Дисертації з теми "LHCSR"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-17 дисертацій для дослідження на тему "LHCSR".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
PARADISO, ELIA. "AZIONE DEI LISOSFINGOLIPIDI E DELLE GONADOTROPINE COME DETERMINANTI DELLA REGOLAZIONE ENDOCRINA DEL FOLLICOLO OVARICO." Doctoral thesis, Università degli studi di Modena e Reggio Emilia, 2022. http://hdl.handle.net/11380/1278599.
Повний текст джерелаSphingosine-1 phosphate (S1P) is a lysosphingolipid present in the ovarian follicular fluid together with glycoprotein hormone gonadotropins. Luteinizing hormone (LH) and follicle-stimulating hormone (FSH) are necessary to ensure steroidogenesis, gametogenesis and reproduction. Human chorionic gonadotropin (hCG) acts during pregnancy via the same receptor for LH, the LHCGR, to stimulate progesterone production by the corpus luteum and maintaining pregnancy. In addition, gonadotropins are growth and differentiation factors, modulating cell proliferation, survival and apoptosis. Both S1P and gonadotropins exert their physiological functions by binding cognate G protein-coupled receptors (GPCRs). At nanomolar concentrations, S1P binds and activates five specific receptors, known as S1P1-5, modulating different signaling pathways. S1P1 and S1P3 are highly expressed in human primary granulosa lutein cells (hGLC). This study aims to characterize the role of S1P- and gonadotropins-induced signaling in determining ovarian follicle development in vitro. To this purpose were used human granulosa, cell lines stably expressing FSHR and LHCGR under the control of an inducible promoter, treated with gonadotropins and S1P. S1PR1 heterodimerization to LHCGR/FSHR and GPER and the kinetics of LH- and hCG-mediated G proteins and β-arrestin 2 coupling to LHCGR were evaluated, such as the activation of related second messengers and kinases, and the role of gonadotropins-induced LHCGR internalization in vitro. hGLC and hGL5 cells were treated with a fixed dose (0.1 μM) of S1P, or by S1P1- and S1P3-specific agonists SEW2871 and CYM5541. In granulosa cells, S1P and, at a lesser extent, SEW2871 and CYM5541, potently induced pCREB. No cAMP production was detected and pCREB activation occurred even in the presence of the PKA inhibitor H-89. Moreover, S1P-dependent pCREB was dampened by MEK inhibitor U0126 and by the L-type Ca2+ channel blocker verapamil. The complete inhibition of pCREB occurred by blocking either S1P2 or S1P3 with the specific receptor antagonists, or under PLC/PI3K depletion. S1P-dependent pCREB induced FOXO1 and EREG, confirming the exclusive role of gonadotropins and interleukins in this process, but did not affect steroidogenesis. The kinetics of LH and hCG-mediated G proteins and β-arrestin 2 coupling to their receptor, and the activation of related second messengers and kinases were evaluated by BRET. hCG induces Gαs-, Gq and β-arrestin 2 coupling to LHCGR more effectively than LH. Under receptor internalization blockade by Dynasore, hCG maintains similar kinetics, but not LH, which needs LHCGR endocytosis for inducing receptor coupling. These data reflect hormone-specific kinetics of downstream effector activation related to G proteins and β-arrestin 2. LH induced a rapid cAMP increase and is more potent than hCG in activating pERK1/2. Interestingly, the kinetic of hCG-induced intracellular Ca2+ increase depends on LHCGR internalization than LH that fails in inducing intracellular Ca2+ increase, consistently with weak Gq recruitment. The interaction between LHCGR and specific markers of endosomes were evaluated to estimate LHCGR internalization mediated by gonadotropins. Indeed, LH is more potent than hCG in promoting LHCGR recycling. This study demonstrated that S1P may induce a cAMP-independent activation of pCREB in granulosa cells, although this is not sufficient to induce progesterone synthesis. S1P-induced FOXO1 and EREG gene expression suggests that the activation of S1P-S1PR axis may cooperate with gonadotropins in modulating follicle development. LHCGR internalization is fundamental for modulating LH- and hCG-specific signals impacting G proteins and β-arrestin 2 coupling, and the downstream signaling cascades.
