Добірка наукової літератури з теми "Les entiers friables"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Les entiers friables".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Les entiers friables"
Delahaye, Jean-Paul. "Les entiers friables." Pour la Science N° 539 – septembre, no. 9 (September 7, 2022): 80–85. http://dx.doi.org/10.3917/pls.539.0080.
Повний текст джерелаDe La Bretèche, Régis, and Gérald Tenenbaum. "Propriétés statistiques des entiers friables." Ramanujan Journal 9, no. 1-2 (March 2005): 139–202. http://dx.doi.org/10.1007/s11139-005-0832-6.
Повний текст джерелаDrappeau, Sary. "Propriétés multiplicatives des entiers friables translatés." Colloquium Mathematicum 137, no. 2 (2014): 149–64. http://dx.doi.org/10.4064/cm137-2-1.
Повний текст джерелаDrappeau, Sary, and Gérald Tenenbaum. "Lois de répartition des diviseurs des entiers friables." Mathematische Zeitschrift 288, no. 3-4 (October 10, 2017): 1299–326. http://dx.doi.org/10.1007/s00209-017-1935-7.
Повний текст джерелаBasquin, Joseph. "Loi de répartition moyenne des diviseurs des entiers friables." Journal de Théorie des Nombres de Bordeaux 26, no. 2 (2014): 281–305. http://dx.doi.org/10.5802/jtnb.868.
Повний текст джерелаDrappeau, Sary. "Théorèmes de type Fouvry–Iwaniec pour les entiers friables." Compositio Mathematica 151, no. 5 (March 3, 2015): 828–62. http://dx.doi.org/10.1112/s0010437x14007933.
Повний текст джерелаde la Bretèche, Régis, and Gérald Tenenbaum. "Une nouvelle approche dans la théorie des entiers friables." Compositio Mathematica 153, no. 3 (February 20, 2017): 453–73. http://dx.doi.org/10.1112/s0010437x16007806.
Повний текст джерелаDE LA BRETÈCHE, R., and D. FIORILLI. "Entiers friables dans des progressions arithmétiques de grand module." Mathematical Proceedings of the Cambridge Philosophical Society 169, no. 1 (March 20, 2019): 75–102. http://dx.doi.org/10.1017/s0305004119000094.
Повний текст джерелаHanrot, Guillaume, Gérald Tenenbaum, and Jie Wu. "Moyennes de certaines fonctions multiplicatives sur les entiers friables, 2." Proceedings of the London Mathematical Society 96, no. 1 (September 13, 2007): 107–35. http://dx.doi.org/10.1112/plms/pdm029.
Повний текст джерелаBasquin, Joseph. "Valeurs moyennes de fonctions multiplicatives sur les entiers friables translatés." Acta Arithmetica 145, no. 3 (2010): 285–304. http://dx.doi.org/10.4064/aa145-3-6.
Повний текст джерелаДисертації з теми "Les entiers friables"
Lachand, Armand. "Entiers friables et formes binaires." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0189/document.
Повний текст джерелаAn integer is called y-friable if its largest prime factor does not exceed y. Friable values of binary forms play a central role in the integer factoring algorithm NFS (Number Field Sieve). In this thesis, we obtain some asymptotic formulas for the number of representations of friable integers by various classes of polynomials. In the first part, we focus on binary forms which split as a product of a linear form and a quadratic form. To achieve this, we combine the inclusion-exclusion principle with ideas based on works of Fouvry and Iwaniec and Balog, Blomer, Dartyge and Tenenbaum related to the distribution of some sequences of integers represented by quadratic forms. We then take a closer look at friable values of irreducible cubic forms. Extending some previous works of Heath-Brown and Moroz concerning primes represented by such polynomials, we provide some asymptotic formulas which hold in a large range of friability. With this method, we also evaluate some means over the values of an irreducible cubic form for other multiplicative functions including the Möbius function and the Liouville function. In the last chapter, we investigate the correlations between nilsequences and the characteristic function of friable integers. By using the nilpotent method of Green and Tao, our work provides a formula for the number of friable integers represented by a product of affine forms such that any two forms are affinely independent
Lachand, Armand. "Entiers friables et formes binaires." Electronic Thesis or Diss., Université de Lorraine, 2014. http://www.theses.fr/2014LORR0189.
Повний текст джерелаAn integer is called y-friable if its largest prime factor does not exceed y. Friable values of binary forms play a central role in the integer factoring algorithm NFS (Number Field Sieve). In this thesis, we obtain some asymptotic formulas for the number of representations of friable integers by various classes of polynomials. In the first part, we focus on binary forms which split as a product of a linear form and a quadratic form. To achieve this, we combine the inclusion-exclusion principle with ideas based on works of Fouvry and Iwaniec and Balog, Blomer, Dartyge and Tenenbaum related to the distribution of some sequences of integers represented by quadratic forms. We then take a closer look at friable values of irreducible cubic forms. Extending some previous works of Heath-Brown and Moroz concerning primes represented by such polynomials, we provide some asymptotic formulas which hold in a large range of friability. With this method, we also evaluate some means over the values of an irreducible cubic form for other multiplicative functions including the Möbius function and the Liouville function. In the last chapter, we investigate the correlations between nilsequences and the characteristic function of friable integers. By using the nilpotent method of Green and Tao, our work provides a formula for the number of friable integers represented by a product of affine forms such that any two forms are affinely independent
Zouari, Hichem. "Les entiers friables sous contraintes digitales." Electronic Thesis or Diss., Université de Lorraine, 2024. http://www.theses.fr/2024LORR0255.
Повний текст джерелаThis thesis addresses some questions related to the sum of digits function and friable integers. The first chapter is dedicated to an introduction that gathers the origins of the main topics covered in this thesis, as well as a background and the necessary notations for the rest of the work. The main results obtained during this research will also be presented. The second chapter focuses on the behaviour of the set ({ n leq x : n ext{ is } k ext{-free}, , s_q(Q(n)) equiv a pmod{m} }), where ( a in mathbb{Z} ), ( k ), and ( m ) are natural numbers greater than or equal to 2. The function ( s_q ) represents the sum of digits in base ( q ), ( k )-free integers are those not divisible by the ( k )-th power of a prime number, and ( Q ) is a polynomial of degree greater than or equal to 2. To show our main result, we evaluate exponential sums of the type(sum_{n leq x atop{ n ext{ is } k ext{-free}}} e(alpha s_q(Q(n)))), where ( alpha ) is a real number such that ((q - 1)alpha in mathbb{R} setminus mathbb{Z}). In the end, we establish an equidistribution result modulo 1. The third chapter, we focus on the distribution of the Zeckendorf sum of digits over friable integers in congruence classes. An integer is called ( y )-friable if all its prime factors are less than or equal to ( y ). We use the notation ( P(n) ) to denote the largest prime factor of ( n ), and ( S(x, y) := { n leq x : P(n) leq y } ) to denote the set of ( y )-friable integers less than or equal to ( x ). The main objective of this chapter is to evaluate the set ( { n in S(x, y) : s_varphi(n) equiv a pmod{m} } ), where ( a in mathbb{Z} ) and ( m ) is a natural number greater than or equal to 2. Here, ( s_varphi ) is the sum of digits function in the Fibonacci base. As in the second chapter, to prove the main result, we use exponential sums, and we utilize the property of decomposition of friable integers into intervals for our demonstration to evaluate the exponential sum(sum_{n in S(x, y)} e(vartheta s_varphi(n))), where ( vartheta in mathbb{R} setminus mathbb{Z} ). The fourth chapter deals with the average of sums of certain multiplicative functions over friable integers. In this chapter, our goal is to determine estimates for the following expressions: sigma_s(n) = sum_{d mid n} d^s, varphi(n) = sum_{d mid n} mu(d) n/d, and psi(n) = sum_{d mid n} mu^2(n/d) d, where ( s ) is a non-zero real number, when (n) runs over the set (S(x,y)). The last chapter presents an application of the Turán-Kubilius inequality. It is well known that this inequality deals with additive functions and has also been used to prove the Hardy-Ramanujan theorem for the additive function (omega(n)), which counts the prime divisors of the integer (n). In this chapter, we move into the space of friable integers and focus on the additive function ilde{omega}(n) = sum_{p mid n atop{s_q(p) equiv a pmod{b}}} 1, where ( a in mathbb{Z} ) and ( b geq 2 ) are integers. Firstly, we provide an estimate of ( ilde{omega}(n)) when (n) runs through the set (S(x,y)), we then use the Turán-Kubilius inequality in the space of friable integers established by Tenenbaum and de la Bretèche to present few applications
Martin, Bruno. "Contribution à la théorie des entiers friables." Phd thesis, Université de Lorraine, 2005. http://tel.archives-ouvertes.fr/tel-00795666.
Повний текст джерелаDrappeau, Sary. "Entiers friables en progressions arithmétiques, et applications." Phd thesis, Université Paris-Diderot - Paris VII, 2013. http://tel.archives-ouvertes.fr/tel-00926351.
Повний текст джерелаDrappeau, Sary. "Répartition des entiers friables dans les progressions arithmétiques et applications." Paris 7, 2013. http://www.theses.fr/2013PA077138.
Повний текст джерелаAn integer is said tb be y-friable if all its prime factors are less than or equal to y. They are ubiquitous in analytic number theory. In this thesis we study their repartition in arithmetic progressions, which allows us to study more specific properties. This allows us to study the number of solutions to the equation a+b=c in friable numbers, at first assuming a generalization of the Riemann Hypothesis, then unconditionally. That makes use of the circle method to reduce die problem to die estimation of certain exponential sums, which are then evaluated using die saddle point method. In the second part, we study some multiplicative properties of shiftes friable integers, of the shape n-1 with n a friable integer : the mean value of some arithmetical functions, the statistical behaviour of the number of their divisors, and the average number of their prime factors. These applications rely on studying die equirepartition on average of friable numbers, and theorems of Bombieri-Vinogradov type. The study of the average number of prime factors of n-1 (n: friable integer) needs a more involved study, and relies on the dispersion method and bounds for Kloosterman sums
Basquin, Joseph. "Trois études autour de sommes de fonctions multiplicatives sur les entiers friables." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0148/document.
Повний текст джерелаThis dissertation is devoted to studying three problems, all linked to estimates for sums of multiplicative functions over friable integers. An integer n is called y-friable if its largest prime factor P(n) does not exceed y. In a first part, we consider a random multiplicative function in the sense of Wintner, i.e. a multiplicative arithmetic function f supported on squarefree integers and such that, for each prime p, f(p) is a Bernoulli random variable taking each value +1 and -1 with probability 1/2. Elaborating on previous works by Wintner, Erdös, Halasz, Lau, Tenenbaum and Wu, we investigate upper bounds for the summatory function of f over y-friable integers not exceeding x. In the second part, we provide asymptotic estimates for sums of certain multiplicative functions, including Euler's totient, over shifted friable integers. This study depends on the distribution of friable integers in arithmetic progressions. In the third part, we consider a friable extension of the Arcsine law for the mean distribution of the divisors of integers. The original study is due to Deshouillers, Dress and Tenenbaum (1979). We describe the limit law in terms of the Dickman functions and we show that, as the friability parameter u = (log x)/log y increases, the mean distribution drifts from the Arcsine law towards a Gaussian behaviour
Basquin, Joseph. "Trois études autour de sommes de fonctions multiplicatives sur les entiers friables." Electronic Thesis or Diss., Université de Lorraine, 2012. http://www.theses.fr/2012LORR0148.
Повний текст джерелаThis dissertation is devoted to studying three problems, all linked to estimates for sums of multiplicative functions over friable integers. An integer n is called y-friable if its largest prime factor P(n) does not exceed y. In a first part, we consider a random multiplicative function in the sense of Wintner, i.e. a multiplicative arithmetic function f supported on squarefree integers and such that, for each prime p, f(p) is a Bernoulli random variable taking each value +1 and -1 with probability 1/2. Elaborating on previous works by Wintner, Erdös, Halasz, Lau, Tenenbaum and Wu, we investigate upper bounds for the summatory function of f over y-friable integers not exceeding x. In the second part, we provide asymptotic estimates for sums of certain multiplicative functions, including Euler's totient, over shifted friable integers. This study depends on the distribution of friable integers in arithmetic progressions. In the third part, we consider a friable extension of the Arcsine law for the mean distribution of the divisors of integers. The original study is due to Deshouillers, Dress and Tenenbaum (1979). We describe the limit law in terms of the Dickman functions and we show that, as the friability parameter u = (log x)/log y increases, the mean distribution drifts from the Arcsine law towards a Gaussian behaviour
Feutrie, David. "Sur deux questions de crible." Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0173.
Повний текст джерелаThis thesis is divided into two main parts. In the first chapter, we consider the number of integers not exceeding x and admitting no divisor in an arithmetic progression a(mod q) where q is fixed. We improve here a result of Narkiewicz and Radziejewski published in 2011 by providing a different main term with a simpler expression, and we specify the term error. The main tools are the Selberg-Delange method and the Hankel contour. We also study in detail the particular case where a is a quadratic nonresidue modulo q. We also extend our result to the integers which admit no divisor in a finite set of residual classes modulo q. In the second chapter, we study the ultrafriable integers in arithmetic progressions. An integer is said to be y-ultrafriable if no prime power which divide it exceeds y. We begin with the studying of the counting function of these integers when they are coprime to q. Then we give an asymptotic formula about the number of y-ultrafriable integers which don’t exceed a number x and in an arithmetic progression a modulo q, where q is a y-friable modulus, which means that it is without a prime divisor exceeding y. Our results are valid when q, x, y are integers which verify log x « y < x, q < yc/ log log y, where c > 0 is a suitably chosen constant
Wang, Zhiwei. "Les plus grands facteurs premiers d’entiers consécutifs." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0022/document.
Повний текст джерелаIn this thesis, we study the largest prime factors of consecutive integers. Denote by $P^+(n)$ (resp. $P^-(n)$) the largest (resp. the smallest) prime factors of the integer $n\geq 1$ with the convention $P^+(1)=1$ (resp. $P^-(1)=\infty$). In the first chapter, we consider the largest prime factors of consecutive integers in short intervals. We prove that there exists a positive proportion of integers $n$ for $n\in\, (x,\, x+y]$ with $y=x^{\theta}, \tfrac{7}{12}<\theta\leq 1$ such that $P^+(n)P^+(n+1)$. In the second chapter, we consider the function $P_y^+(n)$, where $P_y^+(n)=\max\{p|n:\, p\leq y\}$ and $2\leq y\leq x$. We prove that there exists a positive proportion of integers $n$ such that $P_y^+(n)P^+(n)P^+(n+1)$ occur for a positive proportion of integers $n$ respectively, by the well adapted system of weights that we have developed in the second chapter. With the same method, we derive a more general result for $k$ consecutive integers, $k\in \mathbb{Z}, k\geq 3$. In the fourth chapter, we study the largest prime factors of consecutive integers with one of which without small prime factor. Firstly we show that under the Elliott-Halberstam conjecture, the proportion of the pattern $P^+(p-1)x^{\beta}$ with $0<\beta<\frac{1}{3}$
Частини книг з теми "Les entiers friables"
Tenenbaum, Gérald, and Jie Wu. "Moyennes de certaines fonctions multiplicatives sur les entiers friables, 4." In CRM Proceedings and Lecture Notes, 129–41. Providence, Rhode Island: American Mathematical Society, 2008. http://dx.doi.org/10.1090/crmp/046/09.
Повний текст джерелаТези доповідей конференцій з теми "Les entiers friables"
Ferreira, Darley, Nancy Ferreira, and Thais Ferreira. "RECONSTRUCTION OF THE THORACIC WALL WITH EPIPLOON AND ABDOMINAL LOWER DERMOCUTANEOUS RETAIL IN ANGIOSARCOMA MAMMARY." In Abstracts from the Brazilian Breast Cancer Symposium - BBCS 2021. Mastology, 2021. http://dx.doi.org/10.29289/259453942021v31s2102.
Повний текст джерела