Зміст
Добірка наукової літератури з теми "Lipolyse enzymatique"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Lipolyse enzymatique".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Lipolyse enzymatique"
Carrière, Frédéric. "Soixante ans de recherche sur la lipolyse enzymatique des corps gras à Marseille." Oléagineux, Corps gras, Lipides 15, no. 3 (May 2008): 196–207. http://dx.doi.org/10.1051/ocl.2008.0189.
Повний текст джерелаVANBERGUE, Élise, Jean-Louis POULET, Jean-Louis PEYRAUD, and Catherine HURTAUD. "Le point sur la lipolyse du lait de vache : facteurs de variation et mécanismes biochimiques." INRAE Productions Animales 33, no. 1 (March 23, 2020). http://dx.doi.org/10.20870/productions-animales.2020.33.1.3178.
Повний текст джерелаДисертації з теми "Lipolyse enzymatique"
Monié, Aurélie. "Lipolyse enzymatique de triglycérides pour la fabrication de matrices alimentaires dans le cadre d'une stratégie "clean- label"." Thesis, Toulouse 3, 2021. http://www.theses.fr/2021TOU30289.
Повний текст джерелаIn this project, we wanted to explore "clean-label" strategies to incorporate mono- and diglycerides of fatty acids (MDGs; E471) in food products. Indeed, manufacturers try to find solutions in order to substitute synthetic additives while keeping the same functionalities in the food products. The use of processing aids, such as enzymes, fits perfectly with the approach of products that are more respectful of consumers and the environment; that is to say "clean-label". Thus, by reacting a lipase with rapeseed oil, we demonstrated that MDGs could be generated in situ and with a good yield. To better understand the kinetics of lipolysis and to characterize all the products formed, analysis by gas chromatography and 1H and 13C NMR were carried out. Finally, rapeseed oils with different MDGs rates, were used in the fabrication of different food products. Indeed, on each of the products chosen, the MDGs play different roles. Products like sponge cakes, brioches and ice creams were formulated and characterized to highlight all benefits comparatively to products made with unmodified rapeseed oil. Finally, the fabrication of concentrated reverse emulsions starting from the post-enzymatic oil has been developed that allow the possibility to obtain doubles emulsions
Mourey, André. "La lipolyse en milieux naturels et manipulés." Nancy 1, 1989. http://www.theses.fr/1989NAN10070.
Повний текст джерелаDechemi, Siham. "Inhibition de la croissance et des activités enzymatiques de la flore psychrotrophe du lait sous atmosphère modifiée et par ensemencement lactique." Compiègne, 1998. http://www.theses.fr/1998COMP1172.
Повний текст джерелаAhmad, Nazir. "Lipémie postprandiale et lactoferrine : le Lipolysis Stimulated Receptor comme cible potentielle." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0167/document.
Повний текст джерелаPostprandial lipemia is characterized by an increase in plasma triglyceride-rich lipoproteins after the ingestion of meal, and is important towards determining the bioavailability of dietary lipids amongst the peripheral tissues. Indeed, elevated postprandial lipemia is often observed with obesity and dyslipidemia, two disorders that can lead to health complications including diabetes and cardiovascular diseases. Lactoferrin (Lf), has been shown to inhibit hepatic chylomicron remnant removal, resulting in increased postprandial lipemia, for which the molecular mechanisms remain unclear. The lipolysis stimulated lipoprotein receptor (LSR) has been shown to contribute to the removal of triglycerides-rich lipoproteins during the postprandial phase. The aim was to determine if there was interaction between Lf and LSR. Both Lf and LSR were purified with purities upper to 95% and characterized. Cell culture studies demonstrated that while Lf does not have any significant effect on LSR protein levels in mouse Hepa1-6 cells, it co-localizes with LSR in cells, but only in the presence of oleate, which is needed to obtain LSR in its active form. Ligand blotting using purified LSR revealed that Lf binds directly to the receptor in the presence of oleate and prevents the binding of triglycerides-rich lipoproteins. Both C- and N-lobes of Lf, and a mixture of peptides derived from its tryptic and chymotryptic double hydrolysis retained the ability to bind LSR. We propose that the elevated postprandial lipemia observed upon Lf treatment in vivo is mediated by its direct interaction with LSR, thus preventing clearance of chylomicrons and their remnants through the LSR pathway