Chaves, Marina Platzeck. "EXPRESSÃO DIFERENCIAL DO RECEPTOR DE LH, DA PROTEÍNA DE LIGAÇÃO DE MRNA DO LHR, BTA-MIR-222 E ENZIMAS ESTEROIDOGÊNICAS NO OVÁRIO BOVINO EM DESENVOLVIMENTO." Universidade do Oeste Paulista, 2018. http://bdtd.unoeste.br:8080/jspui/handle/jspui/1117.
Повний текст джерелаMade available in DSpace on 2018-11-30T12:45:47Z (GMT). No. of bitstreams: 1 Marina Platzeck Chaves.pdf: 891914 bytes, checksum: 43d527b64ad46e92f25496042406c5e9 (MD5) Previous issue date: 2018-05-30
Steroids and gonadotrophins are essential for the regulation of antral follicular development and the late stages of preantral development. Although the luteinizing hormone receptor (LHR) has been detected in the preantral follicles of rats, rabbits, and pigs, the expression of this receptor in bovine fetal ovary has not been demonstrated. The present study aimed to quantify the expression of the LHR and the mRNA abundance of the genes LHR binding protein (LRBP), STAR, HSD3B1, CYP17A1, and CYP19A1 during the development of bovine fetal ovary. In addition, we aimed to identify and quantify the expression of bta-miR-222 (a regulatory microRNA of the LHCGR gene). In summary, LHR expression was observed in the preantral follicle in bovine fetal ovary, from oogonias to primordial, primary and secondary stages, and the mRNA abundance was lower on day 150 than day 60. However, the mRNA abundance of LRBP followed the opposite pattern. The LHR protein was detected in oogonia, primordial, primary, and secondary follicles. Moreover, both oocytes and granulosa cells showed positive immunostaining for LHR. Similar to LRBP, the abundance of bta-miR-222 was higher on day 150 than day 60 or 90 of gestation. With regard to the gene expression of steroidogenic enzymes; only the mRNA abundance of STAR was higher on day 150 than on day 60. In conclusion, these results suggested the involvement of LHCGR/LRBP regulation with mechanisms related to the development of preantral follicles, especially during the establishment of secondary follicles. Furthermore, the present data reinforced that the reduced expression of LHR mRNA in bovine fetal ovaries on day 150 was related to the higher expression of LRBP and bta-miR-222.
Esteroides e gonadotrofinas são essenciais para a regulação do desenvolvimento folicular antral e os estágios finais do desenvolvimento pré-antral. Embora o receptor do hormônio luteinizante (LHR) tenha sido detectado nos folículos pré-antrais de ratos, coelhos e porcos, a expressão deste receptor no ovário fetal bovino não foi demonstrada. O presente estudo teve como objetivo quantificar a expressão do LHR e a abundância de mRNA da proteína de ligação LHR (LRBP), STAR, HSD3B1, CYP17A1 e CYP19A1 durante o desenvolvimento do ovário fetal bovino. Além disso, objetivamos identificar e quantificar a expressão de bta-miR-222 (microRNA regulador do gene LHCGR). Em resumo, a expressão de LHR foi observada no folículo pré-antral no ovário fetal de bovino e a abundância de mRNA foi menor no dia 150 do que no dia 60. No entanto, a abundância de mRNA da LRBP seguiu o padrão oposto. Semelhante a LRBP, a abundância de bta-miR-222 foi maior no dia 150 do que no dia 60 ou 90. Com relação à expressão gênica de enzimas esteroidogênicas; apenas a abundância de mRNA de STAR foi maior no dia 150 do que no dia 60. A proteína LHR foi detectada em oogônia, folículos primordiais, primários e secundários. Além disso, ambos os oócitos e células da granulosa apresentaram imunolocalização positiva para LHR. Em conclusão, estes resultados sugeriram o envolvimento da regulação do LHCGR / LBPB com mecanismos relacionados ao desenvolvimento de folículos pré-antrais, especialmente durante o estabelecimento de folículos secundários. Além disso, os presentes dados reforçaram que a expressão reduzida de mRNA de LHR em ovários fetais bovinos no dia 150 estava relacionada à maior expressão de LRBP e bta-miR-222.
LAZZARETTI, CLARA. "Azione Molecolare E Cellulare Degli Ormoni Della Riproduzione." Doctoral thesis, Università degli studi di Modena e Reggio Emilia, 2022. http://hdl.handle.net/11380/1278344.
Повний текст джерелаClassically, follicle-stimulating hormone receptor (FSHR) and luteinizing hormone (LH) receptor (LHCGR) -driven cAMP-mediated signaling boosts human ovarian follicle growth and oocyte maturation. However, contradicting in vitro data suggest a different view on physiological significance of FSHR-mediated cAMP signalling, showing at the same time the activation of steroidogenic and pro-apoptotic events. These signals can be impaired by estrogens inducing anti-apoptotic events via nuclear receptors and non-genomic action of a G protein-coupled estrogen receptor (GPER). The aim of the project is to better understand the role of estrogens/gonadotropins and their membrane receptors in regulating ovarian physiology and the selection of the dominant follicle. In this study it was demonstrated that GPER heteromerizes both with FSHR and LHCGR at the cell surface of HEK293 cells overexpressing the two receptors as well as human primary granulosa lutein cells (hGLC). FSHR/GPER heteromers reprogram cAMP/death signals into proliferative stimuli fundamental for sustaining oocyte survival. In human granulosa cells, survival signals are missing at high FSHR:GPER ratio, which negatively impacts follicle maturation and strongly correlates with preferential Gαs protein/cAMP-pathway coupling and FSH responsiveness of patients undergoing controlled ovarian stimulation. In contrast, FSHR/GPER heteromers triggered anti-apoptotic/proliferative FSH signaling delivered via the Gβγ dimer, whereas impairment of heteromer formation or GPER knockdown enhanced the FSH-dependent cell death and steroidogenesis. On the other hand, GPER/LHCGR complex does not affect the LH and hCG-induced cAMP production and do not compromise the activation of the cAMP/PKA pathway, as it is indicated by similar CREB and ERK1/2 phosphorylation and same progesterone production in hGLC treated with siRNA against GPER, and the mock-treated one. Interestingly, GPER displace the LHCGR/Gαq coupling and consequently impedes the intracellular Ca2+ release and IP1 accumulation in LHCGR-GPER co-expressing HEK293 cells upon LH and hCG treatment compared to LHCGR-expressing cells. Also, it was demonstrated that in presence of GPER the kinetic of FSHR internalization through early and late endosomes is reduced, suggesting its ability to blockade FSHR at the intracellular level and reduce FSHR recycling on cell membrane. Indeed, FSHR internalization is necessary for GPER to inhibit FSH-induced cAMP response. According to our results, estrogens are selectively involved in the regulation of pro- and anti-apoptotic signals and receptor internalization through FSHR/GPER complexes and in modulation of LHCGR-mediated signaling cascade. Our findings indicate how oocyte maturation depends on the capability of GPER to shape FSHR and LHCGR selective signals, indicating hormone receptor heteromers may be a marker of cell proliferation.
Böckenfeld, Yvonne [Verfasser], and Michael [Akademischer Betreuer] Zitzmann. "Polymorphismen des neuentdeckten Exons 6a auf dem LHCGR-Gen und ihre Assoziation zum Maldescensus testis / Yvonne Böckenfeld. Betreuer: Michael Zitzmann." Münster : Universitäts- und Landesbibliothek der Westfälischen Wilhelms-Universität, 2012. http://d-nb.info/1027021212/34.
Повний текст джерелаSantos, Priscila Helena dos. "Impactos da superestimulação ovariana sobre a diferenciação das células da granulosa bovina." Botucatu, 2017. http://hdl.handle.net/11449/150618.
Повний текст джерелаResumo: A superestimulação ovariana é uma biotecnologia amplamente empregada na espécie bovina para a obtenção de múltiplas ovulações. Com este objetivo diversos protocolos superestimulatórios surgiram, dentre eles o protocolo P-36 e sua variação, o protocolo P-36/eCG. Ambos os tratamentos utilizam o hormônio folículo estimulante (FSH) na indução do crescimento folicular. Como é acreditado que no último dia do tratamento, as células da granulosa folicular possuam receptores do hormônio luteinizante (LH; LHR), duas últimas doses de FSH foram substituídas pela administração de gonadotrifina coriónica equina (eCG; P-36/eCG). A molécula de eCG possui atividade tanto LH quanto FSH por se ligar a ambos receptores, aumentando a resposta ovulatória. Os dois tratamentos têm demonstrado eficácia quanto ao desenvolvimento de oócitos competentes para a produção embrionária, no entanto pouco se sabe sobre seus efeitos na diferenciação celular no folículo ovariano. Por isso, o presente estudo investigou os efeitos da superestimulação ovariana com FSH (P-36) ou FSH combinado com eCG (P-36/eCG) sobre aspectos bioquímicos e a produção de hormônios esteroides. Adicionalmente, quantificou-se a abundância de miRNAs reguladores da expressão do mRNA do LHR e outros miRNAs relacionados com o desenvolvimento folicular ovariano. Os resultados obtidos mostram que os tratamentos superestimulatórios alteram o perfil bioquímico intrafolicular e a concentração de estradiol no plasma. Aliado a isso, também alteram... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Ovarian overstimulation is a biotechnology widely used in the bovine species to obtain multiple ovulations. With this objective, several protocols were introduced, including the P-36 protocol and its variation, the P-36/eCG protocol. Both treatments use follicle stimulating hormone (FSH) to induce the follicular growth. As it is believed that on the last day of treatment, follicular granulosa cells have luteinizing hormone (LHR) receptors, two last doses of FSH have been replaced by administration of equine chorionic gonadotrifine (eCG; P-36/eCG). The eCG molecule has LH and FSH activity by binding to both receptors, increasing the ovulatory response. Both treatments has demonstrated efficacy in the development of oocytes competent for embryo production, however little is known about their effects on cell differentiation in the ovarian follicle. Therefore, the present study investigated the effects of ovarian superstimulation using FSH (P-36) or FSH combined with eCG (P-36/eCG) on biochemical aspects and production of steroid hormones. In addition, the abundance of miRNAs regulating the expression of LHR mRNA and other miRNAs related to ovarian follicular development. Results demonstrated that superstimulatory treatments alter the intrafollicular biochemical profile and the plasma estradiol concentration. In addition, they also alter the expression of LHR and miRNAs regulating LHR mRNA expression, possibly modulating ovulatory capacity in superstimulated ovarian follicles.
Mestre
Kulkarni, Rewa M. "CO-LOCALIZATION OF POLYCYSTIC OVARY SYNDROME CANDIDATE GENE PRODUCTS IN HUMAN THECA CELLS SUGGESTS NOVEL SIGNALING PATHWAYS." VCU Scholars Compass, 2019. https://scholarscompass.vcu.edu/etd/5741.
Повний текст джерелаSchulze, Claudia. "Vergleichende immunhistochemische Untersuchungen zum LH/hCG-Rezeptor (LHCGR) im Urothel und Detrusor der Harnblase mit Veränderungen bei Bladder Pain Syndrome/Interstitial Cystitis (BPS/IC)." Doctoral thesis, Universitätsbibliothek Leipzig, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-148042.
Повний текст джерелаCosta, Marcia Helena Soares. "Estudo da expressão dos receptores do peptídeo insulinotrópico dependente de glicose (GIPR) e do hormônio luteinizante (LHCGR) em tumores e hiperplasias do córtex adrenal." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/5/5135/tde-11092007-134837/.
Повний текст джерелаIntroduction: The glucose- dependent insulinotropic peptide receptor (GIPR) and luteinizing hormone receptor (LHCGR) are G-protein coupled receptors with a wide tissue expression pattern. The aberrant expression of these receptors has been described in cases of ACTH-independent macronodular adrenal hyperplasia (AIMAH) and in some adenomas, resulting in the increase of adrenal cortex hormonal secretion (cortisol, androgens and aldosterone). The role of these receptors in other forms of adrenocortical hyperplasia, such as primary pigmented nodular adrenocortical disease (PPNAD), adrenal enlargement associated with multiple endocrine neoplasia type 1 (MEN1), and adrenocortical carcinoma has been scarcely investigated. Thus, the study of the expression of these receptors in patients with sporadical adrenocortical tumors, AIMAH, PPNAD and adrenal enlargement associated to MEN1 was considered important. Objectives: 1) Molecular study in patients with multiple endocrine neoplasia type 1 and PPNAD: mutation screening of MEN1 and PRKAR1A genes and analysis of the loss of heterozygosis (LOH) of these genes in the adrenal lesions of these patients. 2) To quantify the GIPR and LHCGR expression, in normal, tumor and hyperplasic tissue and to correlate the expression of these receptors with the adrenocortical tumor histology. Patients: 55 patients (30 adults) with adrenocortical tumors (37 adenomas and 18 carcinomas); 7 patients with AIMAH, 4 with MEN1, 1 with PPNAD and control tissue (adrenal, testis and pancreas). Methods: Extraction of genomic DNA, RNA and synthesis of complementary DNA (cDNA); PCR-amplification of the coding regions of MEN1 and PRKAR1A, followed by direct sequencing. LOH study using polymorphic marker amplification by PCR and GeneScan software analysis. Quantification of GIPR and LHCGR expression using realtime PCR -TaqMan method and GIPR immunohistochemistry study in adrenocortical tumors. Results: Identification of 3 mutations (893+ 1G>A, W183X and A68fsX118) and two polymorphic alterations (S145S and D418D) in MEN1 and a mutation (Y21X) in the PRKAR1A gene; LOH was not identified in adrenal tissue. The GIPR and LHCGR expression was identified in normal, tumor and hyperplasic adrenal tissues; the GIPR expression level was more elevated in malignant tumors compared to benign tumors in pediatric (median = 18.1 and 4.6, respectively; p <0.05) and adult patients (median = 4.8 and 1.3 respectively; p <0.001). The LHCGR expression in pediatric patients was elevated in benign as well as in malignant tumors (median = 6.4 and 4.3, respectively). In the adult group, the expression level of these receptors was extremely low in malignant tumors in relation to benign ones (median = 0.06 and 2.3, respectively; p <0.001). The GIPR immunohistochemistry was variable and did not correlate with GIPR gene expression. No difference between GIPR and LHCGR expression levels was observed in the different forms of hyperplasia. Conclusions: The presence of LOH and mutations in compound heterozygosis of MEN1 and PRKAR1A genes were ruled out as the mechanisms responsible for the adrenal enlargement in patients with multiple endocrine neoplasia type 1. GIPR overexpression is associated with malignant adrenocortical tumors in the adult and pediatric patients and low LHCGR expression is associated with malignant adrenocortical tumors only in the adult patients.
Santulli, Pietro. "Le rôle de l’inflammation dans l’endométriose." Thesis, Paris 5, 2013. http://www.theses.fr/2013PA05T079.
Повний текст джерелаPas de résumé en anglais
Schulze, Claudia [Verfasser], Jochen [Akademischer Betreuer] Neuhaus, Thilo [Akademischer Betreuer] Schwalenberg, Jens-Uwe [Gutachter] Stolzenburg, and Ulrich [Gutachter] Sack. "Vergleichende immunhistochemische Untersuchungen zum LH/hCG-Rezeptor (LHCGR) im Urothel und Detrusor der Harnblase mit Veränderungen bei Bladder Pain Syndrome/Interstitial Cystitis (BPS/IC) / Claudia Schulze ; Gutachter: Jens-Uwe Stolzenburg, Ulrich Sack ; Jochen Neuhaus, Thilo Schwalenberg." Leipzig : Universitätsbibliothek Leipzig, 2014. http://d-nb.info/123869277X/34.
Повний текст джерелаPINNOLA, Alberta. "Physcomitrella patens at the crossroad between algal and plant photosynthesis: a tool for studying the regulation of light harvesting." Doctoral thesis, 2014. http://hdl.handle.net/11562/688560.
Повний текст джерелаThrough photosynthesis plants use solar energy for producing reduced compounds from CO2 and finally biomass. Photosystems (PSI and PSII) are multisubunit pigment-binding complexes responsible for light harvesting, charge separation and play an essential role in electron transport from water to NADPH. Coupled to photosynthetic electron transport is the formation of a transmembrane pH gradient that sustains ATPase activity to produce ATP. PSI and PSII represent extraordinary machines for solar energy exploitation and yet they have a weak point in being univalent reductants which leads to production of reactive oxygen species (ROS) in the present day oxygen-rich environment that photosynthetic organisms have been creating. Moreover, chlorophyll is an excellent sensitizer and its triplet excited state reacts with molecular oxygen to yield singlet oxygen. This is why excess light is harmful and algae have evolved photoprotective mechanisms, which plants have extended and improved for survival in the even more challenging land environment. Of particular interest is Non-Photochemical Quenching (NPQ) of chlorophyll fluorescence which rapidly (within seconds) reacts to enhancement of the chlorophyll excited states. Quenching leads to the thermal dissipation of the energy absorbed in excess, is triggered by the ΔpH gradient generated across thylakoid membrane and requires specific members of the Light Harvesting Complexes (LHCs) protein family. LHCs form a large superfamily of chlorophyll-xanthophyll-binding proteins associated to PSII and PSI playing a direct role in light harvesting and/or energy quenching. Two LHC-like proteins, PSBS and LHCSR, are indispensable for NPQ respectively in vascular plants and green algae together with the xanthophylls lutein and/or zeaxanthin which are ligands for LHC proteins. Of particular interest is zeaxanthin because it is synthesized in excess light only from pre-existing violaxanthin in the so called xanthophyll cycle. Zeaxanthin plays a central role in photoprotection by scavenging of ROS quenching triplet states of chlorophyll (3Chl*) and, most interesting for my work, enhancing NPQ. During my PhD, I used the moss Physcomitrella patens as model organism to study the mechanism of NPQ with particular reference to the role of zeaxanthin. P. patens has a strategic position in the tree of life: it is an evolutionary intermediate between green algae and higher plants and was among the first organisms emerging from water to colonize the stressful land environment through the evolution of new photoprotective mechanisms. PSBS first appeared in P. patens and yet LHCSR proteins are still active yielding the possibility of studying both algal and plant NPQ in the same genetic and biochemical background. This opportunity can be exploited due to a further unique property of P. patens among eukaryotic photosynthetic organisms, i.e. its ability to perform Homologous Recombination (HR) at high efficiency, making gene targeting a standard procedure. Understanding the modulation of NPQ during acclimation to abiotic stress is essential for the full comprehension of its role. I started my work after the observation that P. patens responds to moderate salt and osmotic stress by increasing its NPQ activity. Surprisingly, NPQ enhancement was not due to over-accumulation of PSBS and/or LHCSR proteins as in the case of high light and cold acclimation. I could correlate NPQ enhancement under salt and osmotic stress with the over accumulation of zeaxanthin. When trying to verify the role of zeaxanthin we identified the unique VDE gene in P. patens genome and we knocked it out. vde KO plants were unable to produce zeaxanthin and showed a dramatic reduction in NPQ as well as an enhanced photoinhibition under excess light conditions. The introduction of the VDE mutation into LHCSR-only and PSBS-only genotypes showed that LHCSR-dependent NPQ is far more dependent on zeaxanthin than the PSBS-dependent NPQ with an activation ratio close to 10. In this work for the first time, I isolated LHCSR in the form of native chlorophyll a/b–xanthophyll-binding protein and found that the NPQ enhancement actually occurs through the direct binding of zeaxanthin to the LHCSR protein, different from the case of PSBS. Absorption spectrum and pigment binding properties of native LHCSR closely fit previously data reported for recombinant Chlamydomonas reinhardtii LHCSR3 whose activity, however, is zeaxanthin independent. Previous studies have identified two essential functions associated to essential proteins triggering NPQ: i) the pH detection function (also found in PSBS) and ii) the quenching function (also found in other LHCB proteins) such as LHCB4. In plants these two functions are carried out by distinct proteic subunits, thus making difficult in vitro studies. The recent finding of LHCSR protein has made the perspective of elucidating the molecular basis of NPQ possible: in fact, this protein is the only protein so far known to comprise the whole set of functions needed for NPQ into the same structural unit. Along the last part of my PhD work, I decided to move new steps towards the understanding of the mechanism of action of LHCSR by focusing on one side on the sub-organelle localization of this protein together with the study of the localization of PSBS in thylakoid membranes. P. patens thylakoid membranes are organized into well-defined grana stacks and stroma membranes which are differentially exposed to the stromal soluble compartment as in vascular plants. I exploited the possibility to fractionate grana and stroma-lamellae membranes to verify their localization using detergents and by mechanical fractionation. Surprisingly, I found that PSBS is localized in grana membranes while LHCSR is localized in stroma exposed membranes suggesting a different action mechanism on NPQ. Here on these basis I am proposing a tentative model for the activation of LHCSR-dependent quenching, specifically located at the periphery of grana stacks. LHCSR is rich in acidic residues in its lumen-exposed surface, acidification under excess light conditions would neutralize these charges and allow diffusion towards the grana partition domains thanks to a reduced repulsion with PSII-LHCII supercomplexes. The results reported in Chapter 2 (isolation of zeaxanthin-binding LHCSR) and Chapter 3 (localization of LHCSR in the margins/stroma fraction of thylakoid membranes) encouraged me to initiate the ambitious task of optimizing and scaling up these preparations. Although I was conscious about the difficulty of this work, I decided to try the purification of LHCSR +/- zeaxanthin from WT P. patens because the differential study of LHCSR in its quenched vs unquenched conformation is an ambitious but essential target for photosynthesis research. As for any long term project, I have conceived several strategies for the isolation of LHCSR from either WT P. patens or overexpressed using WT sequence or tagged versions of the protein using a poly-Histidine tail (His-tag) to facilitate its purification. Alternatively I also have attempted overexpressing LHCSR in tobacco. The potential advantages and pitfalls of this project are described and discussed in PhD thesis together with preliminary results.
Schiphorst. "BALANCING LIGHT EFFICIENTLY: THE LONG ROAD TO A SUSTAINABLE FUTURE." Doctoral thesis, 2021. http://hdl.handle.net/11562/1042892.
Повний текст джерелаFederico, Perozeni. "Toward an effective use of microalgae: a study on Chlamydomonas reinhardtii to disentangle non photochemical quenching (NPQ) and to engineer ketocarotenoids biosynthesis." Doctoral thesis, 2020. http://hdl.handle.net/11562/1017962.
Повний текст джерелаDIKAIOS, IOANNIS. "Analysis of Moss Light-Harvesting Complex Stress-Related (LHCSR1) Protein Function Upon Heterologous Expression in Arabidopsis thaliana." Doctoral thesis, 2017. http://hdl.handle.net/11562/965064.
Повний текст джерелаSchulze, Claudia. "Vergleichende immunhistochemische Untersuchungen zum LH/hCG-Rezeptor (LHCGR) im Urothel und Detrusor der Harnblase mit Veränderungen bei Bladder Pain Syndrome/Interstitial Cystitis (BPS/IC)." Doctoral thesis, 2013. https://ul.qucosa.de/id/qucosa%3A12721.
Повний текст джерелаFORTUNATO, ANGELO. "Identification and characterization of genes involved in the development and progression of colorectal and endometrial cancers." Doctoral thesis, 2012. http://hdl.handle.net/2158/794612.
Повний текст джерелаRosa, Inês da Trindade Andrade. "Carcinoma renal em doentes com leiomiomatose hereditária e cancro de células renais : a propósito de um caso clínico." Master's thesis, 2014. http://hdl.handle.net/10451/24029.
Повний текст джерелаHereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) is an autosomal dominant syndrome resulting from a mutation in the Fumarate Hydratase enzyme gene which consists of leiomyomas of the skin and uterus and Renal Cell Carcinoma. The exact mechanism of tumor formation is still unknown. However, it is thought to relay on the activation of hypoxia inducible factors with promotion of angiogenesis and anaerobic glycolysis. Renal carcinomas in these patients have specific features that distinguish them from the ones found in other familial syndromes and which are important to their diagnosis and management. Although renal tumors have an incomplete penetrance in these patients, they are extremely aggressive and can metastize early, which is why annual screening with abdominal Magnetic Ressonance Imaging is recommended, as well as immediate surgical excision once detected. The following work presents a case of HLRCC and aims to review the main features and management of Renal Cell Carcinoma in these patients.
A Leiomiomatose Hereditária e Carcinoma de Células Renais (LHCCR) é um síndrome de transmissão autossómica dominante resultante de uma mutação no gene da enzima Fumarato Hidratase e caracterizado pela presença de leiomiomas cutâneos e uterinos e Carcinoma de Células Renais. Embora o exato mecanismo de génese tumoral permaneça desconhecido, pensa-se que a sua origem esteja na ativação de fatores indutores de hipoxia com promoção da angiogénese e glicólise anaeróbia. Os carcinomas renais destes doentes têm características específicas que os distinguem dos encontrados noutros síndromes familiares e que são importantes para o seu diagnóstico e abordagem terapêutica. Apesar dos tumores renais terem uma penetrância incompleta nestes doentes, são extremamente agressivos e metastizam precocemente, pelo que se aconselha a realização de rastreio anual com Ressonância Magnética abdominal e, uma vez detetados, atuação cirúrgica imediata. O trabalho apresentado reporta um caso de LHCCR e tem como objetivo rever as principais características e abordagem terapêutica do Carcinoma de Células Renais nestes doentes.