Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Light angular momentum.

Статті в журналах з теми "Light angular momentum"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Light angular momentum".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Stewart *, A. M. "Angular momentum of light." Journal of Modern Optics 52, no. 8 (May 20, 2005): 1145–54. http://dx.doi.org/10.1080/09500340512331326832.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Franke-Arnold, Sonja. "Optical angular momentum and atoms." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, no. 2087 (February 28, 2017): 20150435. http://dx.doi.org/10.1098/rsta.2015.0435.

Повний текст джерела
Анотація:
Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom’s angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light’s OAM, aiding our fundamental understanding of light–matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors. This article is part of the themed issue ‘Optical orbital angular momentum’.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Schimmoller, Alex, Spencer Walker, and Alexandra S. Landsman. "Photonic Angular Momentum in Intense Light–Matter Interactions." Photonics 11, no. 9 (September 17, 2024): 871. http://dx.doi.org/10.3390/photonics11090871.

Повний текст джерела
Анотація:
Light contains both spin and orbital angular momentum. Despite contributing equally to the total photonic angular momentum, these components derive from quite different parts of the electromagnetic field profile, namely its polarization and spatial variation, respectively, and therefore do not always share equal influence in light–matter interactions. With the growing interest in utilizing light’s orbital angular momentum to practice added control in the study of atomic systems, it becomes increasingly important for students and researchers to understand the subtlety involved in these interactions. In this article, we present a review of the fundamental concepts and recent experiments related to the interaction of beams containing orbital angular momentum with atoms. An emphasis is placed on understanding light’s angular momentum from the perspective of both classical waves and individual photons. We then review the application of these beams in recent experiments, namely single- and few-photon transitions, strong-field ionization, and high-harmonic generation, highlighting the role of light’s orbital angular momentum and the atom’s location within the beam profile within each case.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Masalov, A. V., and V. G. Niziev. "Angular momentum of gaussian light beams." Bulletin of the Russian Academy of Sciences: Physics 80, no. 7 (July 2016): 760–65. http://dx.doi.org/10.3103/s1062873816070170.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nairat, Mazen. "Axial Angular Momentum of Bessel Light." Photonics Letters of Poland 10, no. 1 (March 31, 2018): 23. http://dx.doi.org/10.4302/plp.v10i1.787.

Повний текст джерела
Анотація:
Both linear and angular momentum densities of Bessel, Gaussian-Bessel, and Hankel-Bessel lasers are determined. Angular momentum of the three Bessel beams is illustrated at linear and circular polarization. Axial Angular momentum is resolved in particular interpretation: the harmonic order of the physical light momentum. Full Text: PDF ReferencesG. Molina-Terriza, J. Torres, and L. Torner, "Twisted photons", Nature Physics 3, 305 - 310 (2007). CrossRef J Arlt, V Garces-Chavez, W Sibbett, and K Dholakia "Optical micromanipulation using a Bessel light beam", Opt. Commun., 197, 4-6, (2001). CrossRef L. Ambrosio and H. Hernández-Figueroa, "Gradient forces on double-negative particles in optical tweezers using Bessel beams in the ray optics regime", Opt Exp, 18, 23 (2010). CrossRef I. Litvin, A. Dudley and A. Forbes, "Poynting vector and orbital angular momentum density of superpositions of Bessel beams", Opt Exp, 19, 18 (2011). CrossRef K Volke-Sepulveda, V Garcés-Chávez, S Chávez-Cerda, J Arlt and K Dholakia "Orbital angular momentum of a high-order Bessel light beam" , JOP B 4 (2). 2002. CrossRef M. Verma, S. Pal, S. Joshi, P. Senthilkumaran, J. Joseph, and H Kandpal, "Singularities in cylindrical vector beams", Jou. of Mod. Opt., 62 (13), 2015. CrossRef R. Borghi, M. Santarsiero, and M. Porras, "Nonparaxial Bessel?Gauss beams", J. Opt. Soc. Am. A, 18 (7) (2011). CrossRef L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian Laser modes", Phys Rev A, 45 (11): 8185-8189 (1992). CrossRef D. Mcglion and K. Dholakia, "Bessel beams: diffraction in a new light", Cont. Phys, 46(1) 15 ? 28. (2005). CrossRef F. Gori, G. Guattari and C. Padovani," Bessel-Gauss Beams", Opt. Commun., 64, 491, (1987). CrossRef V. Kotlyar, A. Kovalev, and A. Soifer, "Hankel?Bessel laser beams" J. Opt. Soc. Am. A, 29 (5) (2012). CrossRef L. Allen and M. Babiker "Spin-orbit coupling in free-space Laguerre-Gaussian light beams", Phys. Rev. A 53, R2937. CrossRef
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ritsch-Marte, Monika. "Orbital angular momentum light in microscopy." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, no. 2087 (February 28, 2017): 20150437. http://dx.doi.org/10.1098/rsta.2015.0437.

Повний текст джерела
Анотація:
Light with a helical phase has had an impact on optical imaging, pushing the limits of resolution or sensitivity. Here, special emphasis will be given to classical light microscopy of phase samples and to Fourier filtering techniques with a helical phase profile, such as the spiral phase contrast technique in its many variants and areas of application. This article is part of the themed issue ‘Optical orbital angular momentum’.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ornigotti, Marco, and Andrea Aiello. "Surface angular momentum of light beams." Optics Express 22, no. 6 (March 13, 2014): 6586. http://dx.doi.org/10.1364/oe.22.006586.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hugrass, W. N. "Angular Momentum Balance on Light Reflection." Journal of Modern Optics 37, no. 3 (March 1990): 339–51. http://dx.doi.org/10.1080/09500349014550401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhou, Hailong, Jianji Dong, Jian Wang, Shimao Li, Xinlun Cai, Siyuan Yu, and Xinliang Zhang. "Orbital Angular Momentum Divider of Light." IEEE Photonics Journal 9, no. 1 (February 2017): 1–8. http://dx.doi.org/10.1109/jphot.2016.2645896.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ballantine, Kyle E., John F. Donegan, and Paul R. Eastham. "There are many ways to spin a photon: Half-quantization of a total optical angular momentum." Science Advances 2, no. 4 (April 2016): e1501748. http://dx.doi.org/10.1126/sciadv.1501748.

Повний текст джерела
Анотація:
The angular momentum of light plays an important role in many areas, from optical trapping to quantum information. In the usual three-dimensional setting, the angular momentum quantum numbers of the photon are integers, in units of the Planck constantħ. We show that, in reduced dimensions, photons can have a half-integer total angular momentum. We identify a new form of total angular momentum, carried by beams of light, comprising an unequal mixture of spin and orbital contributions. We demonstrate the half-integer quantization of this total angular momentum using noise measurements. We conclude that for light, as is known for electrons, reduced dimensionality allows new forms of quantization.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Cameron, Robert P., Jörg B. Götte, Stephen M. Barnett, and Alison M. Yao. "Chirality and the angular momentum of light." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, no. 2087 (February 28, 2017): 20150433. http://dx.doi.org/10.1098/rsta.2015.0433.

Повний текст джерела
Анотація:
Chirality is exhibited by objects that cannot be rotated into their mirror images. It is far from obvious that this has anything to do with the angular momentum of light, which owes its existence to rotational symmetries. There is nevertheless a subtle connection between chirality and the angular momentum of light. We demonstrate this connection and, in particular, its significance in the context of chiral light–matter interactions. This article is part of the themed issue ‘Optical orbital angular momentum’.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

KIM, Teun-Teun. "Spin-Orbital Angular Momentum of Light and Its Application." Physics and High Technology 29, no. 10 (October 31, 2020): 28–31. http://dx.doi.org/10.3938/phit.29.037.

Повний текст джерела
Анотація:
Like the eletron, the photon carries spin and orbital angular momentum caused by the polarization and the spatial phase distribution of light, respectively. Since the first observation of an optical vortex beam with orbital angular momentum (OAM), the use of an optical vortex beam has led to further studies on the light-matter interaction, the quantum nature of light, and a number of applications. In this article, using a metasurface with geometrical phase, we introduce the fundamental origins and some important applications of light with spin-orbit angular momentum as examples, including optical vortex tweezer and quantum entanglement of the spin-orbital angular momentum.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Barnett, Stephen M., Mohamed Babiker, and Miles J. Padgett. "Optical orbital angular momentum." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, no. 2087 (February 28, 2017): 20150444. http://dx.doi.org/10.1098/rsta.2015.0444.

Повний текст джерела
Анотація:
We present a brief introduction to the orbital angular momentum of light, the subject of our theme issue and, in particular, to the developments in the 13 years following the founding paper by Allen et al. (Allen et al. 1992 Phys. Rev. A 45 , 8185 ( doi:10.1103/PhysRevA.45.8185 )). The papers by our invited authors serve to bring the field up to date and suggest where developments may take us next. This article is part of the themed issue ‘Optical orbital angular momentum’.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Magaña-Loaiza, Omar S., Mohammad Mirhosseini, Robert M. Cross, Seyed Mohammad Hashemi Rafsanjani, and Robert W. Boyd. "Hanbury Brown and Twiss interferometry with twisted light." Science Advances 2, no. 4 (April 2016): e1501143. http://dx.doi.org/10.1126/sciadv.1501143.

Повний текст джерела
Анотація:
The rich physics exhibited by random optical wave fields permitted Hanbury Brown and Twiss to unveil fundamental aspects of light. Furthermore, it has been recognized that optical vortices are ubiquitous in random light and that the phase distribution around these optical singularities imprints a spectrum of orbital angular momentum onto a light field. We demonstrate that random fluctuations of intensity give rise to the formation of correlations in the orbital angular momentum components and angular positions of pseudothermal light. The presence of these correlations is manifested through distinct interference structures in the orbital angular momentum–mode distribution of random light. These novel forms of interference correspond to the azimuthal analog of the Hanbury Brown and Twiss effect. This family of effects can be of fundamental importance in applications where entanglement is not required and where correlations in angular position and orbital angular momentum suffice. We also suggest that the azimuthal Hanbury Brown and Twiss effect can be useful in the exploration of novel phenomena in other branches of physics and astrophysics.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Sahoo, Pathik, Pushpendra Singh, Jhimli Manna, Ravindra P. Singh, Jonathan P. Hill, Tomonobu Nakayama, Subrata Ghosh, and Anirban Bandyopadhyay. "A Third Angular Momentum of Photons." Symmetry 15, no. 1 (January 5, 2023): 158. http://dx.doi.org/10.3390/sym15010158.

Повний текст джерела
Анотація:
Photons that acquire orbital angular momentum move in a helical path and are observed as a light ring. During helical motion, if a force is applied perpendicular to the direction of motion, an additional radial angular momentum is introduced, and alternate dark spots appear on the light ring. Here, a third, centrifugal angular momentum has been added by twisting the helical path further according to the three-step hierarchical assembly of helical organic nanowires. Attaining a third angular momentum is the theoretical limit for a photon. The additional angular momentum converts the dimensionless photon to a hollow spherical photon condensate with interactive dark regions. A stream of these photon condensates can interfere like a wave or disintegrate like matter, similar to the behavior of electrons.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Willner, Alan E., Kai Pang, Hao Song, Kaiheng Zou, and Huibin Zhou. "Orbital angular momentum of light for communications." Applied Physics Reviews 8, no. 4 (December 2021): 041312. http://dx.doi.org/10.1063/5.0054885.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Wei Gongxiang, 魏功祥, 刘晓娟 Liu Xiaojuan, 刘云燕 Liu Yunyan, and 付圣贵 Fu Shenggui. "Spin and Orbital Angular Momentum of Light." Laser & Optoelectronics Progress 51, no. 10 (2014): 100004. http://dx.doi.org/10.3788/lop51.100004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Martínez-Herrero, R., and P. M. Mejías. "Angular momentum decomposition of nonparaxial light beams." Optics Express 18, no. 8 (March 31, 2010): 7965. http://dx.doi.org/10.1364/oe.18.007965.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Bekshaev, A. Ya, M. S. Soskin, and M. V. Vasnetsov. "Angular momentum of a rotating light beam." Optics Communications 249, no. 4-6 (May 2005): 367–78. http://dx.doi.org/10.1016/j.optcom.2005.01.046.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Fuda, Michael G. "Angular momentum and light-front scattering theory." Physical Review D 44, no. 6 (September 15, 1991): 1880–90. http://dx.doi.org/10.1103/physrevd.44.1880.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Alexeyev, C. N., and M. A. Yavorsky. "Angular momentum of rotating paraxial light beams." Journal of Optics A: Pure and Applied Optics 7, no. 8 (July 15, 2005): 416–21. http://dx.doi.org/10.1088/1464-4258/7/8/012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Barnett, Stephen M., and L. Allen. "Orbital angular momentum and nonparaxial light beams." Optics Communications 110, no. 5-6 (September 1994): 670–78. http://dx.doi.org/10.1016/0030-4018(94)90269-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Babiker, M., K. Koksal, and V. E. Lembessis. "Angular momentum-carrying radially-polarised twisted light." Optics Communications 537 (June 2023): 129469. http://dx.doi.org/10.1016/j.optcom.2023.129469.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Liang, Yao, Han Wen Wu, Bin Jie Huang, and Xu Guang Huang. "Light beams with selective angular momentum generated by hybrid plasmonic waveguides." Nanoscale 6, no. 21 (2014): 12360–65. http://dx.doi.org/10.1039/c4nr03606a.

Повний текст джерела
Анотація:
We report an integrated compact technique that can “spin” and “twist” light on a silicon photonics platform, with the generated light beams possessing both spin angular momentum (SAM) and orbital angular momentum (OAM).
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Zahidy, Mujtaba, Yaoxin Liu, Daniele Cozzolino, Yunhong Ding, Toshio Morioka, Leif K. Oxenløwe, and Davide Bacco. "Photonic integrated chip enabling orbital angular momentum multiplexing for quantum communication." Nanophotonics 11, no. 4 (November 30, 2021): 821–27. http://dx.doi.org/10.1515/nanoph-2021-0500.

Повний текст джерела
Анотація:
Abstract Light carrying orbital angular momentum constitutes an important resource for both classical and quantum information technologies. Its inherently unbounded nature can be exploited to generate high-dimensional quantum states or for channel multiplexing in classical and quantum communication in order to significantly boost the data capacity and the secret key rate, respectively. While the big potentials of light owning orbital angular momentum have been widely ascertained, its technological deployment is still limited by the difficulties deriving from the fabrication of integrated and scalable photonic devices able to generate and manipulate it. Here, we present a photonic integrated chip able to excite orbital angular momentum modes in an 800 m long ring-core fiber, allowing us to perform parallel quantum key distribution using two and three different modes simultaneously. The experiment sets the first steps towards quantum orbital angular momentum division multiplexing enabled by a compact and light-weight silicon chip, and further pushes the development of integrated scalable devices supporting orbital angular momentum modes.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Fickler, Robert. "Generalized angle-orbital-angular-momentum Talbot effect." EPJ Web of Conferences 309 (2024): 11001. http://dx.doi.org/10.1051/epjconf/202430911001.

Повний текст джерела
Анотація:
Light containing twisted phase structures, i.e. light carrying orbital angular momenta (OAM), when propagating inside ring-core fibres leads to a complex interference dynamics resulting in the fundamental self-imaging phenomenon known as the Talbot effect in the angular domain. We study the effect in the classical and quantum optics domain and show that it can be used to implement higher-order beams splitters. Interestingly, such beam splitting operations become more compact the higher the splitting ratio. In addition, we show that a similar self-imaging effect appears for whispering gallery modes carrying OAM in step-index multi-mode fibres, which enables the application of the angular Talbot effect in off-the-shelf components. Finally, we extend the study of the angular Talbot effect through combing it with its Fourier-analogue, i.e. the Talbot effect in orbital angular momentum space. Thereby we implement the generalized angle-orbital-angular-momentum Talbot effect, which enables full control over the angular intensity distribution as well as the OAM spectrum of the light field. Moreover, the complex self-imaging dynamics can be used to sort OAM light fields, in principle, without any crosstalk and, thus, can be seen a promising method for OAM multiplexing schemes.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Alagashev, Grigory, Sergey Stafeev, Victor Kotlyar, and Andrey Pryamikov. "Angular Momentum of Leaky Modes in Hollow-Core Fibers." Fibers 10, no. 10 (October 21, 2022): 92. http://dx.doi.org/10.3390/fib10100092.

Повний текст джерела
Анотація:
It is known that angular momentum (AM) is an important characteristic of light, which can be separated into the spin (SAM) and orbital parts (OAM). The dynamical properties of the spin and orbital angular momentums are determined by the polarization and spatial degrees of freedom of light. In addition to optical vortex beams possessing spatial polarization and phase singularities, optical fibers can be used to generate and propagate optical modes with the orbital and spin parts of the angular momentum. In this paper, using the example of hollow-core fibers, we demonstrate the fact that their leaky air core modes also have an orbital part of AM in the case of circular polarization arising from the spin–orbit interaction of the air core modes. The reason for the appearance of AM is the leakage of the air core mode energy.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Li, Hehe, and Xinzhong Li. "Spin Hall effect of light in inhomogeneous nonlinear medium." Modern Physics Letters B 30, no. 02 (January 20, 2016): 1550270. http://dx.doi.org/10.1142/s021798491550270x.

Повний текст джерела
Анотація:
In this paper, we investigate the spin Hall effect of a polarized Gaussian beam (GB) in a smoothly inhomogeneous isotropic and nonlinear medium using the method of the eikonal-based complex geometrical optics which describes the phase front and cross-section of a light beam using the quadratic expansion of a complex-valued eikonal. The linear complex-valued eikonal terms are introduced to describe the polarization-dependent transverse shifts of the beam in inhomogeneous nonlinear medium which is called the spin Hall effect of beam. We know that the spin Hall effect of beam is affected by the nonlinearity of medium and include two parts, one originates from the coupling between the spin angular momentum and the extrinsic orbital angular momentum due to the curve trajectory of the center of gravity of the polarized GB and the other from the coupling between the spin angular momentum and the intrinsic orbital angular momentum due to the rotation of the beam with respect to the central ray.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

ANTUNES, ANTONIO CARLOS BAPTISTA, and LEILA JORGE ANTUNES. "DIQUARK FORMATION IN ANGULAR-MOMENTUM-EXCITED BARYONS." International Journal of Modern Physics A 24, no. 10 (April 20, 2009): 1987–94. http://dx.doi.org/10.1142/s0217751x09043249.

Повний текст джерела
Анотація:
Diquarks, or metastable clusters of two quarks inside baryons, are shown to be produced by angular momentum excitation. In baryons with a light quark and two heavy quarks with large angular momentum (L>2), the centrifugal barrier that appears in the rotation frame of the two heavy quarks prevents the light quark from passing freely between the two heavy quarks. The light quark must tunnelize through this potential barrier, which gives rise to the clusters of a light and a heavy quark.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Spektor, Grisha, Eva Prinz, Michael Hartelt, Anna-Katharina Mahro, Martin Aeschlimann, and Meir Orenstein. "Orbital angular momentum multiplication in plasmonic vortex cavities." Science Advances 7, no. 33 (August 2021): eabg5571. http://dx.doi.org/10.1126/sciadv.abg5571.

Повний текст джерела
Анотація:
Orbital angular momentum of light is a core feature in photonics. Its confinement to surfaces using plasmonics has unlocked many phenomena and potential applications. Here, we introduce the reflection from structural boundaries as a new degree of freedom to generate and control plasmonic orbital angular momentum. We experimentally demonstrate plasmonic vortex cavities, generating a succession of vortex pulses with increasing topological charge as a function of time. We track the spatiotemporal dynamics of these angularly decelerating plasmon pulse train within the cavities for over 300 femtoseconds using time-resolved photoemission electron microscopy, showing that the angular momentum grows by multiples of the chiral order of the cavity. The introduction of this degree of freedom to tame orbital angular momentum delivered by plasmonic vortices could miniaturize pump probe–like quantum initialization schemes, increase the torque exerted by plasmonic tweezers, and potentially achieve vortex lattice cavities with dynamically evolving topology.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Liu, Tianbo, and Bo-Qiang Ma. "Quark Angular Momentum and Gravitational Form Factors." International Journal of Modern Physics: Conference Series 40 (January 2016): 1660054. http://dx.doi.org/10.1142/s2010194516600545.

Повний текст джерела
Анотація:
We investigate the quark angular momentum in a light-cone spectator model. The canonical angular momentum sum rule is satisfied in both the scalar and the axial-vector cases. Then we perform a calculation of the gravitational form factors which are expected to be related to the angular momentum of each constituent in this no gauge field model. We find this relation is satisfied for the total angular momentum as a direct conclusion of the momentum fraction sum rule and the anomalous gravitomagnetic moment sum rule, but for each constituent it is violated.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Ryzhikov, P. S., and V. A. Makarov. "The additional optical angular momentum flux in media with nonlocality of nonlinear optical response." Laser Physics Letters 19, no. 11 (October 6, 2022): 115401. http://dx.doi.org/10.1088/1612-202x/ac92df.

Повний текст джерела
Анотація:
Abstract The additional terms caused by the nonlocality of the nonlinear optical response of the medium in the expressions for the optical angular momentum density, the optical angular momentum flux density and the torque density on light, which are related to each other by the angular momentum transformation law, are obtained as a consequence of peculiarities of the momentum conservation law in such media. It is shown that the manifestation of the nonlocality of the optical response only changes the form of polarization of medium included in the expression for the angular momentum density, whereas the definition of the angular momentum flux density contains additional term depending on the nonlocal nth order nonlinear optical susceptibility.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Shibata, Shinpei, and Shota Kisaka. "On the angular momentum extraction from the rotation powered pulsars." Monthly Notices of the Royal Astronomical Society 507, no. 1 (August 2, 2021): 1055–63. http://dx.doi.org/10.1093/mnras/stab2206.

Повний текст джерела
Анотація:
ABSTRACT The rotation powered pulsar loses angular momentum at a rate of the rotation power divided by the angular velocity Ω*. This means that the length of the lever arm of the angular momentum extracted by the photons, relativistic particles, and wind must be on average c/Ω*, which is known as the light cylinder radius. Therefore, any deposition of the rotation power within the light cylinder causes insufficient loss of angular momentum. In this paper, we investigate two cases of this type of energy release: polar cap acceleration and Ohmic heating in the magnetospheric current inside the star. As for the first case, the outer magnetosphere beyond the light cylinder is found to compensate the insufficient loss of the angular momentum. We argue that the energy flux coming from the sub-rotating magnetic field lines must be larger than the solid-angle average value, and as a result, an enhanced energy flux emanating beyond the light cylinder is observed in different phases in the light curve from those of emission inside the light cylinder. As for the second case, the stellar surface rotates more slowly than the stellar interior. We find that the way the magnetospheric current closes inside the star is linked to how the angular momentum is transferred inside the star. We obtain numerical solutions that shows that the magnetospheric current inside the star spreads over the polar cap magnetic flux embedded in the star in such a way that electromotive force is gained efficiently.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Devlin, Robert C., Antonio Ambrosio, Noah A. Rubin, J. P. Balthasar Mueller, and Federico Capasso. "Arbitrary spin-to–orbital angular momentum conversion of light." Science 358, no. 6365 (November 2, 2017): 896–901. http://dx.doi.org/10.1126/science.aao5392.

Повний текст джерела
Анотація:
Optical elements that convert the spin angular momentum (SAM) of light into vortex beams have found applications in classical and quantum optics. These elements—SAM-to–orbital angular momentum (OAM) converters—are based on the geometric phase and only permit the conversion of left- and right-circular polarizations (spin states) into states with opposite OAM. We present a method for converting arbitrary SAM states into total angular momentum states characterized by a superposition of independent OAM. We designed a metasurface that converts left- and right-circular polarizations into states with independent values of OAM and designed another device that performs this operation for elliptically polarized states. These results illustrate a general material-mediated connection between SAM and OAM of light and may find applications in producing complex structured light and in optical communication.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Shi Shuai, 施帅, 丁冬生 Ding Dongsheng, 周志远 Zhou Zhiyuan, 李岩 Li Yan, 张伟 Zhang Wei, and 史保森 Shi Baosen. "Sorting of Orbital Angular Momentum States of Light." Acta Optica Sinica 35, no. 6 (2015): 0607001. http://dx.doi.org/10.3788/aos201535.0607001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Masalov, A. V. "Spiral Light Beams and Angular Momentum of Radiation." EPJ Web of Conferences 103 (2015): 01010. http://dx.doi.org/10.1051/epjconf/201510301010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Padgett, Miles, Stephen M. Barnett, and Rodney Loudon. "The angular momentum of light inside a dielectric." Journal of Modern Optics 50, no. 10 (July 2003): 1555–62. http://dx.doi.org/10.1080/09500340308235229.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Forbes, Kayn A., and David L. Andrews. "Optical orbital angular momentum: twisted light and chirality." Optics Letters 43, no. 3 (January 22, 2018): 435. http://dx.doi.org/10.1364/ol.43.000435.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Heeres, Reinier W., and Valery Zwiller. "Subwavelength Focusing of Light with Orbital Angular Momentum." Nano Letters 14, no. 8 (July 25, 2014): 4598–601. http://dx.doi.org/10.1021/nl501647t.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Kaviani, Hamidreza, Roohollah Ghobadi, Bishnupada Behera, Marcelo Wu, Aaron Hryciw, Sonny Vo, David Fattal, and Paul Barclay. "Optomechanical detection of light with orbital angular momentum." Optics Express 28, no. 10 (May 7, 2020): 15482. http://dx.doi.org/10.1364/oe.389170.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Yang, Zhenshan, Xia Zhang, Chenglin Bai, and Minghong Wang. "Nondiffracting light beams carrying fractional orbital angular momentum." Journal of the Optical Society of America A 35, no. 3 (February 23, 2018): 452. http://dx.doi.org/10.1364/josaa.35.000452.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Gori, F., M. Santarsiero, R. Borghi, and G. Guattari. "Orbital angular momentum of light: a simple view." European Journal of Physics 19, no. 5 (September 1, 1998): 439–44. http://dx.doi.org/10.1088/0143-0807/19/5/005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Wang, Weiyong, Fanfan Niu, and Na Qiao. "Orbital angular momentum induced asymmetric diffraction grating in quantum dot molecule." Laser Physics Letters 20, no. 5 (April 12, 2023): 055202. http://dx.doi.org/10.1088/1612-202x/acca12.

Повний текст джерела
Анотація:
Abstract In this paper, we study the Fraunhofer diffraction pattern in a four-level quantum dot nanostructure. The quantum dot interacts with two weak probe and signal laser fields and two strong coupling lights where one of them is a two-dimensional standing wave field. We study the Fraunhofer diffraction pattern of the transmitted probe light when the coherent driving light becomes plan wave or Laguerre Gaussian (LG) vortex light. We found that by controlling the relative phase of the applied lights and orbital angular momentum (OAM) of LG light, the Fraunhofer diffraction pattern can be controlled and the probe energy transfer from zero order to the higher orders, respectively. Moreover, we realized that by controlling the OAM number of the vortex light the asymmetric diffraction pattern is possible.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Akitsu, Takashiro, Sanyobi Kim, and Daisuke Nakane. "Towards New Chiroptical Transitions Based on Thought Experiments and Hypothesis." Symmetry 13, no. 6 (June 21, 2021): 1103. http://dx.doi.org/10.3390/sym13061103.

Повний текст джерела
Анотація:
We studied supramolecular chirality induced by circularly polarized light. Photoresponsive azopolymers form a helical intermolecular network. Furthermore, studies on photochemical materials using optical vortex light will also attract attention in the future. In contrast to circularly polarized light carrying spin angular momentum, an optical vortex with a spiral wave front and carrying orbital angular momentum may impart torque upon irradiated materials. In this review, we summarize a few examples, and then theoretically and computationally deduce the differences in spin angular momentum and orbital angular momentum depending on molecular orientation not on, but in, polymer films. UV-vis absorption and circular dichroism (CD) spectra are consequences of electric dipole transition and magnetic dipole transition, respectively. However, the basic effect of vortex light is postulated to originate from quadrupole transition. Therefore, we explored the simulated CD spectra of azo dyes with the aid of conventional density functional theory (DFT) calculations and preliminary theoretical discussions of the transition of CD. Either linearly or circularly polarized UV light causes the trans–cis photoisomerization of azo dyes, leading to anisotropic and/or helically organized methyl orange, respectively, which may be detectable by CD spectroscopy after some technical treatments. Our preliminary theoretical results may be useful for future experiments on the irradiation of UV light under vortex.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Kovalev, A. A., and V. V. Kotlyar. "Energy rule for enhancing the spin Hall effect in superposition of axisymmetric beams with cylindrical and linear polarization." Computer Optics 48, no. 5 (October 2024): 649–54. http://dx.doi.org/10.18287/2412-6179-co-1480.

Повний текст джерела
Анотація:
We study the spin angular momentum of a superposition of two vector light beams radial symmetry, one has cylindrical polarization and another – linear. Both beams can have an arbitrary radial shape. An analytical expression is obtained for the spin angular momentum and two its properties are proven. The first one is that changing weight coefficients of the superposition does not changes the shape of the spin angular momentum density distribution, whereas the intensity shape can change. The second property is that the maximal spin angular momentum density is achieved when both constituent beams in the superposition have equal energy.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Fedosin, Sergey G. "On the Dependence of the Relativistic Angular Momentum of a Uniform Ball on the Radius and Angular Velocity of Rotation." International Frontier Science Letters 15 (February 2020): 9–14. http://dx.doi.org/10.18052/www.scipress.com/ifsl.15.9.

Повний текст джерела
Анотація:
In the framework of the special theory of relativity, elementary formulas are used to derive the formula for determining the relativistic angular momentum of a rotating ideal uniform ball. The moment of inertia of such a ball turns out to be a nonlinear function of the angular velocity of rotation. Application of this formula to the neutron star PSR J1614-2230 shows that due to relativistic corrections the angular momentum of the star increases tenfold as compared to the nonrelativistic formula. For the proton and neutron star PSR J1748-2446ad the velocities of their surface’s motion are calculated, which reach the values of the order of 30% and 19% of the speed of light, respectively. Using the formula for the relativistic angular momentum of a uniform ball, it is easy to obtain the formula for the angular momentum of a thin spherical shell depending on its thickness, radius, mass density, and angular velocity of rotation. As a result, considering a spherical body consisting of a set of such shells it becomes possible to accurately determine its angular momentum as the sum of the angular momenta of all the body’s shells. Two expressions are provided for the maximum possible angular momentum of the ball based on the rotation of the ball’s surface at the speed of light and based on the condition of integrity of the gravitationally bound body at the balance of the gravitational and centripetal forces. Comparison with the results of the general theory of relativity shows the difference in angular momentum of the order of 25% for an extremal Kerr black hole.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

SINGLETON, D. "GLUEBALL SPIN." Modern Physics Letters A 16, no. 01 (January 10, 2001): 41–51. http://dx.doi.org/10.1142/s0217732301002845.

Повний текст джерела
Анотація:
The spin of a glueball is usually taken as coming from the spin (and possibly the orbital angular momentum) of its constituent gluons. In light of the difficulties in accounting for the spin of the proton from its constituent quarks, the spin of glueballs is re-examined. The starting point is the fundamental QCD field angular momentum operator written in terms of the chromoelectric and chromomagnetic fields. First, we look at the possible restrictions placed on the structure of glueballs from the requirement that the QCD field angular momentum operator should satisfy the standard commutation relationships. This analysis can be compared to the electromagnetic charge/monopole system, where the requirement that the total field angular momentum obey the angular momentum commutation relationships places restrictions (i.e. the Dirac condition) on the system. Second, we look at the expectation value of the field angular momentum operator under some simplifying assumptions.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

He, Li, Huan Li, and Mo Li. "Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices." Science Advances 2, no. 9 (September 2016): e1600485. http://dx.doi.org/10.1126/sciadv.1600485.

Повний текст джерела
Анотація:
Photons carry linear momentum and spin angular momentum when circularly or elliptically polarized. During light-matter interaction, transfer of linear momentum leads to optical forces, whereas transfer of angular momentum induces optical torque. Optical forces including radiation pressure and gradient forces have long been used in optical tweezers and laser cooling. In nanophotonic devices, optical forces can be significantly enhanced, leading to unprecedented optomechanical effects in both classical and quantum regimes. In contrast, to date, the angular momentum of light and the optical torque effect have only been used in optical tweezers but remain unexplored in integrated photonics. We demonstrate the measurement of the spin angular momentum of photons propagating in a birefringent waveguide and the use of optical torque to actuate rotational motion of an optomechanical device. We show that the sign and magnitude of the optical torque are determined by the photon polarization states that are synthesized on the chip. Our study reveals the mechanical effect of photon’s polarization degree of freedom and demonstrates its control in integrated photonic devices. Exploiting optical torque and optomechanical interaction with photon angular momentum can lead to torsional cavity optomechanics and optomechanical photon spin-orbit coupling, as well as applications such as optomechanical gyroscopes and torsional magnetometry.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Ryzhikov, P. S., and V. A. Makarov. "Orbital and Spin Parts of Angular Momentum Flux Density of Monochromatic Radiation in Nonabsorbing Media with Nonlocal Nonlinear Optical Respons." Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, no. 4_2024 (October 14, 2024): 2440403–1. http://dx.doi.org/10.55959/msu0579-9392.79.2440403.

Повний текст джерела
Анотація:
Using electromagnetic field angular momentum conservation law in a form of balance equation, which relates the angular momentum density, the angular momentum flux density and caused by the anisotropy of the medium torque density in nonabsorbing media, we obtained the formulas for the densities of the orbital and spin parts of the angular momentum and the flux densities of this quantities in case of interaction of monochromatic waves in nonabsorbing medium with spatial dispersion demonstrating n-th order nonlinear optical response to the external light field. In media without spatial and frequency dispersion the obtained expressions coinside with the canonical expressions for the densities and flux densities of the orbital and spin parts of angular momentum. The additional terms to the greatest components among the spin parts of angular momentum and its flux related to nonlinearity of the medium may reach ten percent of their linear parts during self-focusing of the elliptically polarized Gaussian laser beam in isotropic gyrotropic medium near the area of its collapse.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Emile, Olivier, and Janine Emile. "Energy, Linear Momentum, and Angular Momentum of Light: What Do We Measure?" Annalen der Physik 530, no. 12 (November 12, 2018): 1800111. http://dx.doi.org/10.1002/andp.201800111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії