Добірка наукової літератури з теми "Lennard-Jones clusters"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Lennard-Jones clusters".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Lennard-Jones clusters"

1

Rom�n, C. E., and I. L. Garz�n. "Evaporation of Lennard-Jones clusters." Zeitschrift f�r Physik D Atoms, Molecules and Clusters 20, no. 1-4 (March 1991): 163–66. http://dx.doi.org/10.1007/bf01543964.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cai, Wensheng, Yan Feng, Xueguang Shao, and Zhongxiao Pan. "Optimization of Lennard-Jones atomic clusters." Journal of Molecular Structure: THEOCHEM 579, no. 1-3 (March 2002): 229–34. http://dx.doi.org/10.1016/s0166-1280(01)00730-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Garz�n, I. L., and M. Avalos-Borja. "Thermal decay of Lennard-Jones clusters." Zeitschrift f�r Physik D Atoms, Molecules and Clusters 12, no. 1-4 (March 1989): 185–87. http://dx.doi.org/10.1007/bf01426934.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lacava, Johann, Philip Born, and Tobias Kraus. "Nanoparticle Clusters with Lennard-Jones Geometries." Nano Letters 12, no. 6 (May 14, 2012): 3279–82. http://dx.doi.org/10.1021/nl3013659.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pal, Barnana. "Ordering in Two-Dimensional Lennard-Jones Clusters." ISRN Condensed Matter Physics 2012 (February 6, 2012): 1–7. http://dx.doi.org/10.5402/2012/342642.

Повний текст джерела
Анотація:
Cluster formation in a two-dimensional Lennard-Jones system under different conditions of temperature () and particle concentration () has been studied using the Monte-Carlo method with the introduction of real thermal motion of the constituent particles through a modification of the conventional Metropolis algorithm. The - phase diagram determined from the study of the root mean square displacement of the particles shows features characteristics of the - diagram for phase equilibrium in real systems. The solid-like to liquid-like transition takes place when the average nearest neighbour distance increases by ~1% of the equilibrium value in the low-temperature solid-like configuration. The Lindemann parameter () is found to decrease with the increase of to reach a steady value of for .
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mravlak, Marko, Thomas Kister, Tobias Kraus, and Tanja Schilling. "Structure diagram of binary Lennard-Jones clusters." Journal of Chemical Physics 145, no. 2 (July 14, 2016): 024302. http://dx.doi.org/10.1063/1.4954938.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cassioli, Andrea, Marco Locatelli, and Fabio Schoen. "Global optimization of binary Lennard–Jones clusters." Optimization Methods and Software 24, no. 4-5 (October 2009): 819–35. http://dx.doi.org/10.1080/10556780802614101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

SOLOV'YOV, ILIA A., ANDREY V. SOLOV'YOV, and WALTER GREINER. "FUSION PROCESS OF LENNARD–JONES CLUSTERS: GLOBAL MINIMA AND MAGIC NUMBERS FORMATION." International Journal of Modern Physics E 13, no. 04 (August 2004): 697–736. http://dx.doi.org/10.1142/s0218301304002454.

Повний текст джерела
Анотація:
We present a new theoretical framework for modeling the fusion process of Lennard–Jones (LJ) clusters. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system and absorbing its energy at each step, we find cluster growing paths up to the cluster size of 150 atoms. We demonstrate that in this way all known global minima structures of the LJ-clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic number sequence for the clusters of noble gas atoms and compare it with experimental observations. We report the striking correspondence of the peaks in the dependence of the second derivative of the binding energy per atom on cluster size calculated for the chain of the LJ-clusters based on the icosahedral symmetry with the peaks in the abundance mass spectra experimentally measured for the clusters of noble gas atoms. Our method serves as an efficient alternative to the global optimization techniques based on the Monte-Carlo simulations and it can be applied for the solutions of a broad variety of problems in which atomic cluster structure is important.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Calvo, F., M. Benali, V. Gerbaud, and M. Hemati. "Close-packing transitions in clusters of Lennard-Jones spheres." Computing Letters 1, no. 4 (March 6, 2005): 183–91. http://dx.doi.org/10.1163/157404005776611295.

