Добірка наукової літератури з теми "Linear time-periodic systems"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Linear time-periodic systems".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Linear time-periodic systems"
Lopez, MarkJ S., and J. V. R. Prasad. "Linear Time Invariant Approximations of Linear Time Periodic Systems." Journal of the American Helicopter Society 62, no. 1 (January 1, 2017): 1–10. http://dx.doi.org/10.4050/jahs.62.012006.
Повний текст джерелаChen, Wei. "Phase of linear time-periodic systems." Automatica 151 (May 2023): 110925. http://dx.doi.org/10.1016/j.automatica.2023.110925.
Повний текст джерелаBolzern, P., P. Colaneri, and R. Scattolini. "Zeros of discrete-time linear periodic systems." IEEE Transactions on Automatic Control 31, no. 11 (November 1986): 1057–58. http://dx.doi.org/10.1109/tac.1986.1104172.
Повний текст джерелаde Souza, Carlos E., and Alexandre Trofino. "Stabilization of Linear Discrete-Time Periodic Systems *." IFAC Proceedings Volumes 31, no. 18 (July 1998): 485–90. http://dx.doi.org/10.1016/s1474-6670(17)42038-6.
Повний текст джерелаNICOLAO, G. DE, G. FERRARI-TRECATE, and S. PINZONI. "Zeros of Continuous-time Linear Periodic Systems." Automatica 34, no. 12 (December 1998): 1651–55. http://dx.doi.org/10.1016/s0005-1098(98)80023-x.
Повний текст джерелаSvobodny, T. P., and D. L. Russell. "Phase identification in linear time-periodic systems." IEEE Transactions on Automatic Control 34, no. 2 (1989): 218–20. http://dx.doi.org/10.1109/9.21104.
Повний текст джерелаYin, Mingzhou, Andrea Iannelli, and Roy S. Smith. "Subspace Identification of Linear Time-Periodic Systems With Periodic Inputs." IEEE Control Systems Letters 5, no. 1 (January 2021): 145–50. http://dx.doi.org/10.1109/lcsys.2020.3000950.
Повний текст джерелаZhang, P., S. X. Ding, G. Z. Wang, and D. H. Zhou. "Fault detection of linear discrete-time periodic systems." IEEE Transactions on Automatic Control 50, no. 2 (February 2005): 239–44. http://dx.doi.org/10.1109/tac.2004.841933.
Повний текст джерелаSandberg, H., E. Mollerstedt, and Bernhardsson. "Frequency-domain analysis of linear time-periodic systems." IEEE Transactions on Automatic Control 50, no. 12 (December 2005): 1971–83. http://dx.doi.org/10.1109/tac.2005.860294.
Повний текст джерелаCalise, Anthony J., Mark E. Wasikowski, and Daniel P. Schrage. "Optimal output feedback for linear time-periodic systems." Journal of Guidance, Control, and Dynamics 15, no. 2 (March 1992): 416–23. http://dx.doi.org/10.2514/3.20852.
Повний текст джерелаДисертації з теми "Linear time-periodic systems"
Magruder, Caleb Clarke III. "Model Reduction of Linear Time-Periodic Dynamical Systems." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/23112.
Повний текст джерелаWe extend the familiar LTI system theory to analogous concepts in the LTP setting. First, we represent the LTP system as a convolution operator of a bivariate periodic kernel function. The kernel suggests a representation of the system as a frequency operator, called the Harmonic Transfer Function. Second, we exploit the Hilbert space structure of the family of LTP systems to develop necessary conditions for optimal approximations.
Additionally, we show an a posteriori error bound written in terms of the $\\mathcal H_2$ norm of related LTI multiple input/multiple output system. This bound inspires an algorithm to construct approximations of reduced order.
To verify the efficacy of this algorithm we apply it to three models: (1) fluid flow around a cylinder by a finite element discretization of the Navier-Stokes equations, (2) thermal diffusion through a plate modeled by the heat equation, and (3) structural model of component 1r of the Russian service module of the International Space Station.
Master of Science
Cole, Daniel G. "Harmonic and Narrowband Disturbance Rejection for Linear Time-Periodic Plants." Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/29196.
Повний текст джерелаPh. D.
Sandberg, Henrik. "Linear Time-Varying Systems: Modeling and Reduction." Licentiate thesis, Lund University, Department of Automatic Control, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-74720.
Повний текст джерелаQC 20120208
Park, Baeil P. "Canonical forms for time-varying multivariable linear systems and periodic filtering and control applications." Diss., Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/16734.
Повний текст джерелаOlcer, Fahri Ersel. "Linear time invariant models for integrated flight and rotor control." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/44921.
Повний текст джерелаZhou, Jun. "Harmonic Analysis of Linea Continuous-Time Periodic Systems." 京都大学 (Kyoto University), 2001. http://hdl.handle.net/2433/77905.
Повний текст джерелаSánchez, Jiménez Oscar. "On the stochastic response of rotor-blade models with Floquet modal theory : applications to time-dependent reliability of tidal turbine blades." Electronic Thesis or Diss., Normandie, 2023. http://www.theses.fr/2023NORMIR39.
Повний текст джерелаThe response of a deterministic rotating mechanical system under stochastic excitation is studied. A mechanical-probabilistic model is developed to combine the relevant characteristics of both aspects of the study: the behavior of this non-standard class of mechanical system and the random properties of correlated stochastic fields describing load processes. The results are applied to a reliability analysis of a reduced order model of a tidal turbine. Semi-analytic and empirical ( in the Monte-Carlo simulation sense) results are obtained, compared and contrasted. The results are framed with respect to the existing literature, and it is found that they provide an innovative treatment of the problem, in terms of the dynamical choices reflected in the model, in the presentation and interpretation of the modal aspects of the system, and in the type of stochastic inputs considered. We develop a dynamical model describing a broad class of mechanical system that models a rotor-blade structure. The model is informed by careful consideration of previous results, with the aim of constructing a reduced model that captures essential characteristics of the vibratory behavior of the structure. Lagrangian formalism is utilized to obtain the equations of motion. The presence of elastic components, which are discretized in a modal way, results in a system of ordinary differential equations with periodic coefficients. The Floquet theory of Linear time-periodic systems is applied on the deterministic dynamical model to synthesize an extension of traditional modal analysis to systems with periodic coefficients. The response of the system is formulated in terms of Floquet exponents and the associated Floquet periodic eigenvectors, from which the Floquet State Transition Matrix can be obtained. Several methods are applied to the modal study of the system, and a new time-frequency approach is proposed based on PGHW wavelets and its associated scalogram. Using an innovative notation to describe probabilistic moments of stochastic quantities, a moment propagation scheme is presented and exploited. The advantages of the treatment, particularly in the case of spatio-temporal stochastic fields, is in its applicability and systematic structure of development. This moment propagation strategy is coupled with a maximum entropy formulation to reconstruct the probability density function of the response and obtain important descriptors of the response, such as the Extreme Value Distribution. The moment propagation technique presented is applied to nonstationary processes. The results from Modal Floquet theory are integrated into this analysis. The problem of crossings of a certain threshold is considered for this type of nonstationary stochastic process. Their response is shown to yield a time-dependent reliability problem, which is resolved using the estimated EVD and then by numerical simulation
Hwang, Sheng-Pu. "Harmonic State-Space Modelling of an HVdc Converter with Closed-Loop Control." Thesis, University of Canterbury. Electrical and Computer Engineering, 2014. http://hdl.handle.net/10092/8881.
Повний текст джерелаBonnetat, Antoine. "Etude et conception d'algorithmes de correction d'erreurs dans des structures de conversion analogique-numérique entrelacées pour applications radar et guerre électronique." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0289/document.
Повний текст джерелаThe evolution of radar and electronic warfare systems tends to develop digitalreceivers with wider bandwidths. This constraint reaches the Analog to Digital Converters(ADC) which must provide a sample rate higher and higher while maintaining a reducedpower dissipation. A solution to meet this demand is the Time-Interleaved ADC (TIADC)which parallelizes M ADCs, increasing the sampling frequency of an M factor while still ina proportionate relation to the power loss. However, the dynamic performance of TIADCsare reduced by errors related to the mismatches between the sampling channels, due to themanufacturing processes, the supply voltage and the temperature variations. These errors canbe modeled as the result of offset, gain and clock-skew mismatches and globally as from thefrequency response mismatches. It is these last mismatches, unless addressed in the literaturethat carry our work. The objective is to study these errors to derive a model and an estimationmethod then, to propose digital compensation methods that can be implemented on a FPGAtarget.First, we propose a general TIADC model using frequency response mismatches for any Mchannel number. Our model merge a continuous-time description of mismatches and a discretetimeone of the interleaving process, resulting in an expression of the TIADC errors as a linearperiodic time-varying (LPTV) system applied to the uniformly sampled analog signal. Then,we propose a method to estimate TIADC errors based on the correlation properties of theoutput signal for any M channel. Next, we define a frequency response mismatch compensationarchitecture for TIADC errors and we study its performance related to its configuration and theinput signal. We describe an FPGA implementation of this architecture for M=4 interleavedchannels and we study the resources consumption to propose optimisations. Finally, we proposea second compensation method, specific to M=2 interleaved channels and derived from the firstone, but working on the analytical signal from the TIADC output and we compare it to a similarstate-of-the-art method
Er, Meng Joo. "Periodic controllers for linear time-invariant systems." Phd thesis, 1992. http://hdl.handle.net/1885/143515.
Повний текст джерелаКниги з теми "Linear time-periodic systems"
Huffaker, Ray, Marco Bittelli, and Rodolfo Rosa. Entropy and Surrogate Testing. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198782933.003.0005.
Повний текст джерелаЧастини книг з теми "Linear time-periodic systems"
Feuer, Arie, and Graham C. Goodwin. "Periodic Control of Linear Time-Invariant Systems." In Sampling in Digital Signal Processing and Control, 437–75. Boston, MA: Birkhäuser Boston, 1996. http://dx.doi.org/10.1007/978-1-4612-2460-0_11.
Повний текст джерелаInsperger, Tamás, and Gábor Stépán. "Introducing Delay in Linear Time-Periodic Systems." In Semi-Discretization for Time-Delay Systems, 1–12. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0335-7_1.
Повний текст джерелаRăsvan, Vladimir. "Discrete Time Linear Periodic Hamiltonian Systems and Applications." In Advances in Automatic Control, 297–313. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-9184-3_21.
Повний текст джерелаGrasselli, Osvaldo Maria, and Sauro Longhi. "Algebraic-Geometric Techniques for Linear Periodic Discrete-Time Systems." In Realization and Modelling in System Theory, 189–98. Boston, MA: Birkhäuser Boston, 1990. http://dx.doi.org/10.1007/978-1-4612-3462-3_20.
Повний текст джерелаBorgers, D. P., V. S. Dolk, G. E. Dullerud, A. R. Teel, and W. P. M. H. Heemels. "Time-Regularized and Periodic Event-Triggered Control for Linear Systems." In Control Subject to Computational and Communication Constraints, 121–49. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78449-6_7.
Повний текст джерелаBöhm, Christoph, Tobias Raff, Marcus Reble, and Frank Allgöwer. "LMI-Based Model Predictive Control for Linear Discrete-Time Periodic Systems." In Nonlinear Model Predictive Control, 99–108. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01094-1_8.
Повний текст джерелаSracic, Michael W., and Matthew S. Allen. "Identifying parameters of nonlinear structural dynamic systems using linear time-periodic approximations." In Conference Proceedings of the Society for Experimental Mechanics Series, 103–26. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9299-4_9.
Повний текст джерелаLefaucheux, Engel, Joël Ouaknine, David Purser, and Mohammadamin Sharifi. "Model Checking Linear Dynamical Systems under Floating-point Rounding." In Tools and Algorithms for the Construction and Analysis of Systems, 47–65. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30823-9_3.
Повний текст джерелаTregub, Victor, Igor Korobiichuk, Oleh Klymenko, Alena Byrchenko, and Katarzyna Rzeplińska-Rykała. "Neural Network Control Systems for Objects of Periodic Action with Non-linear Time Programs." In Advances in Intelligent Systems and Computing, 155–64. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13273-6_16.
Повний текст джерелаKern, Benjamin, Christoph Böhm, Rolf Findeisen, and Frank Allgöwer. "Receding Horizon Control for Linear Periodic Time-Varying Systems Subject to Input Constraints." In Nonlinear Model Predictive Control, 109–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01094-1_9.
Повний текст джерелаТези доповідей конференцій з теми "Linear time-periodic systems"
Albertos, P., F. Morant, J. Tornero, and V. Hernandez. "Linear Periodic Systems : Time-Invariant Equivalents." In 1988 American Control Conference. IEEE, 1988. http://dx.doi.org/10.23919/acc.1988.4789690.
Повний текст джерелаSvobodny, Thomas, and David Russell. "Phase identification in linear time-periodic systems." In 26th IEEE Conference on Decision and Control. IEEE, 1987. http://dx.doi.org/10.1109/cdc.1987.272963.
Повний текст джерелаWereley, N. M., and S. R. Hall. "Frequency response of linear time periodic systems." In 29th IEEE Conference on Decision and Control. IEEE, 1990. http://dx.doi.org/10.1109/cdc.1990.203516.
Повний текст джерелаZhou, Jun. "Controllability in linear continuous-time periodic systems." In SICE 2008 - 47th Annual Conference of the Society of Instrument and Control Engineers of Japan. IEEE, 2008. http://dx.doi.org/10.1109/sice.2008.4655039.
Повний текст джерелаCALISE, ANTHONY, and DANIEL SCHRAGE. "Optimal output feedback for linear time-periodic systems." In Guidance, Navigation and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-3574.
Повний текст джерелаSandberg, H., E. Mollerstedt, and B. Bernhardsson. "Frequency-domain analysis of linear time-periodic systems." In Proceedings of the 2004 American Control Conference. IEEE, 2004. http://dx.doi.org/10.23919/acc.2004.1384427.
Повний текст джерелаLee, Donghwan, and Jianghai Hu. "Periodic stabilization of discrete-time switched linear systems." In 2015 54th IEEE Conference on Decision and Control (CDC). IEEE, 2015. http://dx.doi.org/10.1109/cdc.2015.7402883.
Повний текст джерелаBalas, M. J., and Yung Jae Lee. "Controller design of linear periodic time-varying systems." In Proceedings of 16th American CONTROL Conference. IEEE, 1997. http://dx.doi.org/10.1109/acc.1997.611940.
Повний текст джерелаSandberg, H., and B. Bemhardsson. "A Bode sensitivity integral for linear time-periodic systems." In 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601). IEEE, 2004. http://dx.doi.org/10.1109/cdc.2004.1428859.
Повний текст джерелаUyanik, Ismail. "Identification of Piecewise Constant Switching Linear Time-Periodic Systems". У 2020 28th Signal Processing and Communications Applications Conference (SIU). IEEE, 2020. http://dx.doi.org/10.1109/siu49456.2020.9302100.
Повний текст джерела