Статті в журналах з теми "Linear induction accelerators"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Linear induction accelerators.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Linear induction accelerators".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Bayless, John R., Craig P. Burkhart, and Richard J. Adler. "Linear induction accelerators for industrial applications." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 40-41 (April 1989): 1142–45. http://dx.doi.org/10.1016/0168-583x(89)90558-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wang, Shao-Heng, and Jian-Jun Deng. "Acceleration modules in linear induction accelerators." Chinese Physics C 38, no. 5 (May 2014): 057005. http://dx.doi.org/10.1088/1674-1137/38/5/057005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bayless, John R., and Richard J. Adler. "Linear induction accelerators for radiation processing." International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry 31, no. 1-3 (January 1988): 327–31. http://dx.doi.org/10.1016/1359-0197(88)90146-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Matsuzawa, Hidenori, Haruhisa Wada, Satoshi Mori, and Tadashi Yamamoto. "Induction Linear Accelerators with High-TcBulk Superconductor Lenses." Japanese Journal of Applied Physics 30, Part 1, No. 11A (November 15, 1991): 2972–73. http://dx.doi.org/10.1143/jjap.30.2972.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Humphries, Stanley. "Quadrupole field geometries for intense electron beam acceleration." Laser and Particle Beams 14, no. 3 (September 1996): 519–28. http://dx.doi.org/10.1017/s0263034600010193.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
High-intensity electron beams could be focused in low-frequency RF accelerators and induction linear accelerators by adding transverse components to the accelerating electric field. Calculations with a 3D code show that quasielectrostatic focusing is sufficient to transport kiloampere electron beams in RF accelerators and the high-energy sections of induction accelerators. The elimination of conventional magnetic focusing systems could lead to reductions in the volume and weight of high-current electron accelerators. Two novel quadrupole geometries are investigated: a periodic array of spherical electrodes with alternating displacements and a set of plate electrodes with elliptical apertures.
6

Herrmannsfeldt, W. B., and Denis Keefe. "Induction linac drivers for heavy ion fusion." Laser and Particle Beams 8, no. 1-2 (January 1990): 81–88. http://dx.doi.org/10.1017/s0263034600007849.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Heavy Ion Fusion Accelerator Research (HIFAR) program of the U.S. Dept. of Energy has for several years concentrated on developing linear induction accelerators as Inertial Fusion (IF) drivers. This accelerator technology is suitable for the IF application because it is readily capable of accelerating short, intense pulses of charged particles with good electrical efficiency. The principal technical difficulty is in injecting and transporting the intense pulses while maintaining the necessary beam quality. The approach used has been to design a system of multiple beams so that not all of the charge has to be confined in a single beam line. The beams are finally brought together in a common focus at the target. This paper will briefly present the status and future plans of the program, and will also briefly review systems study results for HIF.
7

Ekdahl, Carl. "The Resistive-Wall Instability in Multipulse Linear Induction Accelerators." IEEE Transactions on Plasma Science 45, no. 5 (May 2017): 811–18. http://dx.doi.org/10.1109/tps.2017.2681040.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Orzechowski, T., E. Scharlemann, B. Anderson, V. Neil, W. Fawley, D. Prosnitz, S. Yarema, et al. "High-gain free electron lasers using induction linear accelerators." IEEE Journal of Quantum Electronics 21, no. 7 (July 1985): 831–44. http://dx.doi.org/10.1109/jqe.1985.1072732.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Humphries, Stanley. "Simulations of longitudinal instabilities in ion induction linear accelerators." Laser and Particle Beams 10, no. 3 (September 1992): 511–29. http://dx.doi.org/10.1017/s0263034600006765.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This article describes computer simulations of a longitudinal instability that affects induction linear accelerators for high-power ion beams. The instability is driven by axial bunching of ions when they interact with acceleration gaps connected to input transmission lines. The process is similar to the longitudinal resistive wall instability in continuous systems. Although bunching instabilities do not appear in existing induction linear accelerators for electrons, they may be important for proposed ion accelerators for heavy ion fusion. The simulation code is a particle-in-cell model that describes a drifting beam crossing discrete acceleration gaps with a self-consistent calculation of axial space charge forces. In present studies with periodic boundaries, the model predicts values for quantities such as the stabilizing axial velocity spread that are in good agreement with analytic theories. The simulations describe the nonlinear growth of the instability and its saturation with increased axial emittance. They show that an initially cold beam is subject to a severe disruption that drives the emittance well above the stabilized saturation levels. The simulation results confirm that axial space charge forces do not reduce axial beam bunching. In fact, space charge effects increase the axial velocity spread required for stability. With simple resistive driving circuits, the model predicts velocity spreads that are too high for heavy ion fusion applications. Several processes currently under study may mitigate this result, including advanced pulsed power switching methods, enhanced gap capacitance, and an energy spread impressed between individual beams of a multibeam transport system.
10

Lagunas-Solar, Manuel C. "Induction-linear accelerators for food processing with ionizing radiation." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 10-11 (May 1985): 987–93. http://dx.doi.org/10.1016/0168-583x(85)90155-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Peskov, N. Yu, N. S. Ginzburg, A. K. Kaminsky, S. N. Sedykh, and A. S. Sergeev. "High-Power Free-Electron Masers Based on Linear Induction Accelerators." Radiophysics and Quantum Electronics 63, no. 12 (May 2021): 931–75. http://dx.doi.org/10.1007/s11141-021-10105-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Peskov, N. Yu, N. S. Ginzburg, A. K. Kaminsky, S. N. Sedykh, and A. S. Sergeev. "High-Power Free-Electron Masers Based on Linear Induction Accelerators." Izvestiya vysshikh uchebnykh zavedenii. Radiofizika 63, no. 12 (2020): 1032–81. http://dx.doi.org/10.52452/00213462_2020_63_12_1032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Zhang, H., K. Zhang, Y. Shen, X. Jiang, P. Dong, Y. Liu, Y. Wang, et al. "Note: A pulsed laser ion source for linear induction accelerators." Review of Scientific Instruments 86, no. 1 (January 2015): 016104. http://dx.doi.org/10.1063/1.4905363.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Peach, Ken, and Carl Ekdahl. "Particle Beam Radiography." Reviews of Accelerator Science and Technology 06 (January 2013): 117–42. http://dx.doi.org/10.1142/s1793626813300065.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Particle beam radiography, which uses a variety of particle probes (neutrons, protons, electrons, gammas and potentially other particles) to study the structure of materials and objects noninvasively, is reviewed, largely from an accelerator perspective, although the use of cosmic rays (mainly muons but potentially also high-energy neutrinos) is briefly reviewed. Tomography is a form of radiography which uses multiple views to reconstruct a three-dimensional density map of an object. There is a very wide range of applications of radiography and tomography, from medicine to engineering and security, and advances in instrumentation, specifically the development of electronic detectors, allow rapid analysis of the resultant radiographs. Flash radiography is a diagnostic technique for large high-explosive-driven hydrodynamic experiments that is used at many laboratories. The bremsstrahlung radiation pulse from an intense relativistic electron beam incident onto a high-Z target is the source of these radiographs. The challenge is to provide radiation sources intense enough to penetrate hundreds of g/cm2 of material, in pulses short enough to stop the motion of high-speed hydrodynamic shocks, and with source spots small enough to resolve fine details. The challenge has been met with a wide variety of accelerator technologies, including pulsed-power-driven diodes, air-core pulsed betatrons and high-current linear induction accelerators. Accelerator technology has also evolved to accommodate the experimenters' continuing quest for multiple images in time and space. Linear induction accelerators have had a major role in these advances, especially in providing multiple-time radiographs of the largest hydrodynamic experiments.
15

Ekdahl, Carl, and Rodney McCrady. "Suppression of Beam Breakup in Linear Induction Accelerators by Stagger Tuning." IEEE Transactions on Plasma Science 48, no. 10 (October 2020): 3589–99. http://dx.doi.org/10.1109/tps.2020.3019999.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Hovingh, Jack, Victor O. Brady, Andris Faltens, Denis Keefe, and Edward P. Lee. "Heavy-Ion Linear Induction Accelerators as Drivers for Inertial Fusion Power Plants." Fusion Technology 13, no. 2 (February 1988): 255–78. http://dx.doi.org/10.13182/fst88-a25104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Rosenthal, S. E. "Characterization of electron flow in negative- and positive-polarity linear-induction accelerators." IEEE Transactions on Plasma Science 19, no. 5 (1991): 822–30. http://dx.doi.org/10.1109/27.108419.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Hotta, Eiki, and Izumi Hayashi. "Bidirectional pulser for linear induction accelerators made from line cavities with external pulse injection." Kakuyūgō kenkyū 56, no. 1 (1986): 52–58. http://dx.doi.org/10.1585/jspf1958.56.52.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Burris-Mog, T. J., M. A. Chavez, M. A. Espy, M. J. Manard, D. C. Moir, J. B. Schillig, R. Trainham, and P. L. Volegov. "Calibration of two compact permanent magnet spectrometers for high current electron linear induction accelerators." Review of Scientific Instruments 89, no. 7 (July 2018): 073303. http://dx.doi.org/10.1063/1.5029837.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Miller, R. B., B. M. Marder, P. D. Coleman, and R. E. Clark. "The effect of accelerating gap geometry on the beam breakup instability in linear induction accelerators." Journal of Applied Physics 63, no. 4 (February 15, 1988): 997–1008. http://dx.doi.org/10.1063/1.341136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Bolyukh, V. F., and I. S. Shchukin. "Influence of limiting the duration of the armature winding current on the operating indicators of a linear pulse electromechanical induction type converter." Electrical Engineering & Electromechanics, no. 6 (December 3, 2021): 3–10. http://dx.doi.org/10.20998/2074-272x.2021.6.01.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Introduction. Linear pulse electromechanical converters of induction type (LPECIT) are used in many branches of science and technology as shock-power devices and electromechanical accelerators. In them, due to the phase shift between the excitation current in the inductor winding and the induced current in the armature winding, in addition to the initial electrodynamic forces (EDF) of repulsion, subsequent EDF of attraction also arise. As a result, the operating indicators of LPECIT are reduced. The purpose of the article is to increase the performance of linear pulse electromechanical induction-type converters when operating as a shock-power device and an electromechanical accelerator by limiting the duration of the induced current in the armature winding until its polarity changes. Methodology. To analyze the electromechanical characteristics and indicators of LPECIT, a mathematical model was used, in which the solutions of equations describing interrelated electrical, magnetic, mechanical and thermal processes are presented in a recurrent form. Results. To eliminate the EDF of attraction between the LPIECIT windings, it is proposed to limit the duration of the induced current in the armature winding before changing its polarity by connecting a rectifier diode to it. It was found that when the converter operates as a shock-power device without limiting the armature winding current, the value of the EDF pulse after reaching the maximum value decreases by the end of the operating cycle. In the presence of a diode in the armature winding, the efficiency criterion, taking into account the EDF pulse, recoil force, current and heating temperature of the inductor winding, increases. When the converter operates as an electromechanical accelerator without limiting the armature winding current, the speed and efficiency decrease, taking into account the kinetic energy and voltage of the capacitive energy storage at the end of the operating cycle. In the presence of a diode in the armature winding, the efficiency criterion increases, the temperature rise of the armature winding decreases, the value of the maximum efficiency increases, reaching 16.16 %. Originality. It has been established that due to the limitation of the duration of the armature winding current, the power indicators of the LPECIT increase when operating as a shock-power device and the speed indicators when the LPECIT operates as an electromechanical accelerator. Practical value. It was found that with the help of a rectifier diode connected to the multi-turn winding of the armature, unipolarity of the current is ensured, which leads to the elimination of the EDF of attraction and an increase in the performance of the LPECIT.
22

Annenkov, Vladimir, Evgeny Berendeev, Evgeniia Volchok, and Igor Timofeev. "Particle-in-Cell Simulations of High-Power THz Generator Based on the Collision of Strongly Focused Relativistic Electron Beams in Plasma." Photonics 8, no. 6 (May 21, 2021): 172. http://dx.doi.org/10.3390/photonics8060172.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Based on particle-in-cell simulations, we propose to generate sub-nanosecond pulses of narrowband terahertz radiation with tens of MW power using unique properties of kiloampere relativistic (2 MeV) electron beams produced by linear induction accelerators. Due to small emittance of such beams, they can be focused into millimeter and sub-millimeter spots comparable in sizes with the wavelength of THz radiation. If such a beam is injected into a plasma, it becomes unstable against the two-stream instability and excites plasma oscillations that can be converted to electromagnetic waves at the plasma frequency and its harmonics. It is shown that several radiation mechanisms with high efficiency of power conversion (∼1%) come into play when the radial size of the beam–plasma system becomes comparable with the wavelength of the emitted waves.
23

Korsbäck, Anders, Flyura Djurabekova, and Walter Wuensch. "Statistics of vacuum electrical breakdown clustering and the induction of follow-up breakdowns." AIP Advances 12, no. 11 (November 1, 2022): 115317. http://dx.doi.org/10.1063/5.0111677.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Understanding the underlying physics of vacuum electrical breakdown is of relevance for the development of technologies where breakdown is of significance, either as an intended part of device operation or as a cause of failure. One prominent contemporary case of the latter is high-gradient linear accelerators, where structures must be able to operate with both high surface electric fields and low breakdown rates. Temporal clustering of breakdowns has for long been observed in accelerating structures. In this work, the statistics of breakdown clustering were studied using data collected by a system applying DC voltage pulses over parallel disk electrodes in a vacuum chamber. It was found that the obtained distributions of cluster sizes can be explained by postulating that every breakdown induces a number of follow-up breakdowns that are Poisson-distributed with λ < 1. It was also found that the primary breakdown rate, i.e., the breakdown rate after discounting follow-up breakdowns, fluctuates over time but has no discernible correlation with cluster size. Considered together, these results provide empirical support for the interpretation that primary and follow-up breakdowns are categorically different kinds of events with different underlying causes and mechanisms. Furthermore, they support the interpretation that there is an actual causal relationship between the breakdowns in a cluster rather than them simply being concurrent events with a common underlying cause.
24

Peskov, N. Yu, N. S. Ginzburg, A. M. Malkin, A. S. Sergeev, V. Yu Zaslavsky, A. K. Kaminsky, S. N. Sedykh, et al. "Development of powerful long-pulse Bragg FELs operating from sub-THz to THz bands based on linear induction accelerators: recent results and projects." EPJ Web of Conferences 195 (2018): 01010. http://dx.doi.org/10.1051/epjconf/201819501010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Logachev, P. V., G. I. Kuznetsov, A. A. Korepanov, A. V. Akimov, S. V. Shiyankov, O. A. Pavlov, D. A. Starostenko, and G. A. Fat’kin. "LIU-2 linear induction accelerator." Instruments and Experimental Techniques 56, no. 6 (November 2013): 672–79. http://dx.doi.org/10.1134/s0020441213060195.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Bresie, D. A., J. A. Andrews, and S. W. Ingram. "Parametric approach to linear induction accelerator design." IEEE Transactions on Magnetics 27, no. 1 (January 1991): 390–93. http://dx.doi.org/10.1109/20.101063.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Sandalov, Evgeny S., Stanislav L. Sinitsky, Alexander V. Burdakov, Petr A. Bak, Kirill I. Zhivankov, Ermek K. Kenzhebulatov, Pavel V. Logachev, Dmitrii I. Skovorodin, Alexander R. Akhmetov, and Oleg A. Nikitin. "Electrodynamic System of the Linear Induction Accelerator Module." IEEE Transactions on Plasma Science 49, no. 2 (February 2021): 718–28. http://dx.doi.org/10.1109/tps.2020.3045345.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Starostenko, D., A. Akimov, P. Bak, D. Bolkhovityanov, Ya Kulenko, P. Logachev, D. Nikiforov, et al. "Beam Dynamics of Linear Induction Accelerator LIA-2." Physics of Particles and Nuclei Letters 19, no. 4 (July 26, 2022): 393–96. http://dx.doi.org/10.1134/s1547477122040197.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Huang Ziping, 黄子平, 蒋薇 Jiang Wei, and 叶毅 Ye Yi. "Reset system for multi-pulse linear induction accelerator." High Power Laser and Particle Beams 26, no. 4 (2014): 45101. http://dx.doi.org/10.3788/hplpb20142604.45101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Zhang Huang, 张篁, 陈德彪 Chen Debiao, 江孝国 Jiang Xiaoguo, 夏连胜 Xia Liansheng, 刘星光 Liu Xingguang, 谌怡 Chen Yi, and 章林文 Zhang Linwen. "Experimental research on photocathode for linear induction accelerator." High Power Laser and Particle Beams 22, no. 3 (2010): 583–86. http://dx.doi.org/10.3788/hplpb20102203.0583.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Yang Changhong, 杨长鸿, 蒙林 Meng Lin, 张开志 Zhang Kaizhi, 章文卫 Zhang Wenwei, and 刘大刚 Liu Dagang. "Simulation of transport process for linear induction accelerator." High Power Laser and Particle Beams 22, no. 4 (2010): 913–17. http://dx.doi.org/10.3788/hplpb20102204.0913.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Ekdahl, Carl, Joshua E. Coleman, and Brian Trent McCuistian. "Beam Breakup in an Advanced Linear Induction Accelerator." IEEE Transactions on Plasma Science 44, no. 7 (July 2016): 1094–102. http://dx.doi.org/10.1109/tps.2016.2571123.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Sharma, Archana, K. Senthil, D. D. Praveen Kumar, S. Mitra, V. Sharma, A. Patel, D. K. Sharma, et al. "Preliminary results of Linear Induction Accelerator LIA-200." Journal of Instrumentation 5, no. 05 (May 4, 2010): P05001. http://dx.doi.org/10.1088/1748-0221/5/05/p05001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Chen, Yinbao, and M. Reiser. "Radial focusing in a linear induction accelerator gap." Journal of Applied Physics 65, no. 9 (May 1989): 3324–28. http://dx.doi.org/10.1063/1.342643.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Ekdahl, Carl. "Tuning the DARHT Long-Pulse Linear Induction Accelerator." IEEE Transactions on Plasma Science 41, no. 10 (October 2013): 2774–80. http://dx.doi.org/10.1109/tps.2013.2256933.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Ekdahl, Carl, E. O. Abeyta, P. Aragon, R. Archuleta, G. Cook, D. Dalmas, K. Esquibel, et al. "Beam Dynamics in a Long-pulse Linear Induction Accelerator." Journal of the Korean Physical Society 59, no. 6(1) (December 15, 2011): 3448–52. http://dx.doi.org/10.3938/jkps.59.3448.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Ekdahl, Carl, Carl A. Carlson, Daniel K. Frayer, B. Trent McCuistian, Christopher B. Mostrom, Martin E. Schulze, and Carsten H. Thoma. "Emittance Growth in the DARHT-II Linear Induction Accelerator." IEEE Transactions on Plasma Science 45, no. 11 (November 2017): 2962–73. http://dx.doi.org/10.1109/tps.2017.2755861.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Akimov, A. V., V. E. Akimov, P. A. Bak, V. D. Bochkov, L. T. Vekhoreva, A. A. Korepanov, P. V. Logachev, A. N. Panov, D. A. Starostenko, and O. V. Shilin. "A pulse power supply of the linear induction accelerator." Instruments and Experimental Techniques 55, no. 2 (March 2012): 218–24. http://dx.doi.org/10.1134/s0020441212010241.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Ekdahl, Carl. "Electron-Beam Corkscrew Motion in an Advanced Linear Induction Accelerator." IEEE Transactions on Plasma Science 49, no. 11 (November 2021): 3548–53. http://dx.doi.org/10.1109/tps.2021.3120877.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Yang Changhong, 杨长鸿, 蒙林 Meng Lin, 张开志 Zhang Kaizhi, 章文卫 Zhang Wenwei, and 刘大刚 Liu Dagang. "Numerical simulation of beam focusing magnetic field in linear induction accelerator." High Power Laser and Particle Beams 22, no. 6 (2010): 1331–34. http://dx.doi.org/10.3788/hplpb20102206.1331.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Batrakov, Aleksandr M., Pavel V. Logatchev, Anton V. Pavlenko, Vladislav Ya Sazansky, and Georgy A. Fatkin. "The Control System of Linear Induction Accelerator for X-Ray Radiography." Siberian Journal of Physics 5, no. 3 (October 1, 2010): 98–105. http://dx.doi.org/10.54362/1818-7919-2010-5-3-98-105.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The structure and hardware of control system for flash X-Ray radiography complex currently under construction in BINP, SB RAS are discussed in this paper. Special features of this control system are: high amount of channels, nanosecond times of main processes, work in environment of powerful noises from pulsed high-voltage devices
42

Ekdahl, C., E. O. Abeyta, H. Bender, W. Broste, C. Carlson, L. Caudill, K. C. D. Chan, et al. "Initial electron-beam results from the DARHT-II linear induction accelerator." IEEE Transactions on Plasma Science 33, no. 2 (April 2005): 892–900. http://dx.doi.org/10.1109/tps.2005.845115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Ekdahl, Carl, P. Allison, J. E. Coleman, T. Kaupilla, B. T. McCuistian, D. C. Moir, and M. Schulze. "Steering an intense relativistic electron beam in a linear induction accelerator." Review of Scientific Instruments 91, no. 2 (February 1, 2020): 026102. http://dx.doi.org/10.1063/1.5125421.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Petzoldt, Ronald, Neil Alexander, Lane Carlson, Eric Cotner, Dan Goodin, and Robert Kratz. "Linear Induction Accelerator with Magnetic Steering for Inertial Fusion Target Injection." Fusion Science and Technology 68, no. 2 (September 2015): 308–13. http://dx.doi.org/10.13182/fst14-915.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Yu Haijun, 禹海军, 朱隽 Zhu Jun, 江孝国 Jiang Xiaoguo, 王远 Wang Yuan, 陈楠 Chen Nan, 张振涛 Zhang Zhentao, 戴文华 Dai Wenhua, and 刘承俊 Liu Chengjun. "Damage diagnosis for bremsstrahlung converter target of Dragon-Ⅰ linear induction accelerator." High Power Laser and Particle Beams 23, no. 4 (2011): 1035–38. http://dx.doi.org/10.3788/hplpb20112304.1035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Ray, R., and A. D. Datta. "An approach to the development of a small-scale linear induction accelerator." Journal of Physics D: Applied Physics 21, no. 9 (September 14, 1988): 1336–41. http://dx.doi.org/10.1088/0022-3727/21/9/004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Bogdan, O. V., V. I. Karas’, E. A. Kornilov, and O. V. Manuilenko. "2.5-Dimensional numerical simulation of a high-current ion linear induction accelerator." Plasma Physics Reports 34, no. 8 (August 2008): 667–77. http://dx.doi.org/10.1134/s1063780x08080059.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Ekdahl, Carl. "The Ion-Hose Instability in a High-Current Multipulse Linear Induction Accelerator." IEEE Transactions on Plasma Science 47, no. 1 (January 2019): 300–306. http://dx.doi.org/10.1109/tps.2018.2872472.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Ekdahl, C., E. O. Abeyta, P. Aragon, R. Archuleta, R. Bartsch, H. Bender, R. Briggs, et al. "Long-pulse beam stability experiments on the DARHT-II linear induction accelerator." IEEE Transactions on Plasma Science 34, no. 2 (April 2006): 460–66. http://dx.doi.org/10.1109/tps.2006.872481.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Denno, K. "Longitudinal and Radial Mhd Linear Induction Accelerator with Hot Conducting Plasma Core." IEEE Transactions on Nuclear Science 32, no. 5 (October 1985): 3216–18. http://dx.doi.org/10.1109/tns.1985.4334324.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії