with high standard deviations. It also shows that more liquid was sampled from sample columns subjected to only one liquid compared to sample columns subjected to two liquids. On the other hand, analysis of water and LNAPL using gravimetric analysis method gave the best result although the presence of LNAPL resulted in underestimation of water content at higher LNAPL contents. Meanwhile, the presence of LNAPL modified the bulk relative permittivity (ε<sub>a</sub>) of the sample columns and resulted in overestimation of water contents measured using soil moisture sensors at higher LNAPL content. The modification of ε<sub>a</sub> was used for the estimation of LNAPL using DMM. The evaluation of the model with known water and LNAPL contents and in estimating the LNAPL content of the other sample columns shows that the model could be used for the proper estimation of LNAPL in porous media.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Zhao, Ya Mei, and Chang Zheng Zheng. "Preparation of Porous Polysulfone Membranes Using Ionic Liquids with Different Alkyl Chain as Additives." Key Engineering Materials 501 (January 2012): 330–34. http://dx.doi.org/10.4028/www.scientific.net/kem.501.330.

Повний текст джерела
Анотація:
1-alky-3-methylimidazolium hexfluorophosphate ([n-Cnmim][PF6]) and 1-alky-3- methylimidazolium thiocyanate ([n-Cnmim]SCN) (n=4,8,16) were firstly introducing into the casting solution (PSF/NMP), porous polysulfone (PSF) membranes were successfully prepared by the wet-phase-inversion. The scanning electron microscope was utilized to visualize the cross-sections of the membranes, in order to study the influence of ionic liquids with different alkyl chain on the porous structures. The results indicate that the PSF membranes have different structures and separation properties due to ionic liquids with different alky chain. For ionic liquids with the short alkyl chain, the prepared membranes have the porous structure on cross-sections, but no or weak separation properties. However, for ionic liquids with the long alkyl chain, the prepared membranes have both porous structure and good separation properties. According to the structure of a hydrophobic straight-long alkyl and a hydrophilic limidazolium ring, the ionic liquid with long alkyl chain is considered as a surfactant, it can change not only the interface properties between the casting solution and coagulation bath, but also induce the space structures of the polymer chains.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Bannock, James H., Tsz Yin (Martin) Lui, Simon T. Turner, and John C. deMello. "Automated separation of immiscible liquids using an optically monitored porous capillary." Reaction Chemistry & Engineering 3, no. 4 (2018): 467–77. http://dx.doi.org/10.1039/c8re00023a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Greenaway, Rebecca L., Daniel Holden, Edward G. B. Eden, Andrew Stephenson, Chin W. Yong, Michael J. Bennison, Tom Hasell, Michael E. Briggs, Stuart L. James, and Andrew I. Cooper. "Understanding gas capacity, guest selectivity, and diffusion in porous liquids." Chemical Science 8, no. 4 (2017): 2640–51. http://dx.doi.org/10.1039/c6sc05196k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Wittmar, Alexandra, Hanna Thierfeld, Steffen Köcher, and Mathias Ulbricht. "Routes towards catalytically active TiO2 doped porous cellulose." RSC Advances 5, no. 45 (2015): 35866–73. http://dx.doi.org/10.1039/c5ra03707g.

Повний текст джерела
Анотація:
Cellulose–TiO2 membranes with photocatalytic activity were prepared by non-solvent induced phase separation from cellulose solutions in ionic liquids or from cellulose acetate solutions in organic solvents followed by deacetylation.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Sun, Zhenning, Zhengyu Cao, Yan Li, Qiuya Zhang, Xiaofang Zhang, Jiangang Qian, Lei Jiang, and Dongliang Tian. "Switchable smart porous surface for controllable liquid transportation." Materials Horizons 9, no. 2 (2022): 780–90. http://dx.doi.org/10.1039/d1mh01820e.

Повний текст джерела
Анотація:
Magnetic field induced switchable morphology of composite porous surfaces has been demonstrated for controllable liquid transportation, which can be used as a valve to dynamically control the moving and permeation behavior of non-miscible liquids.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Xiao, Hua Xi, Qin Lu Lin, Yue Wu, Wei Tian, and Wei Wu. "Physicochemical Properties of Porous Starches from Different Botanical Origin." Advanced Materials Research 159 (December 2010): 363–70. http://dx.doi.org/10.4028/www.scientific.net/amr.159.363.

Повний текст джерела
Анотація:
Rice, maize and potato starches were hydrolyzed by amylase to obtain porous starches as final product. The adsorptive capacity, desorbed rates, degree of crystallinity and retrogradation properties of native and porous starches were investigated. The results showed that porous starches had the stronger adsorptive capacity and slower desorbed rate compared with native starches. In the three starch materials, the adsorptive capacity of rice starch for liquids was the strongest; the adsorptive capacity of potato starch for liquids was the weakest. the more flavors adsorbed, the more flavors desorbed. X-ray diffraction showed that Enzyme hydrolysis did not result in any significant changes in the degree of crystallinity of starch. The porous starches exhibited lower tendency of retrogradation as assessed by differential scanning calorimetry (DSC).
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Harvie, Andrew J., Jack O. Herrington, and John C. deMello. "An improved liquid–liquid separator based on an optically monitored porous capillary." Reaction Chemistry & Engineering 4, no. 9 (2019): 1579–88. http://dx.doi.org/10.1039/c9re00144a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Li, Xiaoqian, Jing Zhang, Fangfang Su, Dechao Wang, Dongdong Yao, and Yaping Zheng. "Construction and Application of Porous Ionic Liquids." Acta Chimica Sinica 80, no. 6 (2022): 848. http://dx.doi.org/10.6023/a22010053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Raz, Ofer, Zachi Shmueli, Rika Hagiwara, and Yair Ein-Eli. "Porous Silicon Formation in Fluorohydrogenate Ionic Liquids." Journal of The Electrochemical Society 157, no. 3 (2010): H281. http://dx.doi.org/10.1149/1.3273082.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Warnock, J., D. D. Awschalom, and M. W. Shafer. "Geometrical Supercooling of Liquids in Porous Glass." Physical Review Letters 57, no. 14 (October 6, 1986): 1753–56. http://dx.doi.org/10.1103/physrevlett.57.1753.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Melciu, I. C., and M. D. Pascovici. "Imbibition of liquids in fibrous porous media." IOP Conference Series: Materials Science and Engineering 147 (August 2016): 012041. http://dx.doi.org/10.1088/1757-899x/147/1/012041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Ganguly, Bichitra, Debarshi Gangopadhyay, Dhanadeep Dutta, Sujib Chatterjee, Tapas Mukherjee, and Binayak Dutta Roy. "Positronium interactions in liquids and porous substances." Radiation Physics and Chemistry 76, no. 2 (February 2007): 263–70. http://dx.doi.org/10.1016/j.radphyschem.2006.03.048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Awschalom, D. D., and J. Warnock. "Supercooled liquids and solids in porous glass." Physical Review B 35, no. 13 (May 1, 1987): 6779–85. http://dx.doi.org/10.1103/physrevb.35.6779.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Korb, JP, A. Delville, S. Xu, and J. Jonas. "Nuclear relaxation of liquids in porous media." Journal de Chimie Physique 91 (1994): 848–61. http://dx.doi.org/10.1051/jcp/1994910848.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Ma, Lillian, Cally J. E. Haynes, Angela B. Grommet, Anna Walczak, Christopher C. Parkins, Cara M. Doherty, Louis Longley, et al. "Coordination cages as permanently porous ionic liquids." Nature Chemistry 12, no. 3 (February 10, 2020): 270–75. http://dx.doi.org/10.1038/s41557-020-0419-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Korb, J. P. "Surface dynamics of liquids in porous media." Magnetic Resonance Imaging 19, no. 3-4 (April 2001): 363–68. http://dx.doi.org/10.1016/s0730-725x(01)00249-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Palzer, S., K. Sommer, and C. Hiebl. "Penetration of Porous Systems by Nonwetting Liquids." Chemical Engineering & Technology 26, no. 9 (September 10, 2003): 962–66. http://dx.doi.org/10.1002/ceat.200303023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Zhou, Yujiao, Jocasta Avila, Nicolas Berthet, Solène Legrand, Catherine C. Santini, Margarida Costa Gomes, and Véronique Dufaud. "Integrated, one-pot carbon capture and utilisation using porous ionic liquids." Chemical Communications 57, no. 64 (2021): 7922–25. http://dx.doi.org/10.1039/d1cc02642a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Abbas, Farhat, and Derek A. Rose. "Viscous Fingering and Gravity Segregation through Porous Media: Experimental Findings." Earth Interactions 14, no. 11 (October 1, 2010): 1–13. http://dx.doi.org/10.1175/2010ei348.1.

Повний текст джерела
Анотація:
Abstract During downward vertical flow of a viscous solution, the viscous fingering (VF) phenomenon affects miscible displacement of solutes through a soil profile. On the other hand, during horizontal flow, when the liquid residing in a horizontal bed of porous materials is displaced by another liquid of different density, the resulting hydrodynamic dispersion is modified by the formation of a tongue of denser liquid undershooting the less dense liquid, a phenomenon known as gravity segregation (GS). To explore VF and GS phenomena, the authors present laboratory experimental results on the vertical and horizontal transport of bulk solution and ions of different concentrations and/or densities through inert and reactive porous media. The study showed that, with miscible liquids, breakthrough starts later and ends earlier. The authors predicted the behavior of immiscible liquids by the nondimensional gravity segregation number β: that is, with increase in β, the segregation becomes extreme. The curve fitting technique CXTFIT 2.0 fitted the experimental breakthrough curves well, showing that the apparent coefficients of hydrodynamic dispersion vary much less with pore-water velocity in horizontal than in vertical flow, but retardation factors are not influenced by the orientation of flow. This work is relevant to the preferential flow of viscous liquids such as liquid fertilizers in agricultural fields, oil recovery processes, and the intrusion of saline water into the freshwater of coastal aquifers.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Ashraf, Shabina, and Jyoti Phirani. "Capillary displacement of viscous liquids in a multi-layered porous medium." Soft Matter 15, no. 9 (2019): 2057–70. http://dx.doi.org/10.1039/c8sm02114g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Olais-Govea, José Manuel, Leticia López-Flores, and Magdaleno Medina-Noyola. "The Subtle Kinetics of Arrested Spinodal Decomposition: Colloidal Gels and Porous Glasses." MRS Advances 3, no. 63 (2018): 3817–25. http://dx.doi.org/10.1557/adv.2018.625.

Повний текст джерела
Анотація:
ABSTRACTThe non-equilibrium self-consistent generalized Langevin equation (NE-SCGLE) theory of irreversible processes in liquids has been proposed as a theoretical framework capable of predicting the age- and preparation-dependent properties of highly ubiquitous non-equilibrium amorphous solids, such as like glasses and gels. By this formalism, we discuss the main kinetic features of the irreversible relaxation of simple liquids involved in the arrested spinodal decomposition of suddenly and deeply quenched. At some lower temperature we identify, by means of a latency time within which particles retain a finite apparently stationary mobility, the crossover from full phase separation to arrested spinodal decomposition which leads to recognize the onset of gelation.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Molchanov, Vitalii. "Statement and solution of non-stationary problem of liquid filtering in a deformed porous medium." Ukrainian journal of mechanical engineering and materials science 5, no. 3-4 (2019): 1–7. http://dx.doi.org/10.23939/ujmems2019.03-04.001.

Повний текст джерела
Анотація:
The paper discusses the laws behind the filtering procedures of process liquids through porous materials. At metalwork finishing operations, the use of cutting fluids is of particular importance. During operation, liquids are continuously and intensively contaminated with solid metal parts. To restore the original properties, process fluids are cleaned of mechanical admixtures. The most widely used methods for purifying process liquids are those by filtration. The use of filtration for the purification of process fluids is most effective, since filtering through a layer of porous materials results in complete extraction and removal of solids from liquids. However, the structural features of the pores in the porous environment trigger a number of specific phenomena that arise when liquids move in the porous channels of a porous medium. The research purpose is to discuss and establish the laws behind the filtering procedures of process fluids through porous materials. When filtering process liquids through a layer of porous materials, the porous medium of the filter membrane expands with a change in porosity. The change in porosity occurs due to a decrease in the pore volume of the porous environment, since the solid parts together with the liquid penetrate into the porous channels of the porous environment and hover in them. The conducted studies permitted the authors to identify and study the laws of the filtering process and establish the law of change in porosity of the porous environment. Based on the established law, a differential equation is derived. It allowed, for given initial and border-line conditions, stating the problem of filtering the liquid through a layer of solid particles of a variable porous medium of the filtering membrane. The solution of the non-stationary problem with initial and border-line conditions by the finite difference method allowed determining the hydrodynamic parameters of fluid filtration through a layer of particles of the porous environment of the filter membrane and to obtain a solution of the non-stationary boundary problem of fluid filtration in a deformed porous medium. The use of research results promotes complete clarification of the process fluid and thorough removal of the solid parts of valuable secondary raw materials of metal processing, in particular for powder metallurgy, facilitates the launching of waste-free production, and increases the level of environmental cleanliness in the operating area of cutting fluids.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Gonçalves, C., J. M. Gomes, F. R. Maia, H. Radhouani, S. S. Silva, R. L. Reis, and J. M. Oliveira. "Fabrication of biocompatible porous SAIB/silk fibroin scaffolds using ionic liquids." Materials Chemistry Frontiers 5, no. 17 (2021): 6582–91. http://dx.doi.org/10.1039/d1qm00583a.

Повний текст джерела
Анотація:
This work brings new perspectives for the use of Sucrose Acetate Isobutyrate (SAIB) for tissue engineering scaffolding products. Porous SAIB/Silk fibroin (SF) scaffolds with tunable properties were synthesized using ionic liquids.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

KAŁDOŃSKI, Tomasz Jan, and Tadeusz KAŁDOŃSKI. "IRON POROUS SLIDE BEARINGS IMPREGNATED WITH A SELECTED IONIC LIQUID." Tribologia 282, no. 6 (December 31, 2018): 43–50. http://dx.doi.org/10.5604/01.3001.0012.8420.

Повний текст джерела
Анотація:
This article presents some selected results of the research on the slide porous bearings, sintered from the iron powder Höganas NC.100.24, with 2.5% of copper addition by weight, impregnated with selected ionic liquids, through comprehensive and detailed research works [L. 1–6]. The research was carried out within the framework of PBR/15-249/2007/WAT-OR00002904 Research Project financed by the Ministry of Science and Higher Education, during 2007–2011 [L. 7]. Several times higher load capacities and durabilities were obtained in comparison with standard ø25/ø35×20 mm sleeves lubricated with previously used oils, including perfluoropolyether oils. To date, there were no bearings sintered from the iron powder and impregnated with ionic liquids. The durability and load capacity of such bearings are higher, and that is why it was decided to submit a proper patent claim to the Polish Patent Office [L. 8].
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Parfirieva, E. M., A. O. Ivchenko, O. A. Ivchenko, E. V. Gavrilin, A. I. Chirev, I. O. Savel'ev, I. O. Savel'ev, and V. E. Gunther. "3-D Incubator Principle in Nikelid-Titanium Porous Plates Hemostasis." KnE Materials Science 2, no. 1 (July 17, 2017): 347. http://dx.doi.org/10.18502/kms.v2i1.818.

Повний текст джерела
Анотація:
Biological liquids (blood particularly) imbibe 3-D construction of nikelid-titan porous plates easily. Clot formation takes place in large porous volume, its retraction by fibrin fibers forming and then maturation of connective tissue all together additionally fix the implant in bleeding zone.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Gun'ko, V. M. "Confined space effects on various liquids interacting with fumed nanooxides and porous silicas." Himia, Fizika ta Tehnologia Poverhni 13, no. 1 (March 30, 2022): 47–59. http://dx.doi.org/10.15407/hftp13.01.047.

Повний текст джерела
Анотація:
Interfacial phenomena at a surface of porous and highly disperse adsorbents in the systems containing strongly and weakly bound and unbound liquids depend strongly on the confined space effects. These effects as well as the temperature behavior of liquids located in pores or voids between nanoparticles depend on many factors. They are the pore size distributions, pore volume, specific surface area, surface chemistry of adsorbents, chemical structure and molecular sizes of adsorbates, accessibility of pores vs. probe molecule sizes, as well as textural instability of adsorbents. This instability can appear, e.g., as compaction of fumed oxides under action of liquid adsorbates, especially water, or due to mechanochemical activation. The aim of this study is to analyze features of the interfacial phenomena upon interactions of fumed oxides (silica, alumina, alumina/silica/titania) and porous silicas (silica gels and precipitated silica) with polar (water, dimethyl sulfoxide), weakly polar (chloroform), and nonpolar (n-decane, aromatic benzene and toluene) liquid adsorbates depending on the morphological and textural characteristics of the adsorbents, various adsorbate characteristics, and temperature. The observed effects as well as related phenomena are important because they can differently influence the efficiency of practical applications of adsorbents under various conditions (temperature, pressure, concentrations) depending on the characteristics of adsorbents and adsorbates (liquids, solvents and solutes).
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Frisken, B. J., Andrea J. Liu, and David S. Cannell. "Critical Fluids in Porous Media." MRS Bulletin 19, no. 5 (May 1994): 19–24. http://dx.doi.org/10.1557/s0883769400036526.

Повний текст джерела
Анотація:
The behavior of fluids confined in porous materials has been of interest to engineers and scientists for many decades. Among the applications driving this research are the use of porous membranes to achieve liquid-liquid separations and to deionize water, the use of porous materials as beds for catalysis, and the need to extract liquids (especially oil and water) from such media. Many of these applications depend on transport, which is governed by flow or diffusion in the imbibed fluids. Both the flow and diffusion of multiphase fluids in porous media, however, strongly depend on the morphology of phase-separated domains, and on the kinetics of domain growth. Thus, it is worthwhile to study the behavior of multiphase fluids in porous media in the absence of flow. Recently, much attention has focused on even simpler systems that still capture these essential features, namely, near-critical binary liquid mixtures and vapor-liquid systems in model porous media, such as Vycor and dilute silica gels. Although near-critical fluids may seem rather artificial as models for multiphase liquids, there are several advantages associated with them. In general, domain morphology and growth kinetics are governed primarily by competition between interfacial tension and the preferential attraction of one phase to the surface of the medium. In near-critical fluids, the relative strength of these two energy scales is sensitive to temperature, and can therefore be altered in a controlled fashion. In addition, the kinetics of domain growth are sensitive to the temperature quench depth, and can be controlled.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Ahmad, Mohd Zamidi, and Alessio Fuoco. "Porous liquids – Future for CO2 capture and separation?" Current Research in Green and Sustainable Chemistry 4 (2021): 100070. http://dx.doi.org/10.1016/j.crgsc.2021.100070.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

SHABANOV, Vsevolod Aleksandrovich. "MOTION OF VARIABLE VISCOSITY LIQUIDS IN POROUS MEDIA." Urban construction and architecture 4, no. 3 (September 15, 2014): 73–76. http://dx.doi.org/10.17673/vestnik.2014.03.13.

Повний текст джерела
Анотація:
Motion of variable viscosity water drop in perfect soil model is viewed. Resistance forces are presented as amount sum of mass forces and forces depending on water drop speed and liquid viscosity. Resistance forces are ranged in accordance with coordinate and time. Three terms in each range are holded - quadratic terms are presented. It was shown that in this case the equation of the motion has the form of the Riccati equation. The equation factors have been defi ned experimentally. Mathematic model proves that in defi nes conditions water drop is stopped forming a slug.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Chang, Chao-Wen, Isaiah Borne, Robin M. Lawler, Zhenzi Yu, Seung Soon Jang, Ryan P. Lively, and David S. Sholl. "Accelerating Solvent Selection for Type II Porous Liquids." Journal of the American Chemical Society 144, no. 9 (February 16, 2022): 4071–79. http://dx.doi.org/10.1021/jacs.1c13049.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Korb, J.-P. "Nuclear magnetic relaxation of liquids in porous media." New Journal of Physics 13, no. 3 (March 22, 2011): 035016. http://dx.doi.org/10.1088/1367-2630/13/3/035016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Ritter, M. B., D. D. Awschalom, and M. W. Shafer. "Collective Behavior of Supercooled Liquids in Porous Media." Physical Review Letters 61, no. 8 (August 22, 1988): 966–69. http://dx.doi.org/10.1103/physrevlett.61.966.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Ametov, I. M., and M. B. Dorfman. "Motion of viscoelastic liquids in a porous medium." Journal of Engineering Physics 52, no. 5 (May 1987): 542–46. http://dx.doi.org/10.1007/bf00873307.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії