Дисертації з теми "LINSEED OIL METHYL ESTER"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: LINSEED OIL METHYL ESTER.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-32 дисертацій для дослідження на тему "LINSEED OIL METHYL ESTER".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Stepanonytė, Dovilė. "Investigation of rape seed oil methyl ester production and by-product utilization." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2007. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2007~D_20070629.150117-86007.

Повний текст джерела
Анотація:
The problems of rape seed methyl ester (RME) production process by-products utilization were analyzed, statistical data for the capacities of biodiesel production and by-products generation were presented, the prospects of biodiesel production expansion, properties and environmental impact, main production technologies, Lithuanian and foreign countries experience were described, the main aims and tasks of work were defined. The investigation of glycerol – major by-product of RME production process – utilization was accomplished. One of the new possible utilization methods was researched, when combusting glycerol with highly sulphurous (~ 2.0 %) heavy fuel oil to reduce SO2 emissions, which limit value in the flue gas can not exceed 1700 mg/Nm3 (according to EU Directive 1999/32EC and LAND 43-2001 „Norms for the exhaust of pollutants from large fuel burning equipment“). The heavy fuel oil – glycerol emulsion was prepared in the pilot plant operating in the laboratory conditions, the most optimal ratio (1:1) for heavy fuel oil emulsification was estimated, the dispersivity investigation of heavy fuel oil - glycerol emulsion samples was performed. The experimental heavy fuel oil and obtained emulsion combustion investigations were carried out in VGTU Institute of Thermal Insulation pilot plant and in the thermal oxidation boiler „UMISA-CR/11,9 (13)“ at JCS „Rietavo veterinarinė sanitarija“. The CO, NOx, SO2 and particulate matter concentration values for heavy fuel oil and... [to full text]
Baigiamajame darbe išnagrinėtos rapso aliejaus metilo esterio (RME) gamybos proceso šalutinių produktų utilizacijos problemos, pateikti statistiniai duomenys apie biodyzelino gamybos bei susidarančių šalutinių produktų apimtis, aprašytos biodyzelino gamybos plėtros perspektyvos, savybės bei poveikis aplinkai, pagrindinės gamybos technologijos, Lietuvos bei užsienio šalių patirtis šioje srityje, apibrėžti pagrindiniai darbo tikslai ir uždaviniai. Atliktas RME gamybos proceso pagrindinio šalutinio produkto – glicerolio – utilizacijos tyrimas. Išanalizuotas vienas iš naujų galimų utilizavimo būdų - deginti glicerolį kartu su sieringu (~ 2,0 %) mazutu, siekiant sumažinti SO2 emisijas, kurių nustatyta ribinė vertė dūmuose negali būti didesnė kaip 1700 mg/Nm3 (pagal ES Direktyvą 1999/32EC ir LAND 43-2001 „Išmetamų teršalų ir didelių kurą deginančių įrenginių normos“). Laboratorinėmis sąlygomis stendiniame įrenginyje paruošta mazuto-glicerolio emulsija, nustatytas optimaliausias mazuto emulgavimo gliceroliu santykis (1:1), atlikti mazuto emulsijos bandinių homogeniškumo tyrimai. Eksperimentiniai mazuto bei gautų emulsijų deginimo bandymai buvo atlikti VGTU Termoizoliacijos instituto eksperimentiniame stende bei UAB „Rietavo veterinarinė sanitarija“ termooksidaciniame katile „UMISA-CR/11,9 (13)“. Išmatuotos mazuto ir mazuto-glicerolio emulsijos CO, NOx, SO2 ir kietųjų dalelių emisijos bei palygintos su jų didžiausiomis leistinoms vertėmis. Remiantis gautais rezultatais pateiktos... [toliau žr. visą tekstą]
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sitorus, Henry Binsar Hamonangan. "The study of jatropha curcas oil-based biodegradable insulation materials for power transformer." Thesis, Ecully, Ecole centrale de Lyon, 2015. http://www.theses.fr/2015ECDL0022/document.

Повний текст джерела
Анотація:
Ce travail porte sur la caractérisation physico-chimique de l'huile de Jatropha Curcas et sa capacité à remplacer l'huile minérale dans les transformateurs de puissance. Ce produit présente plusieurs avantages sur les autres huiles végétales comme l'huile de palme ou l'huile de colza, qui recommandent sa production et son utilisation. En effet, la plante de Jatropha Curcas peut être cultivée sur des sols pauvres à faibles précipitations, évitant ainsi d'utiliser des sols plus fertiles pour sa culture permettant ainsi aux petits exploitants de réserver leurs terres aux cultures de base. Cette plante peut pousser facilement dans des zones où les niveaux de précipitations annuelles sont nettement inférieures à celles requises par d'autres espèces telles que le colza, le tournesol, le soja, le maïs, le palmier à huile et d'autres. Elle peut être cultivée sur tous les types de sol en Indonésie, même sur des terres arides, dans de nombreuses régions de l'Indonésie orientale, inexploitées en raison des difficultés à planter d'autres cultures. En outre, l'huile de Jatropha Curcas est un produit non alimentaire. En faisant subir à l’huile de Jatropha Curcas brute une estérification à base alcaline avec de l'hydroxyde de potassium (KOH), on obtient de l’huile de méthylester de Jatropha Curcas (JMEO) dont la viscosité et l’acidité sont acceptables pour les équipements à haute tension en particulier pour les transformateurs de puissance. Les propriétés physico-chimiques et électriques de JMEO ont été mesurées ainsi que celles de l'huile minérale (MO) pour la comparaison. Pour les propriétés physico-chimiques, il s’agit de la densité relative, la teneur en eau, la viscosité, l'acidité, l'indice d'iode, la corrosivité, le point d'éclair, le point d'écoulement, la couleur, l'examen visuel, et la teneur en ester méthylique. Quant aux propriétés électriques, elles concernent la rigidité diélectrique sous différentes formes de tension (alternative, continu et choc de foudre), les phénomènes de pré-claquage et de claquage sous choc de foudre, les décharges glissantes sur les surfaces de carton comprimé, immergé dans JMEO et MO. Les résultats obtenus montrent que les tensions de claquage moyennes en continu et en choc de foudre des huiles JMEO et MO sont très proches ; la tension de claquage moyenne de JMEO est même plus élevée que celle de l'huile minérale (de type naphténique). La mesure des tensions de claquage des mélanges d'huiles «80% JMEO + 20% MO» et «50% JMEO et 50% MO» montrent que la tension de claquage du mélange «80% JMEO + 20% MO» est toujours supérieure à celle de l'huile minérale sous tensions alternative et continue. Cela indique que le mélange d'huile minérale et de JMEO avec un rapport de 20:80 ne dégrade pas ses performances. Le mélange d'huiles peut se produire lors du remplacement de l'huile minérale par JMEO dans les transformateurs installés et en exploitation. L'analyse des caractéristiques des streamers (la forme, le temps d'arrêt, le courant associé et la charge électrique) se développant dans les huiles JMEO et MO sous tension impulsionnelle de foudre, montre une grande similitude. Aussi, la longueur finale (Lf) et la densité des branches des décharges surfaciques se propageant sur le carton comprimé immergé dans l'huile de Jatropha Curcas de méthylester (JMEO) et de l'huile minérale (MO), sous tensions de choc de foudre positif et négatif (1,2/50 μs), pour deux configurations d'électrodes divergentes (électrode pointe haute tension perpendiculaire et tangente au carton, respectivement), sont fortement influencées par l'épaisseur du carton comprimé. Pour une épaisseur donnée, Lf augmente avec la tension et décroît lorsque l'épaisseur augmente. Lf est plus long lorsque la pointe est positive que lorsque la pointe est négative. Pour une tension et une épaisseur du carton comprimé donnée, les valeurs de Lf dans l’huile minérale et l’huile JMEO sont très proches. [...]
This work is aimed at the investigation of the physicochemical characterization of Jatropha Curcas seeds oil and its capacity to be an alternative option to replace mineral oil in power transformers. This product presents several advantages that recommend both its production and usage over those of other vegetable oils as crude palm oil and rapeseeds oil. Indeed, it may be grown on marginal or degraded soils avoiding thus the need to utilize those more fertile soils currently being used by smallholders to grow their staple crops; and it will readily grow in areas where annual rainfall levels are significantly lower than those required by other species such as palm oil, rape-seeds oil, sunflower oil, soybeans oil, corn oil and others. For instance, these plants can grow on all soil types in Indonesia, even on barren soil. The barren soil types can be found in many parts of eastern Indonesia that remain untapped because of the difficulty planted with other crops. Moreover, jatropha curcas oil is nonfood crops. Jatropha Curcas oil was processed by alkali base catalyzed esterification process using potassium hydroxide (KOH) to produce Jatropha Curcas methyl ester oil (JMEO) has a viscosity and a acidity that are acceptable for high voltage equipment especially in power transformer. The physicochemical and electrical properties of JMEO were measured as well as those of mineral oil (MO) for comparison. The physicochemical properties cover relative density, water content, viscosity, acidity, iodine number, corrosivity, flash point, pour point, color, visual examination, and methyl ester content. Meanwhile the electrical properties cover dielectric strength under AC, DC and lightning impulse voltages, pre-breakdown / streamers under lightning impulse voltage, creeping discharge over pressboard immersed in JMEO and MO. The obtained results show that the average DC and lightning impulse breakdown voltages of JMEO and MO are too close, even the average AC breakdown voltage of JMEO are higher than that of mineral oil (napthenic type). The measurement of breakdown voltages of two oil mixtures namely “80% JMEO + 20% MO” and “50% JMEO and 50% MO” shows that the breakdown voltage of the first mixture (i.e., “80%JMEO+20%MO”) is always higher than that of mineral oil under both AC and DC voltages. This indicates that mixing 20:80 mineral oil to JMEO ratio does not degrade its performance. The mixing of oils can occur when replacing mineral oil by JMEO in installed transformers. The analysis of the streamers characteristics (namely; shape, stopping length, associated current and electrical charge) developing in JMEO and MO under lightning impulse voltages, shows that these are too close (similar). It is also shown that the stopping (final) length Lf and the density of branches of creeping discharges propagating over pressboard immersed in Jatropha Curcas methyl ester oil (JMEO) and mineral oil (MO), under positive and negative lightning impulse voltages (1.2/50 μs), using two divergent electrode configurations (electrode point perpendicular and tangential to pressboard), are significantly influenced by the thickness of pressboard. For a given thickness, Lf increases with the voltage and decreases when the thickness increases. Lf is longer when the point is positive than with a negative point. For a given voltage and thickness of pressboard, the values of Lf in mineral oil and JMEO are very close. It appears from this work that JMEO could constitute a potential substitute for mineral oil for electrical insulation and especially in high voltage power transformers
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sala, José Antonio. "DESEMPENHO DE UM MOTOR DIESEL DE INJEÇÃO INDIRETA EM FUNÇÃO DA VARIAÇÃO DO TEOR DE B IODIESEL." Universidade Federal de Santa Maria, 2008. http://repositorio.ufsm.br/handle/1/7506.

Повний текст джерела
Анотація:
Due to the current world scenery of energy, the biodiesel presents a great potential as option to consumption of fuels of the finite sources. The largest use of the biodiesel in the world is with the methyl ester of soybean oil, due to the production scale. In general its use happens in form of blends with diesel oil in different rates. This work of research shows the influence of different levels of biodiesel blends and diesel oil. They were tested using a dynamometer hydraulic bench for evaluation of a diesel engine of 4 times with indirect injection, naturally aspirated. The fuels used were obtained by blends of soy bean methyl ester oil with conventional diesel with levels ranging from 5% to 100% biodiesel. I t hás been compared to the results obtained by different mixes with the B2 diesel oil, with no changes or adjustments in the engine. The best results of speci fic consumption were reached with blends up to 20% of biodiesel, otherwise tenors above 50% present médium consumption up to 7,2% larger than the convent ional diesel. The torque showed a declining while the ve getable fuel concentration was increased, which the worst result was present by B100 that had lost 6,8% compared to the testifier trial. The noxious exhaust ion gasses, to the environment, have the emi ssion decreased with the introduction of the biodiesel, except the NOx that presents rise when the levels of the added biodiesel are superior to 20%. The results suggest that largers tenors than 20% in the mixture (B20) demand modifications or adjustments in the motor for a better performance.
Diante do atual cenário mundial de energia, o biodiesel apresenta um grande potencial como opção ao consumo de combustíveis de fontes finitas. A maior utilização do biodiesel no mundo é com o éster metílico de óleo de soja, devido a sua escala de produção. Em geral sua utilização ocorre na forma de misturas com óleo diesel em diferentes proporções. Esse trabalho de pesquisa estuda a influência de diferentes níveis de mistura de biodiesel e diesel de petróleo sobre o desempenho e emissões do motor. Foram realizados ensaios utilizando-se um dinamômetro hidráulico de bancada para avaliação de um motor diesel de 4 tempos de injeção indireta com aspiração natural. Os combustíveis utilizados foram obtidos através da mistura de éster metílico de óleo de soja com o diesel convencional com teores variando de 5% até 100% de biodiesel. Comparou-se os resultados obtidos pelas diferentes misturas com o apresentado pelo óleo diesel B2, sem qualquer modificação ou ajuste do motor. Os melhores resultados de consumo específico foram alcançados com misturas de até 20% de biodiesel, já teores acima de 50% apresentam consumo médio até 7,2% maior que o diesel convencional. O torque apresentou um decréscimo a medida que foi aumentada a concentração de combustível de origem vegetal, sendo o pior resultado apresentado pelo B100 que teve uma perda de 6,8% em relação ao ensaio testemunha. Os gases de exaustão nocivos ao meio ambiente tem sua emissão diminuída com a introdução do biodiesel, com exceção do NOx que apresenta aumento quando os níveis de biodiesel adicionado são superiores a 20%. Os resultados sugerem que teores maiores que 20% na mistura (B20) exigem modificações ou ajustes no motor para um melhor desempenho do mesmo.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Archambault, Damien. "Valorisation non alimentaire de l'huile de colza : pyrolyse de l'oléate de méthyle." Vandoeuvre-les-Nancy, INPL, 1997. http://www.theses.fr/1997INPL119N.

Повний текст джерела
Анотація:
Les esters méthyliques de l'huile de colza sont actuellement valorisés énergétiquement comme biocarburant. L’objectif de cette étude est de les valoriser chimiquement en alphaoléfines linéaires et en esters insaturés à chaine carbonée moyenne. Ces molécules à haute valeur ajoutée ont des débouchés importants dans les domaines des lubrifiants et des détergents biodégradables. Ce mémoire est divisé en deux parties : une étude expérimentale de la pyrolyse de l'oléate de méthyle et la modélisation de cette réaction. Nous avons pyrolysé dans un réacteur piston à pression atmosphérique l'oléate de méthyle dilué dans de l'azote ou dans de l'eau. La température de pyrolyse varie entre 500 et 700°C, le temps de passage entre 0,23 et 1,20 seconde et le taux de dilution est fixé à 10 moles de diluant par mole d'ester. Dans ces conditions, la pyrolyse conduit à la formation de méthane, d'éthylène, d'alphaoléfines linéaires de C3 à C18, d'esters méthyliques insaturés de C3:1 à C17:1, de monoxyde de carbone, de dioxyde de carbone, d'hydrogène et de coke. On forme également, en quantité plus faible, des paraffines linéaires, du benzène et du toluène. L’étude paramétrique a permis de définir le point de fonctionnement optimal du procédé pour la production de molécules à haute valeur ajoutée. Ce point se situe à une température de 600°C et pour des temps de passage compris entre 500 et 600 ms. La simulation à l'aide du code de calcul Chemkin d'un mécanisme radicalaire en chaine donne des résultats en accord avec les résultats expérimentaux obtenus à 600°C lors de la décomposition thermique de l'oléate de méthyle dilué dans l'azote. Pour permettre le dimensionnement d'un réacteur, un systeme d'équations stœchiométriques a été déterminé. Ce système rend compte de façon très satisfaisante de la conversion de l'oléate de méthyle et de la formation des produits.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Falahati, Hamid. "The Characterization of Bimodal Droplet Size Distributions in the Ultrafiltration of Highly Concentrated Emulsions Applied to the Production of Biodiesel." Thesis, University of Ottawa (Canada), 2010. http://hdl.handle.net/10393/19585.

Повний текст джерела
Анотація:
A non-reactive model system comprising a highly concentrated and unstable oil-in-water emulsion was used to investigate the retention of oil by the membrane in producing biodiesel with a membrane reactor. Critical flux was identified using the relationship between the permeate flux and transmembrane pressure along with the separation efficiency of the membrane. It was shown that separation efficiencies above 99.5% could be obtained at all operating conditions up to the critical flux. It was observed that the concentration of oil in all collected permeate samples using the oil-water system was below 0.2 wt% when operating at a flux below the critical flux. Studies to date have been limited to the characterization of low concentrated emulsions below 15 vol.%. The average oil droplet size in highly concentrated emulsions was measured as 3200 nm employing direct light scattering (DLS) measurement methods. It was observed that the estimated cake layer thickness of 20 to 80 mm was larger than external diameter of the membrane tube i.e. 6 mm based on a large particle size. Settling of the concentrated emulsion permitted the detection of a smaller particle size distribution (30-100 nm) within the larger particles averaging 3200 nm. It was identified that DLS methods could not efficiently give the droplet size distribution of the oil in the emulsion since large particles interfered with the detection of smaller particles. The content of the smaller particles represented 1% of the total weight of oil at 30°C and 5% at 70°C. This was too low to be detected using DLS measurements but was sufficient to affect ultrafiltration. In order to study the critical flux in the presence of transesterification reaction and the effect of cross flow velocity on separation, various oils were transesterified in another membrane reactor providing higher cross flow velocity. higher cross flow velocity provides better separation by reducing materials deposition on the surface of the membrane due to higher shearing. The oils tested were canola, corn, sunflower and unrefined soy oils (Free Fatty Acids (FFA< 1%)), and waste cooking oil (FFA= 9%). The quality of all biodiesel samples was studied in terms of glycerine, mono-glyceride, di-glyceride and tri-glyceride concentrations. The composition of all biodiesel samples were in the range required by ASTM D6751 and EN 14214 standards. A critical flux based on operating pressure in the reactor was reached for waste cooking and pre-treated corn oils. It was identified that the reaction residence time in the reactor was an extremely important design parameter affecting the operating pressure in the reactor.
Natural Sciences and Engineering Research Council of Canada (NSERC)
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cai, Xiaoshuang. "Production of carbonated vegetable oils from a kinetic modeling to a structure-reactivity approach Structure-reactivity : comparison between the carbonation of epoxidized vegetable oils and the corresponding epoxidized fatty acid methyl ester Aminolysis of cyclic-carbonate vegetable oils as a non-isocyanate route for the synthesis of polyurethane: a kinetic and thermal study Influence of ring‐opening reactions on the kinetics of cottonseed oil epoxidation Investigation of the physicochemical properties for vegetable oils and their epoxidized and carbonated derivatives Influence of gas-liquid mass transfer on kinetic modeling : carbonation of epoxidized vegetable oils." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMIR05.

Повний текст джерела
Анотація:
La valorisation de la biomasse et du dioxyde de carbone est à présent considérée comme une solution aux problèmes environnementaux du réchauffement climatique et l'épuisement des réserves de pétrole. Ainsi, les huiles végétales ont attiré l'attention croissante des milieux universitaires et industriels, comme une source de biomasse potentielle renouvelable qui peut être appliquée à la production de substitut fossile pour un développement durable, due à leurs caractères renouvelables, durables, biodégradables. De plus, cette biomasse est disponible avec une énorme quantité. Durant des décennies de recherches, les processus d'époxydation et de carbonatation sont deux méthodes d'application populaires pour la valorisation des huiles végétales. La conversion des huiles végétales en huiles époxydées est définie par une conversion d'un composé insaturé en un groupe époxyde. Jusqu'ici, l'oxydation de Prileschajew est la méthode de synthèse plus efficace pour la possible industrialisation du processus d'époxydation de huiles végétales, qui est une manière conventionnelle bien connue à utiliser comme processus de production commerciale. Ce type d'époxydation utilise l'acide percarboxylique comme transporteur d'oxygène qui est formé in situ dans la phase aqueuse, et ensuite époxyde les groupes insaturés des huiles végétales en groupes époxyde. Cependant, cette méthode présente une réaction secondaire d'ouverture du cycle du groupe époxyde au cours du processus. Donc, les conditions du procédé d'époxydation doivent être optimisées afin de minimiser les réactions d'ouverture de cycle. Des paramètres de réaction, y compris la concentration en catalyseur acide (acide sulfurique), réactifs (eau, groupe époxyde, peroxyde d'hydrogène, acide acétique) et la température de réaction, ont été discutés dans cette étude pour l'époxydation et réaction d'ouverture de cycle des huiles végétales. Au cours de la modélisation cinétique, les constantes cinétiques associées pour les réactions d'ouverture du cycle ont été estimées. En se basant sur ce modèle, les réactions d'ouverture du cycle époxyde par les acides acétique et peracétique sont plus rapides que celles de l'eau et du peroxyde d'hydrogène. Un réacteur en mode semi-fermé, avec addition du peroxyde d'hydrogène et de l'acide sulfurique, est la configuration la plus appropriée pour la production d'huiles végétales époxydées. Pour déterminer les conditions optimales et passer à échelle industrielle dans les procédés d'époxydation et de la carbonation, il faut connaître différentes propriétés physicochimiques telles que la viscosité, la densité, l'indice de réfraction, la capacité thermique spécifique et les évolutions de ces données avec la température. Cependant, aucune information sur ces propriétés est disponible dans la littérature. Pour cette étude, l'évolution de ces propriétés ont été déterminées pour trois huiles végétales et leurs dérivés époxydées et carbonates (l'huile de coton, l'huile de lin et l'huile de soja) avec la température et leur composition. La densité et l'indice de réfraction ont été trouvé linéairement dépendant de la température pour les huiles étudiées. La relation entre la contrainte de cisaillement et le taux de cisaillement dans l’étude de viscosité, indique que ces huiles sont des fluides newtoniens. Il a été démontré que la capacité thermique spécifique suit une équation polynomiale du second ordre avec la température. Sur la base de ces résultats, il a été démontré que certaines corrélations pourraient être utilisées pour prédire les évolutions de ces propriétés physicochimiques à différentes compositions et températures
Nowadays, biomass and carbon dioxide valorization are considered as a helpful solution to the environmental issues of global warming and the depletion of petroleum reserves. Thus, vegetable oils have attracted increasing attention of academic and industrial communities, as one of the potential renewable biomass that can be applied to the production of fossil substitute for sustainable development, owning to their advantages of renewable, sustainable, biodegradable, and universally available with huge feedstock. Among decades of researches, epoxidation and carbonation processes are two popular application methods for vegetable oil valorization. The conversion of vegetable oils into epoxidized ones is defined by a conversion of unsaturated compound into an epoxide group. So far, the potential application for the production of epoxidized oil in the industrial is the Prileschajew oxidation, which is a wellknown conventional way to be used as the commercial production process. This type of epoxidation uses percarboxylic acid as an oxygen carrier, which is formed in situ in the aqueous phase, and then epoxidize the unsaturated groups on the vegetable oils into epoxide groups. During the process, however, this method presents side reaction of ring-opening of the epoxide group. Therefore, the selective epoxidation process conditions need to be optimized in order to minimize the ring-opening reactions. In this study, process parameters including the concentration of acid catalyst (sulfuric acid), reactants (water, epoxide group, hydrogen peroxide, acetic acid) and the reaction temperature have been discussed for the epoxidation and ring opening of vegetable oils. During the kinetic modeling stage, the related kinetic constants for the ring opening reactions were estimated. Based on this model, the ring opening by acetic and peracetic acids was found to be faster than by water and hydrogen peroxide. A semibatch reactor, where hydrogen peroxide and sulfuric acid were added, was found to be the most suitable configuration. To determine the optimum operating conditions and scale up the epoxidation or carbonation processes, it requires the database of different physicochemical properties, i.e. viscosity, density, refractive index, or specific heat capacity and the evolutions of these properties with the temperature. However, this information is absent in the literature. For this study, the evolution of these properties with temperature and compositions (double bond, epoxide and carbonated groups concentration) was determined for three vegetable oils and their corresponding epoxidized and carbonated forms (cottonseed oil, linseed oil and soybean oil). Density and refractive indices of these oils were found to vary linearly with temperature. Based on the measurement of changes in viscous stresses with shear rates, these oils were found to be Newtonian fluids. It was demonstrated that specific heat capacity follows a polynomial equation of second order with temperature. Based on these results, it was demonstrated that some correlations could be used to predict the evolutions of these physicochemical properties at different composition and temperature based on the knowledge of the property of the pure compounds
Стилі APA, Harvard, Vancouver, ISO та ін.
7

BUDHRAJA, NEERAJ. "OPTIMIZATION OF SOLAR ASSISTED BIODIESEL PRODUCTION FROM LINSEED OIL." Thesis, 2018. http://dspace.dtu.ac.in:8080/jspui/handle/repository/16309.

Повний текст джерела
Анотація:
The present explored crude oil reservoirs are depleting at a much faster rate than estimated at the end of 20th century. The higher energy demand for transportation, industrialization and luxurious life are the main consequences behind this fast rate depletion. To fulfill the everlasting demand of energy, we need to look for some alternative source of energy. Biodiesel being renewable and less polluting fuel can replace the conventional diesel fuel. But the higher energy and cost of biodiesel production is not allowing the industries to look biodiesel as a conventional diesel alternative. Thus, solar energy is implemented as heating source for transesterification process to reduce the cost of biodiesel production from conventional methods. This study focuses on optimizing the yield parameters based on the Taguchi’s approach, a powerful tool to maximize biodiesel yield. A full factorial design of 27 experiments, the signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to investigate the influence of yield parameters at different levels. The main objective of the study is to determine the effects of molar ratio, reaction time and catalyst concentration on the production of biodiesel from linseed oil. Different yield parameters have different influence on the production of biodiesel. The different levels for yield parameters recommended were 6:1, 7.5:1 and 9:1 for molar ratio; 90 min., 105 min. and 120 min. for reaction time; and 0.5 wt%, 0.75 wt% and 1.0 wt% for catalyst (KOH) concentration, respectively. The samples are processed under different level of parameters and percentage yield for each sample is measured. The result showed that the higher the molar ratio better the yield. The optimum yield parameters were 9:1 molar ratio, 105 min. reaction time and 0.5 wt% catalyst concentrations, which produced optimum yield of 82.48%. While the maximum yield of 82.82% is attained for molar ratio 9:1, reaction time 120 min. and catalyst concentration 0.75 wt%. According to the ANOVA analysis, molar ratio is the dominating factor with 63.01% contribution.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Liu, Lung-Te, and 劉龍德. "The Study on Applying Blended Fuel of Distilled Waste Fried Oil Methyl Ester(DWOME) and Waste Fried Oil Methyl Ester(WOME) in a DI Diesel Engine." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/er3sky.

Повний текст джерела
Анотація:
碩士
國立臺北科技大學
車輛工程系所
96
Edible fried oil, generally named waste fried oil, has been paid a very high attention for the source of biodiesel material in recent years. Due to it not only has the fat of animal and vegetable but also includes the characteristics of high iodine value, acid valence, and the amount of glycerin etc. Moreover, engine life time is affected by these characteristics and its impurities which make the parts of diesel engine and fuel system filth heaped, blocked and corroded easily. So increasing cost on distilled waste fried oil methyl ester can be ameliorated problems. The blended fuels of distilled waste fried oil methyl ester(DWOME) and the waste fried oil methyl ester(WOME) are respectively used in this study. After engine performance experiment, the experimental results demonstrated that BSFC, the concentration of each exhaust gas emissions and EGT for DWOME is worse than WOME, but in order to prolong diesel engine life time, using distilled waste fried oil methyl ester is better choice.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chin, Wei-Hao, and 金偉豪. "The Study on Using Palm Oil Methyl Ester (POME) in a DI Diesel Engine." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/p5fe9d.

Повний текст джерела
Анотація:
碩士
國立臺北科技大學
車輛工程系所
94
The production of palm oil is more than other vegetable oil, and cost of it is lower. Each hectare land can get it of 3.36 tons every year. Malaysia is the largest country that producing and exporting palm oil in the world at the present. We can consider that importing palm oil from Malaysia to be a source of bio-diesel. Because of the bad fluidness of palm oil, it can not be used on diesel engine directly. We can transfer it and methanol to the fuel of palm oil methyl ester (POME) by transesterification as an alternative fuel of diesel engine. In order to know the engine performance, fuel consumption, exhaust emission, exhaust gas temperature and combustion characteristics. We make study to compare POME with Premium diesel (PD) under the DI diesel engine of one cylinder. According to the results of the study, everything of POME included the concentrations of Smoke and HC are lower than PD, but the fuel consumption and NOX concentration are higher.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chang, Chih-Yu, and 張之瑜. "The Study on Using Rapeseed Oil Methyl Ester(ROME)in a DI Diesel Engine." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/mxh9jr.

Повний текст джерела
Анотація:
碩士
國立臺北科技大學
機電整合研究所
94
At 1997, the Kyoto Protocol on International Convention that requested the industrialization and developed country formally to follow the criterions at 1990 for the amount of 5% decreased on the global atmospheric concentrations of CO2 in 2008 to 2012. At this point of view, every government of European Union has begun to approve of using biomass energy to be alternative fuels for diesel/gasoline engine. In this study, the rapeseed oil and rapeseed oil methyl ester which is adopted as investigating the performance of diesel engine, BSFC, exhaust gas emissions and the combustion characteristics, are used popularly in the country of European Union. Experimental results demonstrated that using ROME which is based on no influence of engine performance has higher BSFC and the concentration of NOX than PD 14.52% and 26.06%, respectively. But the concentrations of Smoke and HC are obviously decreased 50.40% and 45.98%, respectively. Furthermore, the blending fuel (RO50NF50) which is blended by the rapeseed oil with naphtha is slightly worse of engine performance and higher BSFC 8.71% than PD. But each of the exhaust gas emissions is well improved, especially for HC decreasing 78.58%, and the concentrations of Smoke and NOX are decreased 45.79% and 7.93%, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Chen, Lin-Yung, and 林泳禎. "The Study on Using Corn Oil Methyl Ester (COME) in a DI Diesel Engine." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/qe977k.

Повний текст джерела
Анотація:
碩士
國立臺北科技大學
車輛工程系所
95
The global atmospheric concentration of CO2 emission is increasing very quickly so that it has made greenhouse effect very serious as well as to consider all the resource of the fossil fuel in the earth is limited. Human being is facing a very important lesson that the earth ecology and atmosphere environments are deteriorating very fast, but all over the world haven’t paid their attention still. The strategy for solving this problem is to decrease fossil fuel consumption as well as the amount of CO2 emission is decreased as well. So the most possible way is biodiesel used at first. Especially the corns, it can be a material of biodiesel. Because it provides not only the material of biodiesel but also bioethanol and the rate of oil retaining for corn oil is double than soybean oil. So the corn oil methyl ester biodiesel used in this study that is made from transesterification reaction. After diesel engine experiment, experimental results demonstrated that using corn oil methyl ester biodiesel, which is based on no influence of engine performance has higher BSFC and the concentration of than premium diesel about 11.99% and 11.06%, respectively. Moreover, its emission concentration of Smoke and HC are lower than premium diesel about 52.47% and 16.51%, respectively. Therefore, the corn is a new choice of material to develop biofuel by transesterifying into biodiesel.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Lo, Mei-Yu, and 羅美玉. "Effects of Methyl Ester of Waste Cooking Oil on Air Pollutant Emissions from Diesel Engine." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/34450479218564289792.

Повний текст джерела
Анотація:
碩士
朝陽科技大學
環境工程與管理系碩士班
95
In this study, long-term (80000 km) engine durability tests of both diesel and bio-diesel were performed for the same type of two brand-new engines. The test bio-diesel (B20) was blended with 80% diesel and 20% methyl ester of waste cooking oil. The engines were installed on a standard engine dynamometer with dilution tunnel and were conducted under US transient cycle test to simulate real word driving condition. Regulated (CO, HC, NOx and PM) and polycyclic aromatic hydrocarbons (PAHs) were measured for every 20000 km interval. The results show that using B20 as fuel, the deterioration coefficients were 1.04, 0.98, 0.95 and 1.03 for HC, CO, NOx and PM, respectively (0 km excluded). The deterioration coefficients were 1.01, 0.98, 0.96 and 1.3 for HC, CO, NOx and PM, respectively (0 km included). In this study, p-values of the slopes of regression lines were calculated to check whether the slopes were 0. The statistical results indicate that the emission factors for regulated air pollutants do not increase significantly for both B20 and diesel. The average total PAH emission factors were 1097 and 1437 ug/bhp-h for B20 and diesel, respectively. The total BaPeq factors were 14.1 and 45.0 ug/bhp-h for B20 and diesel fuel, respectively. B20 has lower PAHs emission levels and BaP toxic equivalency (BaPeq) emission factors than diesel fuel. The results show that using B20 can reduce both PAH emission and its corresponding carcinogenic potency.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Chang, Li-Fu, and 張立夫. "The Study on Using Palm Kernel Oil Methyl Ester (PKME) in a DI Diesel Engine." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/5a2dbb.

Повний текст джерела
Анотація:
碩士
國立臺北科技大學
車輛工程系所
94
The palm kernel oil is the most productivity than others in vegetable oil. The palm kernel oil is made of the seeds (kernel) of palm. It can be harvested 4.90 tons each hectares of farmland per year. The palm kernel oil has the characteristic of bad fluidity in normal atmospheric temperature. The PKME that is made from palm kernel oil through the transfer transesterification reaction can be used for alternative Biodiesels in diesel engine. Besides, the palm kernel oil is burned easily due to the short chain carbon molecules, so the concentration of smoke can be decreased effectively for diesel engines. Therefore, the PKME is compared with premium diesel (PD) for investigating the engine performance, BSFC, exhaust gas emissions and combustion characteristics in this study. Experimental results demonstrated that the engine performance of PKME is equal to PD. Regarding the BSFC and the concentration of NOX to the PKME, they are respectively higher by 14.65% and 5.66% than PD. But the concentration of Smoke and HC for PKME is improved quite well, reduced the concentration 72.70% and 20.39%, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Yen, Tzu-Chieh, and 顏子傑. "The Study of Using Waste Fried Oil Methyl Ester(WOME)in the DI Diesel Engine." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/y59rnu.

Повний текст джерела
Анотація:
碩士
國立臺北科技大學
車輛工程系所
94
Waste fried oil methyl ester (WOME), a kind of biodiesel, is made of variable eatable animal fats and vegetable oil which are the waste fried oil. Moreover, through the transesterification, it has alternated premium diesel in diesel engines because of the advantages of non-toxin, biodegradable, and renewable. The research analyzed the experiments of non-transesterification of waste fried oil adding naphtha, WOME, and premium diesel are individually used to the DI Diesel Engines. Through the experiments of the engine performance, fuel consumption, exhaust gas emission, exhaust gas temperature, and combustion characteristics to realize that the emission concentration of Smoke and HC of WOME and waste fried oil adding naphtha are lower than the premium diesel. The emission concentration of NOx of WOME is higher than the premium diesel; however, the waste of fried oil adding naphtha is lower than the premium diesel. In addition, the fuel consumption is higher than the premium diesel. For the exhaust gas temperature, WOME is lower than the premium diesel, but the waste fried oil adding naphtha is higher than premium diesel.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Cheng, Tseng-Ta, and 曾盛達. "The Study on Using Peanut Oil Methyl Ester Biodiesel (PEME) in a DI Diesel Engine." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/543ffx.

Повний текст джерела
Анотація:
碩士
國立臺北科技大學
車輛工程系所
95
The peanut oil is very rich of high fat and high economic value of biodiesel in the plant oil. Therefore, the peanut oil methyl ester bio-diesel that is made by esterification is used in this study. After engine performance experiment, it is shown that BSFC of peanut oil methyl ester bio-diesel is higher than premium diesel about 13.56% and almost no influence in engine performance. For the exhaust gas emissions of peanut oil methyl ester biodiesel, its concentration of NOx is higher than premium diesel about 19.5%, but the concentrations of Smoke, HC are lower than premium diesel about 60.77% and 28.50%, respectively. Although the blending fuel (PE50NF50) which is blended by the peanut oil with naphtha has lower engine performance, and higher BSFC than premium diesel about 7.65%, but the concentrations of Smoke、NOx and HC are lower than premium diesel about 40.53%、12.68% and 55.97%, respectively. Experimental result demonstrated that using peanut oil methyl ester biodiesel or the blending fuel (PE50NF50) to be an alternative fuel in diesel engine is very worthy of consideration and being popularized.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Kuo, Jen-Rung, and 高振榮. "The Study on Using Sunflower Oil Methyl Ester Biodiese(SFOME) in a DI Diesel Engine." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/z5gww4.

Повний текст джерела
Анотація:
碩士
國立臺北科技大學
車輛工程系所
96
The sunflower oil and sunflower oil methy ester biodiesel are operated in the study, because sunflower oil has richest fat among edible fat of the plant and it also has high economic value in one of the energy plant. After engine performance experiment, it is demonstrated that BSFC of sunflower methyl ester bio-diesel is higher than premium diesel about 10.97%, but almost no influence in engine performance. For the exhaust gas emissions of sunflower oil methyl ester biodiesel, only the concentration of NOx is higher than premium diesel about 13.07%, but the concentrations of smoke and HC are lower than premium diesel about 52.44% and 19.08%, respectively. Besides, another experimental blend fuel which is blended by the sunflower oil with naphtha has just a little bit of lower engine performance, and its BSFC, the concentration of NOx and exhaust gas temperature are higher than premium diesel about 11.34%, 0.55% and 8.73%, respectively. But the concentrations of smoke and HC are lower than premium diesel about 36.83% and 15.01%. Therefore, using sunflower oil methyl ester biodiesel to be an alternative fuel in diesel engine is very worthy of consideration and being popularized.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Wang, Chin-Lang, and 王錦郎. "The Study on Using Sunflower Oil Methyl Ester (SOME)Blended Fuel in a DI Diesel Engine." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/78dakt.

Повний текст джерела
Анотація:
碩士
國立臺北科技大學
車輛工程系所
95
The oil-bearing rate and heat value for rapeseed oil methyl ester are higher than soybean oil methyl ester and rapeseed methyl ester. Biodiesel that has high oil-bearing rate can cost down as well as high heat value can decrease BSFC. Therefore, Sunflower oil methyl ester is a very worthy of being popularized biodiesel. But for a long term used at diesel engine, engine parts, lubrication and fuel system may cause destruction due to soluable orgnic friction and accumulation of soaps included in biodiesel. Therefore, to use pure biodiesel on diesel engine directly is not proper. So sunflower oil methyl ester used in this study is blended with fossil premium diesel. After engine performance experiment, the experimental results demonstrated that BSFC and the concentration of NOx for 20% sunflower methyl ester blended with premium diesel (SOME20) and 50% sunflower methyl ester blended with premium diesel (SOME50) as compared with pure sunflower oil methyl ester are decreased 7.92%, 8.12% and 4.12%, 4.23%, respectively. But the concentration of Smoke and HC emission is increased 89.52%, 16.75% and 37.75%, 9.58%, respectively. Therefore, the higher proportion of sunflower oil methyl ester blended fuel is used, the more BSFC and the concentration of NOx emission are increased. On the other hand, the more concentrations of Smoke and HC emission are decreased.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Su, Chin-tien, and 蘇進田. "The Study on Using Corn Oil Methyl Ester (COME) Blended Fuel in a DI Diesel Engine." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/934tky.

Повний текст джерела
Анотація:
碩士
國立臺北科技大學
車輛工程系所
95
Using pure corn oil methyl ester on diesel engine not only maintains engine performance but also reduces the concentration of Smoke more than 50 percent. But for a long term used, functions of the piston ring is destroyed easily, oil and diesel filter as well as injection nozzle may cause plug, even the metal parts rusted due to biodiesel has soluable orgnic friction, accumulation of soaps and impurity included. So biodiesel blended with fossil premium diesel for prolonging diesel engine life time is necessary. In this study, B20 and B50 corn oil methyl ester blended fuels are blended by corn oil methyl ester with fossil premium diesel. After diesel engine performance experiment, experimental results demonstrated that BSFC and the concentration of NOx emission for B20 and B50 are lower than B100 about 8.45%, 7.57% and 3.61%, 5.12%, respectively. For the concentrations of Smoke and HC emission, either increase about 72.57%, 12.62% and 49.11%, 6.69%, respectively. Therefore, the higher proportion of corn oil methyl ester blended fuel is used, the more BSFC and the concentration of Nox emission are increased. On the other hand, the more concentrations of Smoke and HC emission are decreased.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Prakash, R. "Experimental Studies on a DI Diesel Engine Fueled with Jatropha Methyl Ester-Wood Pyrolysis Oil Emulsions." Thesis, 2013. http://ethesis.nitrkl.ac.in/6539/1/Acknowledgement_Certificate_and_Table_of_contents-corrected.pdf.

Повний текст джерела
Анотація:
The major technical problems associated with the use of biodiesel in large proportions are (i) more prone to oxidation which can cause the fuel to become acidic and to form insoluble gums and sediments that can plug fuel filters, (ii) cold flow properties and (iii) higher NOx emissions compared to diesel fueled engines. It is reported that addition of antioxidants, emulsifying water with biodiesel, addition of fuel with high latent heat of vaporization, and low cetane fuel can reduce the NOx emissions in biodiesel fueled engines. Addition of antioxidants to biodiesel can improve both the cold flow properties and oxidation stability, and reduce the NOx emission, the reason being that, the antioxidants contain phenolic compounds. Also, in economic point of view, the cost of biodiesel is higher at this moment because, the availability of seeds is limited. This motivates less use of biodiesel in many countries. The use of alternative hydrocarbon sources other than petroleum fuels, as extenders for biodiesel can solve this problem. Many literatures report that pyrolysis oil obtained from biomass sources contain hindered phenols in them. Therefore, bio oil can be used as an extender to biodiesel. The bio oil not only contains phenolic compounds, it also contains small percentage of water which is inseparable.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Chen, Ming-Te, and 陳明德. "The Study on Applying Palm Oil Methyl Ester (POME) Blended Fuel in a Direct Injection Diesel Engine." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/x86n29.

Повний текст джерела
Анотація:
碩士
國立臺北科技大學
車輛工程系所
94
High productivity and low cost biodiesels for the palm oil is especially suitable for diesel engine. But the palm oil has the characteristics of bad fluidity in atmospheric temperature; it has to do the transesterification reaction to be palm oil methyl ester (POME). Therefore, it can be used in the region above 15℃, such as the seasons of summer and autumn in our country. The fuel system, lubrication system and the piston ring have been caused harmful affections in diesel engines for the long-term use of pure POME. In order to improve the poor fluidity of POME fuel, this study blends the different proportion of POME with premium diesel (PD) to investigate the effect on engine performance, brake specific fuel consumption (BSFC), exhaust gas emissions and combustion characteristics in diesel engines. Experimental results demonstrated that the blending fuel of 20% POME with PD (POME20) and the blending fuel of 50% POME with PD can effectively reduce BSFC and the concentration of NOx. However, the concentrations of smoke and HC have been slightly increased as compared with pure POME under full load condition at the highest engine speed.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Lin, Won-Yih, and 林文益. "The Study on Applying Palm Kernel Oil Methyl Ester (PKME) Blended Fuel in a Direct InjectionDiesel Engine." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/5k83pq.

Повний текст джерела
Анотація:
碩士
國立臺北科技大學
車輛工程系所
94
One of the most attractive alternative biodiesels for diesel engines is palm kernel oil methyl ester (PKME), because it has the higher productivity and the lower cost than the other biodiesels. Moreover, PKME is burned easily due to the short chain carbon molecules, so the concentration of smoke can be improved effectively for diesel engines. The lubrication system, fuel system, and the mechanical parts have been caused harmful affections in diesel engines easily for the long-term use of pure biodiesels. Therefore, this study blends the different proportion of PKME with premium diesel to investigate the effect on engine performance, brake specific fuel consumption (BSFC), exhaust gas emissions and combustion characteristics in diesel engines. Experimental results demonstrated that the blending fuel of 50% PKME with premium diesel (PKME50) can reduce the BSFC and the exhaust gas emissions. However, the engine performance is slightly lower as compared with using PD. The blending fuel of 20% PKME with PD (PKME20) can improve the BSFC and the exhaust gas emission without influence on the engine performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Yang, Si-Sin, and 楊錫欣. "The Study on Applying Waste Fried Oil Methyl Ester (WOME) Blended Fuel in a Direct InjectionDiesel Engine." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/4p35zy.

Повний текст джерела
Анотація:
碩士
國立臺北科技大學
車輛工程系所
94
The waste fried oil methyl ester (WOME) can improve the concentration of smoke and HC, especially in the concentration of smoke reduction, but the brake specific fuel consumption (BSFC) to compare of premium diesel (PD) has increased. In addition, it has harmful affections on fuel system, lubrication system as well as the piston ring in diesel engines for a long-term use. Therefore, the blending different proportion of WOME with PD can be clarified how much proportion of WOME should be reduced in this study. Experimental results demonstrated that the BSFC and the concentration of exhaust gas emissions has obviously improved in the blending fuel of 50% WOME with PD (WOME50), but the engine performance has reduced. Using the blending fuel of 20% WOME with PD not only reduce the use of amount of WOME, but also the BSFC, exhaust gas emission and combustion characteristics can be improved more reasonable without influence on engine performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Lin, Hong-Ru, and 林宏儒. "The Study on the Effect of DI Diesel Engine Performance Using Peanut Oil Methyl Ester(PEME) Blended Fuel." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/k5yz48.

Повний текст джерела
Анотація:
碩士
國立臺北科技大學
車輛工程系所
97
Oil content and heat values of peanut oil methyl ester biodiesel is higher than soybean oil and rapeseed methyl ester biodiesel, therefore, high oil content can cut down the production cost and high values can reduce the fuel consumption, it is the kind of most worth promoting biodiesel. Because of general biodiesel contain dissolved organic matter and the relationship between the saponified matter and other substances on the long-term used in diesel engines will result in engine parts, lubrication and fuel system damage and should not be pure biodiesel directly to the engine. In this study, peanut oil methyl ester biodiesel mix used in the petrochemical super diesel by engine performance test result shows that the engine performance is not affected situation, mixing ratio 20% of PEME20 and mixing ratio 50% of PEME50 for peanut oil methyl ester Health biodiesel blended fuel than pure peanut oil methyl ester biodiesel, it can reduce the fuel consumption rate of 8.2% and 5.67%, NOx emission concentration for 11.05% and 4.42%, but the concentration in the smoke increased by 58.29% and 30.44%, HC emissions for 19.39% and 11.65%. The results indicated that added the peanut oil methyl ester biodiesel mixing ratio is higher, the fuel oil consumption rate and NOx emission concentrations were more and more increasing, otherwise, emission concentration for smoke and HC were more and more reducing.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Huang, Shi-Ming, and 黃世明. "The Study on the Effect of Using B20 Corn Oil Methyl Ester with Different Injection Pressure on DI Diesel Engine Performance." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/yd87y9.

Повний текст джерела
Анотація:
碩士
國立臺北科技大學
車輛工程系所
95
The specific gravity, cetane number, dynamic viscosity, and the oxgen content of biodiesel was higher than fossil premium diesel, especially in higher specific gravity and dynamic viscosity causing the injection timing advanced so that effects engine performance and the concentration of exhaust emission. In this study the diesel engine injection pressure was investigated based on B20 corn oil methyl ester blended fuel. The experimental results of diesel engine performance demonstrated that BSFC, the concentration of Smoke and HC is respectively decreased about 3.77%, 10.74% and 13.56% based on lower injection pressure than original engine but the concentration of NOx is increased about 4.69%. On the other hand, BSFC, the concentration of Smoke and HC emission is increased about 0.95%, 16.70% and 23.10%, respectively. Moreover, the concentration of NOx is decreased about 9.99%. Therefore, using higher specific gravity and dynamic viscosity of biodiesel is able to decrease fuel injection pressure properly.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Sun, Lu-Ming, and 孫祿銘. "The Study on the Effect of Using B20 Peanut Oil Methyl Ester with Different Injection Pressure on DI Diesel Engine Performance." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/tfmfhn.

Повний текст джерела
Анотація:
碩士
國立臺北科技大學
車輛工程系所
96
Each biodiesel characteristics that made from different bio-materials and processes are different; especially that fuel injection pressure for diesel engine is related to the biodiesel density and kinematic viscosity. And such characters effect engine performance, brake specific fuel consumption and exhaust gas emissions. Thus, B20 peanut oil methyl ester with different fuel injection pressure is operated in this study. The experimental results demonstrated whenever fuel injection pressure is lower than original design, brake specific fuel consumption, the concentrations of smoke and HC emission are decreased 4.96%, 14.71% and 15.36%, respectively, but the concentration of NOx emission is increased 7.09%. On the other hand, the fuel injection pressure is higher, brake specific fuel consumption, the concentrations of smoke and HC emission are increased 2.78%, 17.44% and 21.30%, respectively, but the concentration of NOx emission is decreased 12.71%.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Syu, Chang-Hua, and 許昌華. "The Study on the Effect of the DI Diesel Engine Performance Using Waste Oil Methyl Ester Blended Fuel with Different Injection Pressure." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/xcc6ws.

Повний текст джерела
Анотація:
碩士
國立臺北科技大學
車輛工程系所
97
Kinetic viscosity and density of Waste Oil Methyl Ester is higher than others edible vegetable oil, the research used WOME20 at DI Diesel Engines with Biodiesel Waste Oil Methyl Ester at different Fuel Injection Pressure, according to the Engine Performance shows that the lower Fuel Injection Pressure will improve Concentration of Exhaust Gas Emission, BSFC 5%、smoke 15% and HC 16%. Not only improve the Concentration of Exhaust Gas Emission but also lower the temperature about 0.5%, Engine Performance will be risen, but the NOx in Concentration of Exhaust Gas increase about 7%. Therefore, using WOME20 Biodiesel can lower DI Diesel Engines Fuel Injection Pressure 40kg/cm2, then effect Engine Performance, Fuel Consumption and Concentration of Exhaust Gas Emission.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Yen, Shun-Cheng, and 嚴順政. "The Study on the Effect of the Blending Fuel of Waste Oil Methyl Ester (WOME) on the DI Diesel Engine --- Fuel Injection Pressure." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/69422947689504950061.

Повний текст джерела
Анотація:
碩士
立德管理學院
資源環境研究所
95
The overuse of fossil fuel in the world resulted in facing the energy depletion problem in the future and deteriorating the ecological environment of the earth, and then caused greenhouse and climatical change critically to affect the ecology. Therefore, the problems of global environment pollutions and energy source shortage are respected in the international issues. In order to extend the use life of fossil fuel, many countries are researching the biofuels as alternative energy to disperse the energy supply and reduce the dependence on petroleum. Use the regenerate energy and alternative energy will be an important index of the national competitiveness in the future. This study blending fuel 20%WOME with PD can obtain the lowest BSFC, and also improve the concentration of exhaust gas emissions under no affections to diesel engine. Due to the engine performance, BSFC and exhaust gas emissions are affected by the fuel-injection pressure of diesel engine. Thus, this study focused on using different fuel-injection pressure to investigate the effects of ROME20. Experimental results demonstrated that using lower fuel-injection pressure(15.7Mpa) than the one (19.6Mpa) in original diesel engine without influence on the engine performance can decrease the BSFC 3.17%, the concentration of Smoke 3.64%, and the concentration of HC 21.87%, but the concentration of NOx is increased to 6.17%. In addition, higher fuel-injection pressure(24.5MPa) which is used in original diesel engine affects the engine performance and increases the BSFC 1.01%, the concentration of smoke 23.02% and the concentration of HC 4.31%. Only the concentration of NOX is decreased to 7.70%.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Peng, Yu Lin, and 彭玉霖. "A Study on the Exhaust Emissions of a DI CI Engine Utilizing the Blend Fuel of Waste Fried Oil Methyl Ester, DME and Diesel." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/72144064840992434605.

Повний текст джерела
Анотація:
碩士
國立臺灣海洋大學
機械與機電工程學系
103
Waste fried oil may be utilized to produce biodiesel fuel, while avoiding ran-dom waste disposal, environmental pollution, and the health concern of remanufac-tured cooking oil. Besides, waste fried oil requires the minimum cost among the possible raw material of biodiesel. Greenhouse gas emissions may be greatly improved by utilizing biodiesel fuel. Dimethyl-ether (DME) is an oxygen-enriched fuel with excellent compres-sion-ignition characteristics. With high cetane number and excellent flowing charac-teristics at low temperatures, DME is applicable as the alternative fuel of diesel en-gines. Exhaust emissions may be effectively improved by adding these two fuels to a diesel engine. The use of biodiesel has become prevailing. B20 fuel is widely used in European and American countries to improve exhaust emissions. The use of DME is also increasing. Specifications have been set by ASTM and ISO for DME. Three fuel blends, B20, D20, and B20D20, are used for a DI diesel engine in this study. Injection timings of 17°bTDC factory-setting and retarded 13°bTDC are used. Engine tests are conducted for different engine speeds and loads to study the fuel economy and exhaust emissions. The experimental results show that the fuel economy, bsCO、bsNOx and smoke emissions of B20 fuel blend are greatly improved under high engine loads, implying B20 is suitable for heavy-duty diesel engines. The smoke emissions of D20, and B20D20 fuel blends is reduced while other emissions worsened. The results reveals directions for future improvement to reduce injection pressure and injection timing adjustment.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Huang, Bao-Sian, and 黃寶賢. "The Study on the Effect of Using Distilled Waste Fried Oil Methyl Ester (DWOME) Blended Fuel with Different Fuel Injection Pressure in a DI Diesel Engine." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/d25w5m.

Повний текст джерела
Анотація:
碩士
國立臺北科技大學
車輛工程系所
96
For decreasing CO2 greenhouse gas emission and reducing the dependence of fossil fuel, it has become a very serious topic in this century. The demand quantity for vegetable fat at the end of 2007 has been approached total production quantity of the year. In order to enhance economic benefits for biodiesel, utilizing its characteristics of high density, kinematic viscosity, oxygen content, and cetane number investigate the effect of fuel injection pressure to engine performance as well as exhaust gas emissions. The experimental results demonstrated, that using lower fuel-injection pressure (160kg/cm2) than the original engine (200kg/cm2) as well as based on no influence on the engine performance can reduce exhaust gas emission, the concentration of NOx, and the concentration of HC, but the value of BSFC and the concentration of smoke are increased. Using higher fuel-injection pressure (250kg/cm2) than the original not only affected the engine performance, but also decreased the value of BSFC, the concentration of smoke, and the concentration of NOx. But the concentration of HC, it is increased. That using B100 fuel can properly increase fuel injection pressure, because engine performance and exhaust gas emission are improved.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Liu, Chung-Chin, and 林忠進. "The Study on the Effect of Fuel Injection Pressure in the DI Diesel Engine on the Blending Fuel of Palm Oil Methyl Ester (POME) with Premium Diesel." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/wpp6g2.

Повний текст джерела
Анотація:
碩士
國立臺北科技大學
機電整合研究所
94
The blending fuel 20% POME with PD (POME20) as compared with the blending fuel of 50% POME with PD not only can reduce the concentration of Smoke and HC, except the slightly higher BSFC and the concentration of NOx, but also can maintain the engine performance as compared with using PD. In addition, the engine performance and exhaust gas emissions are also affected by the fuel-injection pressure of diesel engine. Thus, this study focused on using different fuel-injection pressure to investigate the effects on POME20. Experimental results demonstrated that using lower fuel-injection pressure(15.7Mpa) than the one (19.6Mpa) in original diesel engine without influence on the engine performance and torque can decrease the BSFC 4.5%, the concentration of Smoke 17.12%, and the concentration of HC 4.19%, but the concentration of NOx is increased to 12.42%. In addition, higher fuel-injection pressure(24.5MPa) which is used in original diesel engine affects the engine performance and increases the BSFC 1.99%, the concentration of smoke 23.02% and the concentration of HC 19.42%.Only the concentration of NOX is decreased to 10.42%.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Liu, Fa-Wei, and 劉法偉. "The Study on the Effect of Fuel Injection Pressure in the DI Diesel Engine on the Blending Fuel of PalmKernel Oil Methyl Ester (PKME) with Premium Diesel." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/ga2mzg.

Повний текст джерела
Анотація:
碩士
國立臺北科技大學
車輛工程系所
94
The blending fuel 20% PKME(Palm Kernel Oil Methyl Ester) with PD (PKME20) not only maintain mostly the engine performance as compared with using PD expect the slightly higher BSFC, but also improve the exhaust gas emissions as compared with using the blending fuel of 50% PKME with PD, Additionally, the engine performance, BSFC and exhaust gas emissions are also affected by different fuel injection pressure. Thus, this study focused on using different fuel injection pressure to investigate how much affection on diesel engine. Experimental results demonstrated that using lower fuel-injection pressure(15.7Mpa) than the one in original engine (19.6Mpa) as well as based on no influence on the engine performance can reduce BSFC 3.74%, the concentration of Smoke 6.14%, and the concentration of HC 6.11%, but the concentration of NOx is increased to 9.99%. Using higher fuel-injection pressure (24.5Mpa) than the original not only affected the engine performance, but also increased the BSFC 4.03%,the concentration of Smoke 22.71%, and the concentration of HC 19.14%. As for the concentration of NOX, it is decreased to 4.18%.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Chang, Shih-Chieh, and 張世傑. "The Study on the Effect of Fuel Injection Pressure in the DI Diesel Engine on the Blending Fuel of Rapeseed Oil Methyl Ester (ROME) with Premium Diesel." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/f398xe.

Повний текст джерела
Анотація:
碩士
國立臺北科技大學
車輛工程系所
94
The blending fuel (ROME20) which is blended by 20% ROME (Rapeseed Oil Methyl Ester) with PD can obtain the engine performance equally as compared ROME. Furthermore, it has the lowest BSFC and its concentration of exhaust gas emissions also reasonable. Because the engine performance, the BSFC and exhaust gas emissions are affected by the fuel-injection pressure of a diesel engine. Thus, this study focused on using different fuel-injection pressure to investigate how much affection to diesel engine. Experimental results demonstrated that using lower fuel-injection pressure(15.7Mpa) than the one in original engine (19.6Mpa) without influence on the engine performance can reduce the BSFC 4.07%, the concentration of Smoke 25.69%, and the concentration of HC 20.16%, but the concentration of NOx is increased to 8.15%. On the other hand, using higher fuel-injection pressure (24.5Mpa) can reduce the concentration of NOx 3.13%, but increased the BSFC 5.16%,the concentration of Smoke 3.68%, and the concentration of HC 24.96%.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії