Добірка наукової літератури з теми "Linear time-periodic systems"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Linear time-periodic systems".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Linear time-periodic systems"

1

Lopez, MarkJ S., and J. V. R. Prasad. "Linear Time Invariant Approximations of Linear Time Periodic Systems." Journal of the American Helicopter Society 62, no. 1 (January 1, 2017): 1–10. http://dx.doi.org/10.4050/jahs.62.012006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chen, Wei. "Phase of linear time-periodic systems." Automatica 151 (May 2023): 110925. http://dx.doi.org/10.1016/j.automatica.2023.110925.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bolzern, P., P. Colaneri, and R. Scattolini. "Zeros of discrete-time linear periodic systems." IEEE Transactions on Automatic Control 31, no. 11 (November 1986): 1057–58. http://dx.doi.org/10.1109/tac.1986.1104172.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

de Souza, Carlos E., and Alexandre Trofino. "Stabilization of Linear Discrete-Time Periodic Systems *." IFAC Proceedings Volumes 31, no. 18 (July 1998): 485–90. http://dx.doi.org/10.1016/s1474-6670(17)42038-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

NICOLAO, G. DE, G. FERRARI-TRECATE, and S. PINZONI. "Zeros of Continuous-time Linear Periodic Systems." Automatica 34, no. 12 (December 1998): 1651–55. http://dx.doi.org/10.1016/s0005-1098(98)80023-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Svobodny, T. P., and D. L. Russell. "Phase identification in linear time-periodic systems." IEEE Transactions on Automatic Control 34, no. 2 (1989): 218–20. http://dx.doi.org/10.1109/9.21104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yin, Mingzhou, Andrea Iannelli, and Roy S. Smith. "Subspace Identification of Linear Time-Periodic Systems With Periodic Inputs." IEEE Control Systems Letters 5, no. 1 (January 2021): 145–50. http://dx.doi.org/10.1109/lcsys.2020.3000950.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhang, P., S. X. Ding, G. Z. Wang, and D. H. Zhou. "Fault detection of linear discrete-time periodic systems." IEEE Transactions on Automatic Control 50, no. 2 (February 2005): 239–44. http://dx.doi.org/10.1109/tac.2004.841933.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sandberg, H., E. Mollerstedt, and Bernhardsson. "Frequency-domain analysis of linear time-periodic systems." IEEE Transactions on Automatic Control 50, no. 12 (December 2005): 1971–83. http://dx.doi.org/10.1109/tac.2005.860294.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Calise, Anthony J., Mark E. Wasikowski, and Daniel P. Schrage. "Optimal output feedback for linear time-periodic systems." Journal of Guidance, Control, and Dynamics 15, no. 2 (March 1992): 416–23. http://dx.doi.org/10.2514/3.20852.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Linear time-periodic systems"

1

Magruder, Caleb Clarke III. "Model Reduction of Linear Time-Periodic Dynamical Systems." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/23112.

Повний текст джерела
Анотація:
Few model reduction techniques exist for dynamical systems whose parameters vary with time. We have particular interest here in linear time-periodic dynamical systems; we seek a structure-preserving algorithm for model reduction of linear time-periodic (LTP) dynamical systems of large scale that generalizes from the linear time-invariant (LTI) model reduction problem.

We extend the familiar LTI system theory to analogous concepts in the LTP setting. First, we represent the LTP system as a convolution operator of a bivariate periodic kernel function. The kernel suggests a representation of the system as a frequency operator, called the Harmonic Transfer Function. Second, we exploit the Hilbert space structure of the family of LTP systems to develop necessary conditions for optimal approximations.

Additionally, we show an a posteriori error bound written in terms of the $\\mathcal H_2$ norm of related LTI multiple input/multiple output system. This bound inspires an algorithm to construct approximations of reduced order.

To verify the efficacy of this algorithm we apply it to three models: (1) fluid flow around a cylinder by a finite element discretization of the Navier-Stokes equations, (2) thermal diffusion through a plate modeled by the heat equation, and (3) structural model of component 1r of the Russian service module of the International Space Station.
Master of Science
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cole, Daniel G. "Harmonic and Narrowband Disturbance Rejection for Linear Time-Periodic Plants." Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/29196.

Повний текст джерела
Анотація:
This research investigates the harmonic and narrowband disturbance rejection problem for linear time-periodic (LTP) systems. The consequence of disturbances on LTP systems is similar to their linear time-invariant (LTI) counterparts, but is complicated by the interaction of the disturbance and plant acting at different frequencies, which manifests itself in the modulation of the disturbance signal. The result, for an m-periodic plant and disturbance containing a single tone, is that the output contains m tones. Using various disturbance rejection architectures, harmonic and narrowband disturbance rejection is investigated for linear time-periodic plants. Included are classical and multivariable feedback controllers, fixed-gain feedforward designs using finite impulse response (FIR) filters and H-infinity synthesis tools, and adaptive feedforward controllers. The objective of time-periodic, narrowband, disturbance rejection seeks to place a zero in the controlled system's disturbance path and align the zero direction, defined by the null space of the controlled system at the disturbance frequency, with the disturbance. In this research, constraints on controlled system infinity-norms specify nominal performance and robust stability objectives. Periodic controllers are found using existing LTI H-infinity control theory, and causality is satisfied using two techniques which can be added easily to H-infinity solvers: loop-shifting and Q-parameterization. The resulting controllers are high-gain, narrowband-pass, periodic filters; the closed-loop sensitivity has a zero at the disturbance frequency, and the disturbance is in the sensitivity's null space. It is also shown that classical designs do not achieve the same performance levels as periodic controllers. Similar developments are made using the feedforward disturbance rejection architecture. Objectives are given which minimize the weighted infinity-norm of the controlled system. Such feedforward controllers achieve perfect disturbance rejection. A multivariable equivalent of the tapped-delay line is used in the description of periodic FIR filters. In addition, periodic FIR filters are made adaptive using an algorithm similar to filtered-X least mean square (LMS) but modified for periodic systems.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sandberg, Henrik. "Linear Time-Varying Systems: Modeling and Reduction." Licentiate thesis, Lund University, Department of Automatic Control, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-74720.

Повний текст джерела
Анотація:
Linear time-invariant models are widely used in the control community. They often serve as approximations of nonlinear systems. For control purposes linear approximations are often good enough since feedback control systems are inherently robust to model errors. In this thesis some of the possibilities for linear time-varying modeling are studied. In the thesis it is shown that the balanced truncation procedure can be applied to reduce the order of linear time-varying systems. Many of the attractive properties of balanced truncation for time-invariant systems can be generalized into the time-varying framework. For example, it is shown that a truncated input-output stable system will be input-output stable, and computable simple worst-case error bounds are derived. The method is illustrated with model reduction of a nonlinear diesel exhaust catalyst model. It is also shown that linear time-periodic models can be used for analysis of systems with power converters. Power converters produce harmonics in the power grids and give frequency coupling that cannot be modeled with standard time-invariant linear models. With time-periodic models we can visualize the coupling and also use all the available tools for linear time-varying systems, such as balanced truncation. The method is illustrated on inverter locomotives.
QC 20120208
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Park, Baeil P. "Canonical forms for time-varying multivariable linear systems and periodic filtering and control applications." Diss., Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/16734.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Olcer, Fahri Ersel. "Linear time invariant models for integrated flight and rotor control." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/44921.

Повний текст джерела
Анотація:
Formulation of linear time invariant (LTI) models of a nonlinear system about a periodic equilibrium using the harmonic domain representation of LTI model states has been studied in the literature. This thesis presents an alternative method and a computationally efficient scheme for implementation of the developed method for extraction of linear time invariant (LTI) models from a helicopter nonlinear model in forward flight. The fidelity of the extracted LTI models is evaluated using response comparisons between the extracted LTI models and the nonlinear model in both time and frequency domains. Moreover, the fidelity of stability properties is studied through the eigenvalue and eigenvector comparisons between LTI and LTP models by making use of the Floquet Transition Matrix. For time domain evaluations, individual blade control (IBC) and On-Blade Control (OBC) inputs that have been tried in the literature for vibration and noise control studies are used. For frequency domain evaluations, frequency sweep inputs are used to obtain frequency responses of fixed system hub loads to a single blade IBC input. The evaluation results demonstrate the fidelity of the extracted LTI models, and thus, establish the validity of the LTI model extraction process for use in integrated flight and rotor control studies.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhou, Jun. "Harmonic Analysis of Linea Continuous-Time Periodic Systems." 京都大学 (Kyoto University), 2001. http://hdl.handle.net/2433/77905.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sánchez, Jiménez Oscar. "On the stochastic response of rotor-blade models with Floquet modal theory : applications to time-dependent reliability of tidal turbine blades." Electronic Thesis or Diss., Normandie, 2023. http://www.theses.fr/2023NORMIR39.

Повний текст джерела
Анотація:
Le sujet d'étude est la réponse d’un système mécanique déterministe en rotation et soumis à des sollicitations stochastiques. Pour cela, un modèle mécano-probabiliste est développé, résultant de la combinaison de deux éléments : le système mécanique au comportement dit non-standard, et les sollicitations, représentées par un champ stochastique corrélé. L'application vise l'analyse fiabiliste d’une hydrolienne, décrite par un modèle mécanique d’ordre réduit. Plusieurs méthodes sont présentées, comparées et leurs limitations sont mises en évidence. Les résultats obtenus sont contrastés avec ceux de la bibliographie. En particulier, l’aspect innovant se trouve dans le type de quantité mécanique modélisée, le traitement et l'interprétation des quantités modales, et le type de processus stochastique considéré comme sollicitation. Plus précisément, le modèle dynamique développé décrit une classe de systèmes mécaniques de type rotor-pale. Il a été construit par une combinaison judicieuse de résultats des domaines de l'éolien, l'hydrolien, la dynamique des rotors et des vibrations mécaniques. La formulation lagrangienne de la mécanique analytique est utilisée pour obtenir les équations du système dynamique. L'assemblage obtenu avec des composants élastiques linéaires, introduits avec leur comportement modal, produit des termes instationnaires, résultant dans des équations différentielles ordinaires à coefficients périodiques. Pour l'analyse de ce problème mécanique déterministe, l’analyse modale numérique traditionnelle est ici étendue grâce à la théorie de Floquet. La réponse du système est formulée en termes des exposants caractéristiques du système et des vecteurs propres de Floquet, ou vecteurs propres périodiques, permettant une représentation modale de la matrice de transition de Floquet. Diverses méthodes peuvent alors être appliquées pour l'analyse modale du système et on propose une nouvelle méthode basée sur la représentation temps-fréquence grâce aux ondelettes périodiques généralisées. Pour considérer les sollicitations aléatoires instationnaires et non-gaussiennes, on utilise une écriture innovante pour la propagation des moments. L’avantage de cette technique vient de l’aspect pratique et systématique des développements, ce qui est particulièrement avantageux lorsqu'elle est appliquée à des champs spatio-temporels instationnaires. En combinant cette technique avec une méthode d’estimation de la densité de probabilité basée sur le principe d’entropie maximale, nous arrivons à l’estimation de la distribution des valeurs extrêmes de la réponse cherchée en considérant le problème de dépassement d’un seuil par ce processus instationnaire, permettant ainsi la résolution du problème posé en termes de fiabilité dépendante du temps
The response of a deterministic rotating mechanical system under stochastic excitation is studied. A mechanical-probabilistic model is developed to combine the relevant characteristics of both aspects of the study: the behavior of this non-standard class of mechanical system and the random properties of correlated stochastic fields describing load processes. The results are applied to a reliability analysis of a reduced order model of a tidal turbine. Semi-analytic and empirical ( in the Monte-Carlo simulation sense) results are obtained, compared and contrasted. The results are framed with respect to the existing literature, and it is found that they provide an innovative treatment of the problem, in terms of the dynamical choices reflected in the model, in the presentation and interpretation of the modal aspects of the system, and in the type of stochastic inputs considered. We develop a dynamical model describing a broad class of mechanical system that models a rotor-blade structure. The model is informed by careful consideration of previous results, with the aim of constructing a reduced model that captures essential characteristics of the vibratory behavior of the structure. Lagrangian formalism is utilized to obtain the equations of motion. The presence of elastic components, which are discretized in a modal way, results in a system of ordinary differential equations with periodic coefficients. The Floquet theory of Linear time-periodic systems is applied on the deterministic dynamical model to synthesize an extension of traditional modal analysis to systems with periodic coefficients. The response of the system is formulated in terms of Floquet exponents and the associated Floquet periodic eigenvectors, from which the Floquet State Transition Matrix can be obtained. Several methods are applied to the modal study of the system, and a new time-frequency approach is proposed based on PGHW wavelets and its associated scalogram. Using an innovative notation to describe probabilistic moments of stochastic quantities, a moment propagation scheme is presented and exploited. The advantages of the treatment, particularly in the case of spatio-temporal stochastic fields, is in its applicability and systematic structure of development. This moment propagation strategy is coupled with a maximum entropy formulation to reconstruct the probability density function of the response and obtain important descriptors of the response, such as the Extreme Value Distribution. The moment propagation technique presented is applied to nonstationary processes. The results from Modal Floquet theory are integrated into this analysis. The problem of crossings of a certain threshold is considered for this type of nonstationary stochastic process. Their response is shown to yield a time-dependent reliability problem, which is resolved using the estimated EVD and then by numerical simulation
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hwang, Sheng-Pu. "Harmonic State-Space Modelling of an HVdc Converter with Closed-Loop Control." Thesis, University of Canterbury. Electrical and Computer Engineering, 2014. http://hdl.handle.net/10092/8881.

Повний текст джерела
Анотація:
Frequency domain models for power electronic circuits are either based on iterative techniques such as Newton's method or linearised around an operating point. Iterative frequency domain models provide great accuracy as they are capable of calculating the exact switching instants of the device. On the other hand, the accuracy of a linearised frequency domain model relies on the magnitude of input waveform to be small so that the circuit's operating point does not vary or varies very little. However, an important advantage of a linearised model is its ability to provide insight into waveform distortion interaction, more specifically, the frequency cross-coupling around a power electronic circuit. In general, a linearised model for harmonic analysis would not normally include the description of feedback control. Likewise a linearised model for control analysis would usually disregard frequency interactions above the fundamental (or the most significant component); that is assuming the cross-coupling between harmonic frequencies does not affect the dynamics of control. However, this thesis proposes that a linearised model for control analysis shall also include the complete description of frequency cross-coupling between harmonics to produce the correct dynamic response. This thesis presents a harmonic state-space (HSS) model of an HVdc converter that incorporates the full effect of varying switching instants, both through control and commutation period dynamics, while remaining within the constraints of a linear time-invariant (LTI) system. An example is given using the HSS model to explain how a close to fifth harmonic resonance contributes to the dominant system response through the frequency cross-coupling of the converter and the controller feedback loop. The response of the system is validated against a time domain model built in PSCAD/EMTDC, and more importantly, the correct response cannot be produced without including the harmonic interactions beyond the fundamental frequency component.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bonnetat, Antoine. "Etude et conception d'algorithmes de correction d'erreurs dans des structures de conversion analogique-numérique entrelacées pour applications radar et guerre électronique." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0289/document.

Повний текст джерела
Анотація:
L’ évolution des systèmes radar et de guerre électronique tend à concevoir desrécepteurs numériques possédant des bandes instantanées de plus en plus larges. Cette contraintese reporte sur les Convertisseurs Analogique-Numérique (CAN) qui doivent fournir une fréquenced’échantillonnage de plus en plus élevée tout en conservant une puissance dissipée réduite. Unesolution pour répondre à cette demande est le CAN à Temps Entrelacés (ET-CAN) qui paralléliseM CANs pour augmenter la fréquence d’échantillonnage d’un facteur M tout en restant dansun rapport proportionné avec la puissance dissipée. Cependant, les performances dynamiquesdes ET-CANs sont réduites par des défauts d’entrelacements liés à des différences de processusde fabrication, de leur tension d’alimentation et des variations de température. Ces défautspeuvent être modélisés comme issus des disparités d’offsets, de gains ou décalages temporels etglobalement comme issus des disparités de réponses fréquentielles. Ce sont sur ces dernièresdisparités, moins traitées dans la littérature, que portent nos travaux. L’objectif est d’étudierces disparités pour en déduire un modèle et une méthode d’estimation puis, de proposer desméthodes de compensation numérique qui peuvent être implémentées sur une cible FPGA.Pour cela, nous proposons un modèle général des disparités de réponses fréquentielles desET-CANs pour un nombre de voies M quelconques. Celui-ci mélange une description continuedes disparités et une description discrète de l’entrelacement, résultant sur une expression desdéfauts des ET-CANs comme un filtrage à temps variant périodique (LPTV) du signal analogiqueéchantillonné uniformément. Puis, nous proposons une méthode d’estimation des disparitésdes ET-CANs basée sur les propriétés de corrélation du signal en sortie du modèle, pour Mvoies quelconques. Ensuite, nous définissions une architecture de compensation des disparitésde réponses fréquentielles des ET-CANs et nous étudions ses performances en fonction de sesconfigurations et du signal en entrée. Nous décrivons une implémentation de cette architecturepour M=4 voies entrelacées sur cible FPGA et nous étudions les ressources consommées afin deproposer des pistes d’optimisation. Enfin, nous proposons une seconde méthode de compensationspécifique au cas M=2 voies entrelacées, dérivée de la première mais travaillant sur le signalanalytique en sortie d’un ET-CAN et nous la comparons à une méthode similaire de l’état del’art
The evolution of radar and electronic warfare systems tends to develop digitalreceivers with wider bandwidths. This constraint reaches the Analog to Digital Converters(ADC) which must provide a sample rate higher and higher while maintaining a reducedpower dissipation. A solution to meet this demand is the Time-Interleaved ADC (TIADC)which parallelizes M ADCs, increasing the sampling frequency of an M factor while still ina proportionate relation to the power loss. However, the dynamic performance of TIADCsare reduced by errors related to the mismatches between the sampling channels, due to themanufacturing processes, the supply voltage and the temperature variations. These errors canbe modeled as the result of offset, gain and clock-skew mismatches and globally as from thefrequency response mismatches. It is these last mismatches, unless addressed in the literaturethat carry our work. The objective is to study these errors to derive a model and an estimationmethod then, to propose digital compensation methods that can be implemented on a FPGAtarget.First, we propose a general TIADC model using frequency response mismatches for any Mchannel number. Our model merge a continuous-time description of mismatches and a discretetimeone of the interleaving process, resulting in an expression of the TIADC errors as a linearperiodic time-varying (LPTV) system applied to the uniformly sampled analog signal. Then,we propose a method to estimate TIADC errors based on the correlation properties of theoutput signal for any M channel. Next, we define a frequency response mismatch compensationarchitecture for TIADC errors and we study its performance related to its configuration and theinput signal. We describe an FPGA implementation of this architecture for M=4 interleavedchannels and we study the resources consumption to propose optimisations. Finally, we proposea second compensation method, specific to M=2 interleaved channels and derived from the firstone, but working on the analytical signal from the TIADC output and we compare it to a similarstate-of-the-art method
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Er, Meng Joo. "Periodic controllers for linear time-invariant systems." Phd thesis, 1992. http://hdl.handle.net/1885/143515.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Linear time-periodic systems"

1

Huffaker, Ray, Marco Bittelli, and Rodolfo Rosa. Entropy and Surrogate Testing. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198782933.003.0005.

Повний текст джерела
Анотація:
Reconstructing real-world system dynamics from time series data on a single variable is challenging because real-world data often exhibit a highly volatile and irregular appearance potentially driven by several diverse factors. NLTS methods help eliminate less likely drivers of dynamic irregularity. We set a benchmark for regular behavior by investigating how linear systems of ODEs are restricted to exponential and periodic dynamics, and illustrating how irregular behavior can arise if regular linear dynamics are corrupted with noise or shift over time (i.e., nonstationarity). We investigate how data can be pre-processed to control for the noise and nonstationarity potentially camouflaging nonlinear deterministic drivers of observed complexity. We can apply signal-detection methods, such as Singular Spectrum Analysis (SSA), to separate signal from noise in the data, and test the signal for nonstationarity potentially corrected with SSA. SSA measures signal strength which provides a useful initial indicator of whether we should continue searching for endogenous nonlinear drivers of complexity. We begin diagnosing deterministic structure in an isolated signal by attempting to reconstructed a shadow attractor. Finally, we use the classic Lorenz equations to illustrate how a deterministic nonlinear system of ODEs with at least three equations can generate observed irregular dynamics endogenously without aid of exogenous shocks or nonstationary dynamics.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Linear time-periodic systems"

1

Feuer, Arie, and Graham C. Goodwin. "Periodic Control of Linear Time-Invariant Systems." In Sampling in Digital Signal Processing and Control, 437–75. Boston, MA: Birkhäuser Boston, 1996. http://dx.doi.org/10.1007/978-1-4612-2460-0_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Insperger, Tamás, and Gábor Stépán. "Introducing Delay in Linear Time-Periodic Systems." In Semi-Discretization for Time-Delay Systems, 1–12. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0335-7_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Răsvan, Vladimir. "Discrete Time Linear Periodic Hamiltonian Systems and Applications." In Advances in Automatic Control, 297–313. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-9184-3_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Grasselli, Osvaldo Maria, and Sauro Longhi. "Algebraic-Geometric Techniques for Linear Periodic Discrete-Time Systems." In Realization and Modelling in System Theory, 189–98. Boston, MA: Birkhäuser Boston, 1990. http://dx.doi.org/10.1007/978-1-4612-3462-3_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Borgers, D. P., V. S. Dolk, G. E. Dullerud, A. R. Teel, and W. P. M. H. Heemels. "Time-Regularized and Periodic Event-Triggered Control for Linear Systems." In Control Subject to Computational and Communication Constraints, 121–49. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78449-6_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Böhm, Christoph, Tobias Raff, Marcus Reble, and Frank Allgöwer. "LMI-Based Model Predictive Control for Linear Discrete-Time Periodic Systems." In Nonlinear Model Predictive Control, 99–108. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01094-1_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sracic, Michael W., and Matthew S. Allen. "Identifying parameters of nonlinear structural dynamic systems using linear time-periodic approximations." In Conference Proceedings of the Society for Experimental Mechanics Series, 103–26. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9299-4_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lefaucheux, Engel, Joël Ouaknine, David Purser, and Mohammadamin Sharifi. "Model Checking Linear Dynamical Systems under Floating-point Rounding." In Tools and Algorithms for the Construction and Analysis of Systems, 47–65. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30823-9_3.

Повний текст джерела
Анотація:
AbstractWe consider linear dynamical systems under floating-point rounding. In these systems, a matrix is repeatedly applied to a vector, but the numbers are rounded into floating-point representation after each step (i.e., stored as a fixed-precision mantissa and an exponent). The approach more faithfully models realistic implementations of linear loops, compared to the exact arbitrary-precision setting often employed in the study of linear dynamical systems.Our results are twofold: We show that for non-negative matrices there is a special structure to the sequence of vectors generated by the system: the mantissas are periodic and the exponents grow linearly. We leverage this to show decidability of $$\omega $$ ω -regular temporal model checking against semialgebraic predicates. This contrasts with the unrounded setting, where even the non-negative case encompasses the long-standing open Skolem and Positivity problems.On the other hand, when negative numbers are allowed in the matrix, we show that the reachability problem is undecidable by encoding a two-counter machine. Again, this is in contrast with the unrounded setting where point-to-point reachability is known to be decidable in polynomial time.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tregub, Victor, Igor Korobiichuk, Oleh Klymenko, Alena Byrchenko, and Katarzyna Rzeplińska-Rykała. "Neural Network Control Systems for Objects of Periodic Action with Non-linear Time Programs." In Advances in Intelligent Systems and Computing, 155–64. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13273-6_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kern, Benjamin, Christoph Böhm, Rolf Findeisen, and Frank Allgöwer. "Receding Horizon Control for Linear Periodic Time-Varying Systems Subject to Input Constraints." In Nonlinear Model Predictive Control, 109–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01094-1_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Linear time-periodic systems"

1

Albertos, P., F. Morant, J. Tornero, and V. Hernandez. "Linear Periodic Systems : Time-Invariant Equivalents." In 1988 American Control Conference. IEEE, 1988. http://dx.doi.org/10.23919/acc.1988.4789690.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Svobodny, Thomas, and David Russell. "Phase identification in linear time-periodic systems." In 26th IEEE Conference on Decision and Control. IEEE, 1987. http://dx.doi.org/10.1109/cdc.1987.272963.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wereley, N. M., and S. R. Hall. "Frequency response of linear time periodic systems." In 29th IEEE Conference on Decision and Control. IEEE, 1990. http://dx.doi.org/10.1109/cdc.1990.203516.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhou, Jun. "Controllability in linear continuous-time periodic systems." In SICE 2008 - 47th Annual Conference of the Society of Instrument and Control Engineers of Japan. IEEE, 2008. http://dx.doi.org/10.1109/sice.2008.4655039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

CALISE, ANTHONY, and DANIEL SCHRAGE. "Optimal output feedback for linear time-periodic systems." In Guidance, Navigation and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-3574.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sandberg, H., E. Mollerstedt, and B. Bernhardsson. "Frequency-domain analysis of linear time-periodic systems." In Proceedings of the 2004 American Control Conference. IEEE, 2004. http://dx.doi.org/10.23919/acc.2004.1384427.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lee, Donghwan, and Jianghai Hu. "Periodic stabilization of discrete-time switched linear systems." In 2015 54th IEEE Conference on Decision and Control (CDC). IEEE, 2015. http://dx.doi.org/10.1109/cdc.2015.7402883.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Balas, M. J., and Yung Jae Lee. "Controller design of linear periodic time-varying systems." In Proceedings of 16th American CONTROL Conference. IEEE, 1997. http://dx.doi.org/10.1109/acc.1997.611940.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sandberg, H., and B. Bemhardsson. "A Bode sensitivity integral for linear time-periodic systems." In 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601). IEEE, 2004. http://dx.doi.org/10.1109/cdc.2004.1428859.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Uyanik, Ismail. "Identification of Piecewise Constant Switching Linear Time-Periodic Systems". У 2020 28th Signal Processing and Communications Applications Conference (SIU). IEEE, 2020. http://dx.doi.org/10.1109/siu49456.2020.9302100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії