Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Liquid Xenon Compton telescope.

Статті в журналах з теми "Liquid Xenon Compton telescope"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-17 статей у журналах для дослідження на тему "Liquid Xenon Compton telescope".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Oger, T., W. T. Chen, J. P. Cussonneau, J. Donnard, S. Duval, J. Lamblin, O. Lemaire, et al. "A liquid xenon TPC for a medical imaging Compton telescope." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 695 (December 2012): 125–28. http://dx.doi.org/10.1016/j.nima.2011.12.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chen, W. T., H. Carduner, J. P. Cussonneau, J. Donnard, S. Duval, A. F. Mohamad-Hadi, J. Lamblin, et al. "Measurement of the Transverse Diffusion Coefficient of Charge in Liquid Xenon." Defect and Diffusion Forum 326-328 (April 2012): 567–72. http://dx.doi.org/10.4028/www.scientific.net/ddf.326-328.567.

Повний текст джерела
Анотація:
Liquid xenon (LXe) is a very attractive material as a detection medium for ionization detectors due to its high density, high atomic number, and low energy required to produce electron-ion pairs. Therefore it has been used in several applications, like γ detection or direct detection of dark matter. Now Subatech is working on the R & D of LXe Compton telescope for 3γ medical imaging, which can make precise tridimensional localization of a (β+, γ) radioisotope emitter. The diffusion of charge carriers will directly affect the spatial resolution of LXe ionization signal. We will report how we measure the transverse diffusion coefficient for different electric field (0.5 ~ 1.2 kV/cm) by observing the spray of charge carriers on drift length varying until 12 cm. With very-low-noise front-end electronics and complete Monte-Carlo simulation of the experiment, the values ​​of transverse diffusion coefficient are measured precisely.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Aprile, E., A. Curioni, K. L. Giboni, M. Kobayashi, U. G. Oberlack, and S. Zhang. "Compton imaging of MeV gamma-rays with the Liquid Xenon Gamma-Ray Imaging Telescope (LXeGRIT)." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 593, no. 3 (August 2008): 414–25. http://dx.doi.org/10.1016/j.nima.2008.05.039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Aprile, E., V. Egorov, K. L. Giboni, T. Kozu, F. Xu, T. Doke, J. Kikuchi, et al. "The electronics read out and data acquisition system for a liquid xenon time projection chamber as a balloon-borne Compton telescope." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 412, no. 2-3 (August 1998): 425–36. http://dx.doi.org/10.1016/s0168-9002(98)00480-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Duval, S., A. Breskin, H. Carduner, J.-P. Cussonneau, J. Lamblin, P. Le Ray, E. Morteau, T. Oger, J.-S. Stutzmann, and D. Thers. "MPGDs in Compton imaging with liquid-xenon." Journal of Instrumentation 4, no. 12 (December 10, 2009): P12008. http://dx.doi.org/10.1088/1748-0221/4/12/p12008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Aprile, E., A. Bolotnikov, D. Chen, R. Mukherjee, and F. Xu. "The polarization sensitivity of the liquid xenon imaging telescope." Astrophysical Journal Supplement Series 92 (June 1994): 689. http://dx.doi.org/10.1086/192042.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gonçalves, O. D., H. Schechter, M. I. Lopes, and V. Chepel. "Rayleigh to compton differential cross-section ratios in liquid xenon." X-Ray Spectrometry 28, no. 5 (September 1999): 384–87. http://dx.doi.org/10.1002/(sici)1097-4539(199909/10)28:5<384::aid-xrs369>3.0.co;2-j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Buuck, M., A. Mishra, E. Charles, N. Di Lalla, O. A. Hitchcock, M. E. Monzani, N. Omodei, and T. Shutt. "Low-energy Electron-track Imaging for a Liquid Argon Time-projection-chamber Telescope Concept Using Probabilistic Deep Learning." Astrophysical Journal 942, no. 2 (January 1, 2023): 77. http://dx.doi.org/10.3847/1538-4357/aca329.

Повний текст джерела
Анотація:
Abstract The GammaTPC is an MeV-scale single-phase liquid argon time-projection-chamber gamma-ray telescope concept with a novel dual-scale pixel-based charge-readout system. It promises to enable a significant improvement in sensitivity to MeV-scale gamma rays over previous telescopes. The novel pixel-based charge readout allows for imaging of the tracks of electrons scattered by Compton interactions of incident gamma rays. The two primary contributors to the accuracy of a Compton telescope in reconstructing an incident gamma-ray’s original direction are its energy and position resolution. In this work, we focus on using deep learning to optimize the reconstruction of the initial position and direction of electrons scattered in Compton interactions, including using probabilistic models to estimate predictive uncertainty. We show that the deep-learning models are able to predict locations of Compton scatters of MeV-scale gamma rays from simulated 500 μm pixel-based data to better than 1 mm rms error and are sensitive to the initial direction of the scattered electron. We compare and contrast different deep-learning uncertainty estimation algorithms for reconstruction applications. Additionally, we show that event-by-event estimates of the uncertainty of the locations of the Compton scatters can be used to select those events that were reconstructed most accurately, leading to improvement in locating the origin of gamma-ray sources on the sky.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Giboni, K., E. Aprile, T. Doke, S. Suzuki, L. M. P. Fernandes, J. A. M. Lopes, and J. M. F. dos Santos. "Compton Positron Emission Tomography with a Liquid Xenon Time Projection Chamber." Journal of Instrumentation 2, no. 10 (October 9, 2007): P10001. http://dx.doi.org/10.1088/1748-0221/2/10/p10001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cussonneau, J. P., J. M. Abaline, S. Acounis, N. Beaupère, J. L. Beney, J. Bert, S. Bouvier, et al. "3$\gamma $ Medical Imaging with a Liquid Xenon Compton Camera and $^{44}$Sc Radionuclide." Acta Physica Polonica B 48, no. 10 (2017): 1661. http://dx.doi.org/10.5506/aphyspolb.48.1661.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Aprile, E., A. Bolotnikov, D. Chen, and R. Mukherjee. "A Monte Carlo analysis of the liquid xenon TPC as gamma-ray telescope." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 327, no. 1 (March 1993): 216–21. http://dx.doi.org/10.1016/0168-9002(93)91446-t.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Aprile, E., A. Bolotnikov, D. Chen, and R. Mukherjee. "A liquid xenon imaging telescope for gamma-ray astrophysics: Design and expected performance." Nuclear Physics B - Proceedings Supplements 32 (May 1993): 279–86. http://dx.doi.org/10.1016/0920-5632(93)90035-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Oberlack, U., E. Aprile, A. Curioni та K. L. Giboni. "Performance of the light trigger system in the liquid xenon γ-ray imaging telescope LXeGRIT". IEEE Transactions on Nuclear Science 48, № 4 (2001): 1041–47. http://dx.doi.org/10.1109/23.958720.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Aprile, E., A. Curioni, K. L. Giboni, U. Oberlack та S. Ventura. "An upgraded data-acquisition system for the balloon-borne liquid xenon γ-ray imaging telescope LXeGRIT". IEEE Transactions on Nuclear Science 48, № 4 (2001): 1299–305. http://dx.doi.org/10.1109/23.958770.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Gola, Alberto, Fabio Acerbi, Massimo Capasso, Marco Marcante, Alberto Mazzi, Giovanni Paternoster, Claudio Piemonte, Veronica Regazzoni, and Nicola Zorzi. "NUV-Sensitive Silicon Photomultiplier Technologies Developed at Fondazione Bruno Kessler." Sensors 19, no. 2 (January 14, 2019): 308. http://dx.doi.org/10.3390/s19020308.

Повний текст джерела
Анотація:
Different applications require different customizations of silicon photomultiplier (SiPM) technology. We present a review on the latest SiPM technologies developed at Fondazione Bruno Kessler (FBK, Trento), characterized by a peak detection efficiency in the near-UV and customized according to the needs of different applications. Original near-UV sensitive, high-density SiPMs (NUV-HD), optimized for Positron Emission Tomography (PET) application, feature peak photon detection efficiency (PDE) of 63% at 420 nm with a 35 um cell size and a dark count rate (DCR) of 100 kHz/mm2. Correlated noise probability is around 25% at a PDE of 50% at 420 nm. It provides a coincidence resolving time (CRT) of 100 ps FWHM (full width at half maximum) in the detection of 511 keV photons, when used for the readout of LYSO(Ce) scintillator (Cerium-doped lutetium-yttrium oxyorthosilicate) and down to 75 ps FWHM with LSO(Ce:Ca) scintillator (Cerium and Calcium-doped lutetium oxyorthosilicate). Starting from this technology, we developed three variants, optimized according to different sets of specifications. NUV-HD–LowCT features a 60% reduction of direct crosstalk probability, for applications such as Cherenkov telescope array (CTA). NUV-HD–Cryo was optimized for cryogenic operation and for large photosensitive areas. The reference application, in this case, is the readout of liquid, noble-gases scintillators, such as liquid Argon. Measurements at 77 K showed a remarkably low value of the DCR of a few mHz/mm2. Finally, vacuum-UV (VUV)-HD features an increased sensitivity to VUV light, aiming at direct detection of photons below 200 nm. PDE in excess of 20% at 175 nm was measured in liquid Xenon. In the paper, we discuss the specifications on the SiPM related to different types of applications, the SiPM design challenges and process optimizations, and the results from the experimental characterization of the different, NUV-sensitive technologies developed at FBK.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Baudis, L., H. Dujmovic, C. Geis, A. James, A. Kish, A. Manalaysay, T. Marrodán Undagoitia, and M. Schumann. "Response of liquid xenon to Compton electrons down to 1.5 keV." Physical Review D 87, no. 11 (June 13, 2013). http://dx.doi.org/10.1103/physrevd.87.115015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Zhu, Y., S. Acounis, N. Beaupère, J. L. Beney, J. Bert, S. Bouvier, D. Cai, et al. "Studies and optimization of scintillation light measurements for the development of the 3-gamma medical imaging XEMIS2 liquid xenon compton camera." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, November 2022, 167794. http://dx.doi.org/10.1016/j.nima.2022.167794.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії