Дисертації з теми "Linear elasticty"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Linear elasticty".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Mou, Guangjin. "Design of exotic architectured materials in linear elasticity." Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS519.pdf.
Повний текст джерелаThe symmetry classes of a linear constitutive law define the different types of anisotropy that can be modelled by the associated constitutive tensors. However, the spaces of linear materials are very rich and a whole range of intermediate possibilities can exist beyond symmetry classes. Materials with non-standard anisotropic properties associated with such intermediate possibilities are called exotic materials. For instance, 2D R0-orthotropic material is a well-known case of exotic material.The primary objective of this research is to develop geometrical tools to characterise the linear material spaces in a very fine way, which allow these intermediate possibilities to be detected. The exotic set obtained is intrinsically characterised by a polynomial relation between elasticity tensor invariants. As a result, we prove that R0-orthotropy is the only type of 2D exotic elastic material. However, when generalised to 3D linear elasticity, this number is up to 163.The second objective of this study is to obtain a mesostructure exhibiting at macroscale the exotic behaviour described previously. A topological derivative-based optimisation algorithm is implemented in Python/FEniCS to realise the design of periodic metamaterials. The 2D R0-orthotropic material and several cases of 3D exotic materials are studied. The objective function of the optimisation problem is formulated in terms of the invariants of the target effective elasticity tensor
Bosher, Simon Henry Bruce. "Non-linear elasticity theory." Thesis, Queen Mary, University of London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407883.
Повний текст джерелаAng, W. T. "Some crack problems in linear elasticity /." Title page, table of contents and summary only, 1987. http://web4.library.adelaide.edu.au/theses/09PH/09pha581.pdf.
Повний текст джерелаAustin, D. M. "On two problems in linear elasticity." Thesis, University of Manchester, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378026.
Повний текст джерелаJohnson, Fen Rui. "A study of finite and linear elasticity." CSUSB ScholarWorks, 1996. https://scholarworks.lib.csusb.edu/etd-project/1096.
Повний текст джерелаDomino, Lucie. "Contrôle et manipulation d'ondes hydroélastiques." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLET020.
Повний текст джерелаThis thesis deals with waves at the surface of a liquid, and aims at controlling their propagation. We want to show universal results, valid for all waves, using model experiments. We work with hydroelastic waves, obtained with an elastic membrane that covers the liquid surface. The elastic deformation of this membrane couples with the motion of the fluid, so that we can change the propagation of the waves by modifying the properties of the elastic cover. We show that if we locally change the thickness of the elastic cover, we can deviate, reflect or focus the waves. We then periodically structure the membrane and thus unveil effects due to he periodicity and/or the nature of the objects that form the regular array. We use an ensemble of circular perforations of which we vary the diameter, the spacing and the pattern, in order to accurately control the propagation of the waves in this artificial crystal. In particular, we show that there exist band gaps for the waves. Lastly, we re-visit the Faraday instability, known in hydrodynamics, by vertically vibrating a fluid layer covered with an elastic membrane, and we show that this instability also exist for hydroelastic waves
Laing, Kara Louise. "Non-linear deformation of a helical spring." Thesis, University of East Anglia, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323220.
Повний текст джерелаChinviriyasit, Settapat. "Numerical methods for treating quasistatic linear viscoelastic problems." Thesis, Brunel University, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367443.
Повний текст джерелаHarursampath, Dineshkumar. "Non-classical non-linear effects in thin-walled composite beams." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/12501.
Повний текст джерелаDeFigueiredo, Tania Glacy do Brasil. "A new boundary element formation and its application in engineering." Thesis, University of Southampton, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278110.
Повний текст джерелаBrowne, Philip. "Topology optimization of linear elastic structures." Thesis, University of Bath, 2013. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.577747.
Повний текст джерелаWang, Yanqiu. "Preconditioning for the mixed formulation of linear plane elasticity." Diss., Texas A&M University, 2004. http://hdl.handle.net/1969.1/2781.
Повний текст джерелаBala, Chandran Ram. "Development of discontinuous Galerkin method for nonlocal linear elasticity." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/41730.
Повний текст джерелаIncludes bibliographical references (p. 75-81).
A number of constitutive theories have arisen describing materials which, by nature, exhibit a non-local response. The formulation of boundary value problems, in this case, leads to a system of equations involving higher-order derivatives which, in turn, results in requirements of continuity of the solution of higher order. Discontinuous Galerkin methods are particularly attractive toward this end, as they provide a means to naturally enforce higher interelement continuity in a weak manner without the need of modifying the finite element interpolation. In this work, a discontinuous Galerkin formulation for boundary value problems in small strain, non-local linear elasticity is proposed. The underlying theory corresponds to the phenomenological strain-gradient theory developed by Fleck and Hutchinson within the Toupin-Mindlin framework. The single-field displacement method obtained enables the discretization of the boundary value problem with a conventional continuous interpolation inside each finite element, whereas the higher-order interelement continuity is enforced in a weak manner. The proposed method is shown to be consistent and stable both theoretically and with suitable numerical examples.
by Ram Bala Chandran.
S.M.
McKay, Barry. "Wrinkling problems for non-linear elastic membranes." Thesis, University of Glasgow, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307187.
Повний текст джерелаSchenck, David Robert. "Some Formation Problems for Linear Elastic Materials." Diss., Virginia Tech, 1999. http://hdl.handle.net/10919/28608.
Повний текст джерелаPh. D.
Hein, Torsten, and Marcus Meyer. "Identification of material parameters in linear elasticity - some numerical results." Universitätsbibliothek Chemnitz, 2007. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200702040.
Повний текст джерелаRen, Xiaoan. "The method of arbitrary lines in non-linear visco-elasticity." Thesis, University of Westminster, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240413.
Повний текст джерелаÁlvarez, Inostroza Catalina Paz. "Virtual element method for linear elasticity problems in modifiable meshes." Tesis, Universidad de Chile, 2017. http://repositorio.uchile.cl/handle/2250/149576.
Повний текст джерелаLos métodos numéricos son una valiosa herramienta en las ciencias y la ingeniería, ya que permiten obtener soluciones a muchos problemas difíciles. La elasticidad lineal, el estudio de como los objetos se deforman y cargan dado a cargas, es un problema en que los métodos numéricos tienden a usarse. El Método de Elemento Finito (FEM) es el método más usado para resolver problemas de elasticidad lineal; tiene muchas ventajas: es estable, es fácil aumentar el orden de los elementos para mejorar las aproximaciones, entre otros. Tiene, sin embargo, un buen número de desventajas: en general se debe usar con mallas de triángulos o cuadriláteros, menos flexibles que las de polígonos, y la precisión de la solución depende de la calidad de la malla. Estas dos desventajas hacen que FEM no sea la mejor opción para aplicaciones en que la calidad de la malla no está asegurada dado que cambia en el momento, como por ejemplo mecánica de fractura o análisis con mallas adaptivas. Nosotros teorizamos que una técnica novedosa, el Método de Elemento Virtual (VEM), es mejor para esta clase de aplicaciones; sin embargo, esta idea debe ser probada. Considerando los problemas anteriores, este trabajo presenta un estudio del uso de VEM para aplicaciones en que las mallas cambian en tiempo real. Para testear la hipótesis presentada, se implementa: una librería para la generación eficiente de mallas poligonales, basadas en el diagrama de Voronoi restringido; una extensión a dicha librería, incluyendo operaciones para modificar las mallas; y una librería final, que implementa VEM y FEM para elasticidad lineal. Hacemos énfasis en que nuestra implementación de VEM es la primera de código abierto disponible. Usando las herramientas implementadas, presentamos experimentos validando la convergencia numérica de los dos métodos; los resultados son satisfactorios, por lo que se procede con las pruebas para validar la hipótesis principal de esta tesis. Presentamos una comparación de los errores nodales para VEM y FEM cuando las mallas son sometidas a distintos cambios y concluimos que VEM se comporta mejor cuando las mallas cambian, incluso logrando tasas de error similares a las obtenidas cuando no se aplica ningún cambio. De esta forma, concluimos que VEM es una herramienta valida para la resolución de problemas de elasticidad lineal, en particular cuando las mallas presentan cambios imprevistos. Analizándo geométricamente las mismas pruebas, concluimos que las mallas de polígonos dan elementos de mejor calidad, para las operaciones probadas, en comparación con triangulaciones. Finalmente, se presenta la complejidad teórica de los algoritmos, y se compara contra resultados experimentales; también se presentan ejemplos mostrando las funcionalidades logradas, concluyendo con los aspectos relacionados al trabajo futuro.
Este trabajo ha sido parcialmente financiado por CONICYT
Orekhov, Viktor Leonidovich. "Series Elasticity in Linearly Actuated Humanoids." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/71788.
Повний текст джерелаPh. D.
Hall, R. W. "Two dimensional isoviscous EHL and associated contact problems in linear elasticity." Thesis, University of Leeds, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374172.
Повний текст джерелаBlacker, David James. "Robust non-conforming finite element approximation in nearly incompressible linear elasticity." Thesis, University of Strathclyde, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269972.
Повний текст джерелаLejri, Mostfa. "Subsurface stress inversion modeling using linear elasticity : sensitivity analysis and applications." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS212/document.
Повний текст джерелаToday, one of the main challenges in the oil industry, especially during the exploration phase, is the exploitation of new resources in structurally complex areas such as naturally fractured reservoirs, salt diapirs, mountain ranges, and unconventional reservoirs.We know that the geometry and sliding along active faults modifies the local stress distribution. Knowing the present day perturbed stress field is important for the study of earthquakes, for the planning of the borehole drilling and stability as well as for the prediction of fractures induced by hydro-fracturing and reactivation of natural fractures. In the other side, perturbed paleostress are responsible for the development of (pre-existing) natural fractures. The detection and modeling of the latter, are essential both in the oil industry (migration and trapping of fluids) for a cost efficient recovery of natural reserves.Understanding and quantifying the spatial and temporal development of the stress distribution has a significant economic and environmental impact. The analysis of paleo-constraints was intuitively introduced first by Anderson (1905 & 1942), then in the middle of the last century, Wallace (1951) and Bott (1959) proposed the simple hypothesis that (i) The stress field is homogeneous in space and constant in time, and that (ii) the slip direction is parallel to the traction projected on the fault plane which gives the direction of the shear stress. Many stress inversion methods are based on this hypothesis while recent studies raise doubts as to their compatibility with rock mechanics.In order to investigate the validity of the Wallace and Bott hypothesis, a comparison with vectors of slip generated with numerical models (BEM) is performed. By testing the influence of multiple parameters (geometry, boundary conditions, friction, Poisson’s coefficient , half-space, fault fluid pressure), it is shown that the complex geometry faults subject to specific boundary conditions can yield slip vectors with significant discrepancies with the maximum shear stress resolved on the fault plane. Conversely, the presence of a high sliding friction, allows under certain conditions, to validate the hypothesis of Wallace and Bott.We then focus on the task to compare the results of stress inversions based on the assumption of Wallace and Bott (called classical stress inversion methods) to a geomechanical method. For this, a complex fault geometry is used in a sensitivity analysis (boundary conditions, friction, sampling) to evaluate the uncertainty of the results of the two inversion methods. This analysis is then compared to a case study, Chimney Rock (Utah, USA), showing the advantages and disadvantages of the classical stress inversion methods.One of the main challenges of the oil industry is the exploitation of resource in structurally complex oil fields such as naturally fractured reservoirs. Knowing the heterogeneous paleostress allows to optimize the modeling of these natural fractures. Since slip on faults is hardly observed in petroleum reservoirs, fracture orientation data (joints, faults, stylolites) are naturally taken into account during the inversion of stresses. It is shown, using various field and industry examples, that in such cases the use of mechanical stress inversions is much more appropriate.However, it is sometimes difficult to determine the fracture kinematics observed along wellbores, and very often the studied regions underwent multiple tectonic phases. The final section aims to address the problem of data with unknown kinematic (joints, faults, stylolites ...) and expends the mechanical stress inversion to the separation of tectonic phases
Leurent, Thomas B. (Thomas Bruno) 1975. "Reduced basis output bounds for linear elasticity : application to microtruss structures." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/89325.
Повний текст джерелаMukhopadhyay, S., R. Picard, S. Trostorff, and M. Waurick. "On some models in linear thermo-elasticity with rational material laws." Sage, 2016. https://tud.qucosa.de/id/qucosa%3A35516.
Повний текст джерелаHall, Anthony R. "The Pseudo-Rigid-Body Model for Fast, Accurate, Non-Linear Elasticity." BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/3869.
Повний текст джерелаCáncer, Castillo Víctor. "Non-linear elastic response of scale invariant solids." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/671059.
Повний текст джерелаEl objetivo de esta tesis es aplicar métodos de teoría de campos para entender la respuesta elástica no-lineal (ENL) de los sólidos. La respuesta ENL contiene un gran número de cantidades observables, que no siempre son fáciles de derivar de la composición microscópica del material. Un actor esencial en la respuesta elástica de los solidos son los fonones, que pueden ser descritos como bosones de Goldstone de una ruptura espontánea de las simetrías del espacio-tiempo. Como tales, su dinàmica a bajas energías (incluyendo no linealidades) puede ser capturado sistemáticamente con métodos estándar de Teoría de Campos Efectiva (TCE) a bajas energías. Esto ofrece naturalmente una manera nueva de tratar la fenomenología ENL. Una conclusión principal es que, efectivamente, los métodos de baja energía TCE ofrecen información no trivial, como relaciones entre diferentes observables ENL. Ilustramos esto obteniendo límites en la máxima deformation que un material puede tolerar, lo cual puede ser expresado en función de otros observables ENL. Un caso de especial interés son los sólidos invariantes de escala (IE). Esto incluye dos sub-casos distintos, puesto que la IE puede ser realizada de manera manifiesta o como una simetría rota espontáneamente. El primer caso corresponde a un punto fijo no trivial y requiere el uso de métodos holográficos (AdS/CFT). El segundo caso puede ser descrito con métodos TCE estándar. Comparamos los resultados obtenidos en ambos casos y encontramos que los límites elásticos difieren significativamente en los dos sub-casos.
The goal of this thesis is to apply modern field theory methods to understand the nonlinear elastic (NLE) response of solids. The NLE response contains a large number of low-energy observable quantities, not always easy to derive from the microscopic composition of the material. An essential actor in the elastic response are the phonons, which can be described as the Goldstone bosons of the spontaneously broken spacetime symmetries. As such, their low energy dynamics (including non-linearities) can be captured systematically by standard low energy Effective Field Theory (EFT) methods. This offers naturally a novel approach to tackle NLE phenomenology. One main conclusion is that indeed the low energy effective methods can provide non-trivial information, as relations among various different NLE observables. We illustrate this by obtaining bounds on the maximum deformation that a material can tolerate, which can be expressed in function of other NLE observables. A case of special interest is that of scale invariant (SI) solids. This includes two distinct sub-cases, since SI can be realized either as a manifest symmetry or a spontaneously broken symmetry. The former case corresponds to a nontrivial fixed point and requires the use of holographic (AdS/CFT) techniques. The latter case instead can be described with more standard EFT methods. We compare the results obtained in the two cases, and find that the obtained elasticity bounds differ significantly in the two sub-cases.
Wood, Joseph D. "Brittle mixed-mode cracks between linear elastic layers." Thesis, Loughborough University, 2017. https://dspace.lboro.ac.uk/2134/24177.
Повний текст джерелаPlacidi, Luca. "Solution of St.-Venant's and Almansi-Michell's Problems." Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/35451.
Повний текст джерелаMaster of Science
Maerten, Frantz. "Geomechanics to solve geological structure issues : forward, inverse and restoration modeling." Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20031.
Повний текст джерелаDifferent applications of linear elasticity in structural geology are presented in this thesis through the development of three types of numerical computer codes. The first one uses forward modeling to study displacement and perturbed stress fields around complexly faulted regions. We show that incorporating inequality constraints, such as static Coulomb friction, enables one to explain the angle of initiation of jogs in extensional relays. Adding heterogeneous material properties and optimizations, such as parallelization on multicore architectures and complexity reduction, admits more complex models. The second type deals with inverse modeling, also called parameter estimation. Linear slip inversion on faults with complex geometry, as well as paleo-stress inversion using a geomechanical approach, are developed. The last type of numerical computer code is dedicated to restoration of complexly folded and faulted structures. It is shown that this technique enables one to check balanced cross-sections, and also to retrieve fault chronology. Finally, we show that this code allows one to smooth noisy 3D interpreted faulted and folded horizons using geomechanics
Shahzad, Summer. "Stress singularities, annihilations and invisibilities induced by polygonal inclusions in linear elasticity." Doctoral thesis, Università degli studi di Trento, 2016. https://hdl.handle.net/11572/368863.
Повний текст джерелаShahzad, Summer. "Stress singularities, annihilations and invisibilities induced by polygonal inclusions in linear elasticity." Doctoral thesis, University of Trento, 2016. http://eprints-phd.biblio.unitn.it/1769/1/Shahzad_Summer_Phd_thesis.pdf.
Повний текст джерелаTopol, Heiko [Verfasser]. "Acoustic and mechanical properties of viscoelastic, linear elastic, and nonlinear elastic composites / Heiko Topol." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2012. http://d-nb.info/1028213352/34.
Повний текст джерелаDe, Villiers Magdaline. "Existence theory for linear vibration models of elastic bodies." Pretoria : [s.n.], 2009. http://upetd.up.ac.za/thesis/available/etd-10072009-201522.
Повний текст джерелаPeng, Xuan. "Isogeometric boundary element methods for linear elastic fracture mechanics." Thesis, Cardiff University, 2016. http://orca.cf.ac.uk/92543/.
Повний текст джерелаTsarouchas, Dimitris. "Fibre network materials : architecture and effective linear elastic properties." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610878.
Повний текст джерелаSeitenfuss, Alan Bourscheidt. "On the behavior of a linear elastic peridynamic material." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-22062017-100938/.
Повний текст джерелаA teoria peridinâmica é uma generalização da teoria clássica da mecânica do contínuo e considera a interação de pontos materiais devido a forças que agem a uma distância finita entre si, além da qual considera-se nula a força de interação. Por ter o balanço de momento linear formulado como uma equação integral que permanece válida na presença de descontinuidades, a teoria peridinâmica é adequada para o estudo do comportamento de materiais em regiões com singularidades. A primeira parte deste trabalho consiste no cálculo das propriedades de um material peridinâmico elástico linear no contexto de uma teoria peridinâmica de estado, linearmente elástica e tridimensional, que utiliza o campo quociente de deslocamento relativo na vizinhança de um ponto material e leva em conta mudanças relativas angulares e de comprimento. Esse modelo utiliza uma função energia livre que apresenta quatro constantes materiais, sendo, portanto, diferente de outros modelos peridinâmicos investigados na literatura, os quais contêm somente duas constantes materiais. Utilizando resultados de convergência da teoria peridinâmica para a teoria de elasticidade linear clássica no limite de pequenos horizontes e um argumento de correspondência entre as funções energia livre proposta e densidade de energia de deformação da teoria clássica, expressões para três constantes peridinâmicas foram obtidas em função das constantes de um material elástico e isotrópico da teoria clássica. O argumento de correspondêmcia, em conjunto com o campo de deformações de uma viga submetida à flexão pura, é utilizado para calcular a quarta constante peridinâmica do material, que relaciona mudanças angulares relativas e de comprimentos das ligações entre as partículas. Obtem-se uma expressão para a quarta constante em termos do coeficiente de Poisson e do módulo de elasticidade ao cisalhamento da teoria clássica. A validade dessa expressão é confirmada por meio da consideração de outros experimentos da mecânica, tais como flexão de um viga por cargas terminais e cisalhamento anti-plano de um eixo cilíndrico. Em particular, os resultados numéricos indicam que as expressões para as constantes são independentes do experimento escolhido. A segunda parte deste trabalho consiste em uma investigação do comportamento de uma barra unidimensional linearmente elástica de comprimento L no contexto da teoria peridinâmica; especialmente, próximo às extremidades da barra, onde espera-se que o comportamento da barra peridinâmica possa ser muito diferente do comportamento de uma barra elástica linear clássica. A barra está em equilíbrio e sem força de corpo, fixa em uma extremidade, e sujeita a deslocamento imposto na outra extremidade. A barra possui micromódulo C, o qual está relacionado ao módulo de Young E da teoria clássica por meio de diferentes expressões encontradas na literatura. Dependendo da expressão para C, o campo de deslocamento pode ser singular próximo às extremidades, o que contrasta com o comportamento linear do campo de deslocamento observado na elasticidade linear clássica. Apesar disso, é mostrado também que o campo de deslocamento peridinâmico converge para o campo de deslocamento da teoria clássica quando o horizonte peridinâmico tende a zero.
Quinelato, Thiago de Oliveira. "Mixed hybrid finite element method in elasticity and poroelasticity." Laboratório Nacional de Computação Científica, 2017. https://tede.lncc.br/handle/tede/273.
Повний текст джерелаApproved for entry into archive by Maria Cristina (library@lncc.br) on 2017-12-12T10:50:02Z (GMT) No. of bitstreams: 1 Thesis - Thiago Quinelato.pdf: 2369263 bytes, checksum: 6a1ac9e2d37bb0377981785cfa50683c (MD5)
Made available in DSpace on 2017-12-12T10:50:14Z (GMT). No. of bitstreams: 1 Thesis - Thiago Quinelato.pdf: 2369263 bytes, checksum: 6a1ac9e2d37bb0377981785cfa50683c (MD5) Previous issue date: 2017-03-01
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Esta tese é focada no desenvolvimento e na análise de aproximações em dimensão finita das equações que descrevem problemas de elasticidade linear e poroelasticidade. A estratégia de aproximação é baseada em formulações de elementos finitos mistas hibridas desses problemas e a construção dos espaços de dimensão finita é guiada por várias propriedades desejadas: continuidade das trações (conservação do momento linear), simetria do tensor de tensão (conservação do momento angular), número reduzido de graus de liberdade globais e robustez sob distorção de malha. A principal dificuldade está relacionada com o atendimento simultâneo da condição inf-sup e da simetria do tensor de tensão. O ultimo requisito é relaxado, sendo satisfeito de maneira fraca pela introdução de um multiplicador de Lagrange. A maior contribuição é o desenvolvimento e a análise de espaços de dimensão finita estáveis para aproximação mista dos problemas de elasticidade linear e poroelasticidade em malhas quadrilaterais arbitrárias. Esses espaços são capazes de fornecer convergência com taxa ótima do campo de tensão na norma H(div) em malhas de quadriláteros arbitrários, o que é provado pela análise numérica e confirmado por experimentação.
This thesis is focused on the development and analysis of finite dimensional approximations of the equations describing linear elasticity and poroelasticity problems. The approximation strategy is based on mixed hybrid finite element formulations of those problems and the construction of the finite dimensional spaces is guided by several desired properties: continuity of the tractions (conservation of linear momentum), symmetry of the stress tensor (conservation of angular momentum), reduced number of global degrees of freedom, and robustness under mesh distortion. The main difficulty is related with the simultaneous fulfillment of the inf-sup condition and the symmetry of the stress tensor. The last requirement is relaxed, being enforced in the weak sense through the introduction of a Lagrange multiplier. The main contribution is the development and analysis of stable finite dimensional spaces for mixed approximation of linear elasticity and poroelasticity problems on arbitrary quadrilateral meshes. These spaces are capable of providing optimal order convergence of the stress field in the H(div)-norm on meshes of arbitrary quadrilaterals, which is proved by numerical analysis and confirmed by experimentation.
Chung, Wai-Nang. "Fracture toughness and creep fracture studies of polyethylenes." Thesis, Imperial College London, 1991. http://hdl.handle.net/10044/1/46720.
Повний текст джерелаGoodsell, G. "Gradient superconvergance in the finite element method with applications to planar linear elasticity." Thesis, Brunel University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383122.
Повний текст джерелаAbbate, Emanuela. "Numerical methods for all-speed flows in fluid-dynamics and non-linear elasticity." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0409/document.
Повний текст джерелаIn this thesis we are concerned with the numerical simulation of compressible materials flows, including gases, liquids and elastic solids. These materials are described by a monolithic Eulerian model of conservation laws, closed by an hyperelastic state law that includes the different behaviours of the considered materials. A novel implicit relaxation scheme to solve compressible flows at all speeds is proposed, with Mach numbers ranging from very small to the order of unity. The scheme is general and has the same formulation for all the considered materials, since a direct dependence on the state law is avoided via the relaxation. It is based on a fully implicit time discretization, easily implemented thanks to the linearity of the transport operator in the relaxation system. The spatial discretization is obtained by a combination of upwind and centered schemes in order to recover the correct numerical viscosity in different Mach regimes. The scheme is validated with one and two dimensional simulations of fluid flows and of deformations of compressible solids. We exploit the domain discretization through Cartesian grids, allowing for massively parallel computations (HPC) that drastically reduce the computational times on 2D test cases. Moreover, the scheme is adapted to the resolution on adaptive grids based on quadtrees, implementing adaptive mesh refinement techinques. The last part of the thesis is devoted to the numerical simulation of heterogeneous multi-material flows. A novel sharp interface method is proposed, with the derivation of implicit equilibrium conditions. The aim of the implicit framework is the solution of weakly compressible and low Mach flows, thus the proposed multi-material conditions are coupled with the implicit relaxation scheme that is solved in the bulk of the flow
Liang, Xiaoqing. "Dynamic Response of Linear/Nonlinear Laminated Structures Containing Piezoelectric Laminas." Diss., Virginia Tech, 1997. http://hdl.handle.net/10919/30348.
Повний текст джерелаPh. D.
Knabe, Coleman Scott. "Design of Linear Series Elastic Actuators for a Humanoid Robot." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/53511.
Повний текст джерелаMaster of Science
Bordignon, Nicola. "Bifurcations and instability in non-linear elastic solids with interfaces." Doctoral thesis, Università degli studi di Trento, 2018. https://hdl.handle.net/11572/368975.
Повний текст джерелаBordignon, Nicola. "Bifurcations and instability in non-linear elastic solids with interfaces." Doctoral thesis, University of Trento, 2018. http://eprints-phd.biblio.unitn.it/2863/1/PhD_thesis_Nicola_Bordignon.pdf.
Повний текст джерелаANGELICI, Marco. "Vibrazioni non lineari in mezzi piezoelettrici finiti." Doctoral thesis, La Sapienza, 2004. http://hdl.handle.net/11573/916891.
Повний текст джерелаIssaoui, Abderrahman [Verfasser]. "hp-BEM for contact problems and extended Ms-FEM in linear elasticity / Abderrahman Issaoui." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2014. http://d-nb.info/1058241516/34.
Повний текст джерелаMeyer, Arnd, and Cornelia Pester. "The Laplace and the linear elasticity problems near polyhedral corners and associated eigenvalue problems." Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601506.
Повний текст джерелаMerkert, Dennis [Verfasser], and Bernd [Akademischer Betreuer] Simeon. "Numerical Homogenization for Linear Elasticity in Translation Invariant Spaces / Dennis Merkert ; Betreuer: Bernd Simeon." Kaiserslautern : Technische Universität Kaiserslautern, 2018. http://d-nb.info/1163274607/34.
Повний текст джерелаSuliman, Ridhwaan. "A quadratic non-linear elasticity formulation for the dynamic behaviour of fluid-loaded structures." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/277824.
Повний текст джерелаLeckar, Hamilton F., and Rubens Sampaio. "Problems in incompressible linear elasticity involving tangential and normal components of the displacement field." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/96316.
Повний текст джерела