Повний текст джерела
Анотація:
The structures of clusters of spherical and homogeneous particles are investigated using a combination of global optimization methods. The pairwise potential between particles is integrated exactly from elementary Lennard-Jones interactions, and the use of reduced units allows us to get insight into the effects of the particle diameter. As the diameter increases, the potential becomes very sharp, and the cluster structure generally changes from icosahedral (small radius) to close-packed cubic (large radius), possibly through intermediate decahedral shapes. The results are interpreted in terms of the effective range of the potential.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Garzón, I. L., M. Avalos Borja, and Estela Blaisten-Barojas. "Phenomenological model of melting in Lennard-Jones clusters." Physical Review B 40, no. 7 (September 1, 1989): 4749–59. http://dx.doi.org/10.1103/physrevb.40.4749.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Lennard-Jones clusters"

1

Berg, Michael. "THE STATIC AND DYNAMIC PROPERTIES OF LENNARD-JONES CLUSTERS AND CHAINS OF LENNARD-JONES PARTICLES." University of Akron / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=akron1153750856.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gonnet, Pedro G. "Minimization of Lennard-Jones clusters using multi-scaling methods from molecular dynamics." Zürich : ETH, Eidgenössische Technische Hochschule Zürich, [Institut für Wissenschaftliches Rechnen, Departement für Informatik], 2003. http://e-collection.ethbib.ethz.ch/show?type=dipl&nr=99.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Maillard, Lune. "Bayesian methods for studying Nuclear Quantum Effects in Material Science." Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS407.pdf.

Повний текст джерела
Анотація:
Bien qu'étant plus lourds que les électrons, les noyaux légers, majoritairement l'hydrogène, présentent des effets quantiques nucléaires, tels que l'effet tunnel et l'énergie du point-zéro, qui peuvent avoir un impact important sur la structure et la dynamique des matériaux. La méthode standard pour les prendre en compte lors de simulation des propriétés statiques à l'équilibre est d'utiliser les intégrales de chemin. Cependant, cette méthode augmente considérablement le nombre de degrés de liberté avec en conséquence une augmentation de l'espace des paramètres à étudier. De plus, l'utilisation des intégrales de chemins pour le calcul de la fonction de partition et d'autres quantités statistiques telles que la densité d'états est computationnement prohibitif. Dans cette thèse, nous présentons une nouvelle formulation de nested sampling (une méthode basée sur la statistique bayésienne), qui réduit un problème multidimensionnel en une intégrale uni-dimensionnelle et fournit directement la densité d'états. Un point délicat de cet algorithme est la recherche de nouveaux points d'échantillonnage. Par conséquent, nous commençons par mettre en œuvre et par tester de nouvelles méthodes de recherche dans nested_fit — un programme basé sur l'approche nested sampling — sur un ensemble d'exemples ayant des résultats connus : parmi toutes les méthodes testées, slice sampling est celle ayant les meilleures performances. Ensuite, nous utilisons nested_fit pour calculer les propriétés thermodynamiques des agrégats Lennard-Jones, caractérisés par des dizaines de degrés de liberté. Dans ce cas, l'avantage d'utiliser nested sampling est que la fonction de partition classique peut être calculée à toutes les températures avec une exploration. Enfin, nous combinons nested sampling et les intégrales de chemin. Dans ce cas, la manière directe nécessite d'effectuer des explorations à plusieurs températures pour calculer la fonction de partition quantique, rendant l'analyse computationnellement coûteuse. Nous présentons donc une nouvelle méthode fournissant la fonction de partition quantique et d'autre quantités thermodynamiques en une seule exploration à un coût raisonnable. Nous comparons ainsi le comportement classique et quantique d'atomes interagissant via le potentiel Lennard-Jones et discutons de l'impact des effets quantiques nucléaires sur la thermodynamique de ce type d'agrégats
Although much heavier than electrons, light nuclei, mainly hydrogen, exhibit Nuclear Quantum Effects, such as tunnelling and zero-point energy, that can have a large impact on the structure and the dynamics of materials. The standard method to account for them when simulating the static properties at equilibrium is the use of path integrals. However, this method considerably increases the number of degrees of freedom with a consequent enlargement of the parameter space to study; moreover, extracting the partition function and other statistical quantities, such as the density of states (DOS), using path integrals is computationally prohibitive. In this thesis, we present a new formulation of nested sampling (a method that relies on Bayesian statistics), which reduces the multidimensional problem into a one-dimensional integral on the energy and directly provides the DOS. A crucial issue for this algorithm is how to find new sampling points. Hence, we first implement and test new search algorithms in nested fit — a program that is based on the nested sampling approach — on a series of benchmark examples for which the results are known: amongst all methods tested, slice sampling is the one that performs best. Secondly, we use nested fit to compute the thermodynamic properties of Lennard-Jones clusters, which are characterised by tens of degrees of freedom. In that case, the advantage of using nested sampling is that the classical partition function can be computed at all temperatures with a single exploration. Finally, we merge the nested sampling and path integrals approaches. In that case, the straightforward method requires to perform runs at various temperatures to compute the quantum partition function, making the analysis computationally expensive. Hence, we present a new method that provides the quantum partition function and the related thermodynamic quantities with a single exploration, like for the classical case, at a reasonable computational cost. As a test, we compare the classical and quantum behaviour of clusters where the atoms interact via a Lennard-Jones pairwise potential and discuss the impact of nuclear quantum effects on the thermodynamics of such cluster types
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Lennard-Jones clusters"

1

Román, C. E., and I. L. Garzón. "Evaporation of Lennard-Jones clusters." In Small Particles and Inorganic Clusters, 613–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76178-2_147.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Garzón, I. L., and M. Avalos-Borja. "Thermal decay of Lennard-Jones clusters." In Small Particles and Inorganic Clusters, 185–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74913-1_42.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wang, Q., M. P. Iñiguez, and J. A. Alonso. "Molecular dynamics study of A18B Lennard-Jones clusters." In Atomic and Nuclear Clusters, 294–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79696-8_76.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Garzón, I. L., M. Avalos-Borja, and E. Blaisten-Barojas. "More on the melting of Lennard-Jones clusters." In Small Particles and Inorganic Clusters, 181–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74913-1_41.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Garzón, I. L., X. P. Long, R. Kawai, and J. H. Weare. "Structure and dynamics of Lennard-Jones clusters with impurities." In Small Particles and Inorganic Clusters, 81–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74913-1_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chekmarev, S. F., and F. S. Liu. "Some aspects of dynamic chaos in small Lennard-Jones clusters." In Small Particles and Inorganic Clusters, 681–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76178-2_163.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Northby, J. A., J. Xie, David L. Freeman, and J. D. Doll. "Binding energy of large icosahedral and cuboctahedral Lennard-Jones clusters." In Small Particles and Inorganic Clusters, 69–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74913-1_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Raoult, B., J. Farges, M. F. De Feraudy, and G. Torchet. "Stability of relaxed Lennard-Jones models made of 500 to 6000 atoms." In Small Particles and Inorganic Clusters, 85–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74913-1_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Román, C. E., and I. L. Garzón. "Computer Simulation Study of the Evaporation Mechanisms in Lennard-Jones Clusters." In Physics and Chemistry of Finite Systems: From Clusters to Crystals, 459–64. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-017-2645-0_60.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Barrett, Jonathan C., and Andrew P. Knight. "Simulation of the Growth and Decay of Isolated Lennard–Jones Clusters." In Nucleation and Atmospheric Aerosols, 117–20. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6475-3_23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Lennard-Jones clusters"

1

Cui, Zhihua, and Xingjuan Cai. "A new stochastic algorithm to solve Lennard-Jones clusters." In 2011 International Conference of Soft Computing and Pattern Recognition (SoCPaR). IEEE, 2011. http://dx.doi.org/10.1109/socpar.2011.6089151.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pereira, Francisco B., and Jorge M. C. Marques. "Towards an effective evolutionary approach for binary Lennard-Jones clusters." In 2010 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2010. http://dx.doi.org/10.1109/cec.2010.5586220.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Vehkamäki, Hanna. "Nucleation rates of Lennard-Jones clusters from growth and decay simulations." In The 15th international conference on nucleation and atmospheric aerosols. AIP, 2000. http://dx.doi.org/10.1063/1.1361821.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chen, Yongjing, Zhihua Cui, and Jianchao Zeng. "Structural optimization of lennard-jones clusters by hybrid social cognitive optimization algorithm." In 2010 9th IEEE International Conference on Cognitive Informatics (ICCI). IEEE, 2010. http://dx.doi.org/10.1109/coginf.2010.5599739.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tzou, D. Y., J. K. Chen, R. Roybal, and J. E. Beraun. "Cluster Dynamics for Multiscale Interactions." In ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47560.

Повний текст джерела
Анотація:
A cluster approach has been proposed to describe the process of heat transport in microscale. Molecular clustering is described by integrating the Lennard-Jones potential over specific physical domains, forming cluster potentials that possess repulsive and attractive forces sensitively varying with the geometrical shapes of the molecular clusters. The cluster potentials thus developed provides a consistent approach for describing multi-scale heat transport, in that different shapes/dimensions of the clusters take different exponents in the repulsive and attractive forces. A one-dimensional example is given to illustrate the essence of the cluster dynamics simulation, emphasizing devious behavior from molecular motion and replacement of physical boundaries by cluster potentials of a larger scale.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Narendra, Aneet D., and Abhijit Mukherjee. "Molecular Dynamics Simulation of Homogeneous Nucleation in a Lennard Jones Liquid." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68710.

Повний текст джерела
Анотація:
Examination of metastable states of fluids provides important information pertinent to cavitation and homogeneous nucleation. Homogeneous nucleation, in particular, is an important topic of research. Molecular Dynamics simulation is a well-endorsed method to simulate metastabilitites, as they are limited to mesoscopic scales of length and time and this life-time is essentially zero on a laboratory time scale. In the present study, a molecular dynamics code has been used in conjunction with MOLDY to investigate phase change in a Lennard-Jones liquid. The Lennard-Jones atoms were subjected to different temperatures at various number densities and the pressure was recorded for each case. The appearance of a change of phase is characterized by the formation of clusters or formation of voids as described by the radial distribution function.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Aouf, Rashad, and Vojislav Ilic. "Microscopic Observation of Energy Propagation in Polymeric Fluids Crossing a Barrier." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66752.

Повний текст джерела
Анотація:
A major challenge facing tumour treatment procedures, including hyperthermia, is the inadequate modelling of the bio-heat transfer process. Therefore, an accurate mathematical bio-heat transfer model has to precisely quantify the temperature distribution within a complex geometry of a tumour tissue, in order to help optimize unwanted side effects for patients and minimize (avoid) collateral tissue damage. This study examines the three-dimensional molecular dynamics (MDs) simulation of a Lennard-Jones fluid in the hope of contributing to the understanding of the propagation of a thermal wave in fluids causing phase change i.e. irreversible gelation. It is intended to establish, from such information, a useful benchmark for application to large scale phenomena involving macro scale heat transfer. Specifically, this study examines assemblies of N particles (N = 500 atoms) and analyses the microscopic simulation of double well interaction with permanent molecular bond formation at various temperatures within the range 1–2.5Kb/εT. The dynamics of the fluid is also being studied under the influence of a temperature gradient, dt/dx, where neighbouring particles (i.e. atoms/molecules) are randomly linked by permanent bonds to form clusters of different sizes. The atomic/molecular model consist of an isothermal source and sink whose particles are linked by springs to lattice sites to avoid melting, and a bulk of 500 atoms/molecules in the middle representing the Lennard-Jones fluid. Then, this study simulates the energy propagation following the temperature gradient between the heat source and heat sink at T1 = 2.5 and T2 = 1.5 respectively. The potential equation involved in this study is given by the Finitely Extensible Non Elastic (FENE) and Lennard-Jones (LJ) interaction potential. It is observed that the atoms of the bulk start to form a large cluster (∼ 300 atoms) with long time of simulation estimated by 106 time steps where τ = SQRT(ε/mσ2) and Δt = 10−3. It is also obtained that the potential energy of 13.65KbT across a barrier to establish permanent bonds giving rise to irreversible gel formation. All the parameters used in this study are expressed in Lennard-Jones units.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kaneko, Toshihiro, Kenji Yasuoka, Ayori Mitsutake, and Xiao Cheng Zeng. "Multicanonical Molecular Dynamics Simulation Study of the Liquid-Solid and Solid-Solid Transitions in Lennard-Jones Clusters." In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44457.

Повний текст джерела
Анотація:
Multicanonical molecular dynamics simulations are applied, for the first time, to study the liquid-solid and solid-solid transitions in Lennard-Jones (LJ) clusters. The transition temperatures are estimated based on the peak position in the heat capacity versus temperature curve. For LJ31, LJ58 and LJ98, our results on the solid-solid transition temperature are in good agreement with previous ones. For LJ309, the predicted liquid-solid transition temperature is also in agreement with previous result.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tsuda, Shin-Ichi, Takashi Tokumasu, Kenjiro Kamijo, and Yoichiro Matsumoto. "Molecular Dynamics Study of Heterogeneous Bubble Nucleation in Liquid Oxygen Including Helium, Nitrogen, or Argon." In ASME 2002 Joint U.S.-European Fluids Engineering Division Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/fedsm2002-31022.

Повний текст джерела
Анотація:
Heterogeneous bubble nucleation in liquid oxygen including helium, nitrogen, or argon is simulated by using the molecular dynamics method. Molecular interaction is given as Lennard-Jones potential, and, basically, each potential parameter is determined so that a saturation curve obtained by MD data is consistent with an experimental value. In the case that helium is the impurity, a bubble is caused by density fluctuation at a lower concentration, while clusters of helium molecules become bubble nuclei at a higher concentration, and the point of bubble formation moves closer to the saturation point of pure oxygen when they form clusters. In the case that nitrogen or argon is the impurity, the above-mentioned clustering is not observed at a concentration where helium makes clusters, and these impurities have weaker action to make clusters compared with helium.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ghosh, Arka, Rammohan Mallipeddi, Swagatam Das, and Asit Kr Das. "A Switched Parameter Differential Evolution with Multi-donor Mutation and Annealing Based Local Search for Optimization of Lennard-Jones Atomic Clusters." In 2018 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2018. http://dx.doi.org/10.1109/cec.2018.8477991.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії