Добірка наукової літератури з теми "Layered metal dichalcogenides"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Layered metal dichalcogenides".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Layered metal dichalcogenides"

1

Musfeldt, Janice L., Yoshihiro Iwasa, and Reshef Tenne. "Nanotubes from layered transition metal dichalcogenides." Physics Today 73, no. 8 (August 1, 2020): 42–48. http://dx.doi.org/10.1063/pt.3.4547.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Guguchia, Zurab. "Unconventional Magnetism in Layered Transition Metal Dichalcogenides." Condensed Matter 5, no. 2 (June 20, 2020): 42. http://dx.doi.org/10.3390/condmat5020042.

Повний текст джерела
Анотація:
In this contribution to the MDPI Condensed Matter issue in Honor of Nobel Laureate Professor K.A. Müller I review recent experimental progress on magnetism of semiconducting transition metal dichalcogenides (TMDs) from the local-magnetic probe point of view such as muon-spin rotation and discuss prospects for the creation of unique new device concepts with these materials. TMDs are the prominent class of layered materials, that exhibit a vast range of interesting properties including unconventional semiconducting, optical, and transport behavior originating from valley splitting. Until recently, this family has been missing one crucial member: magnetic semiconductor. The situation has changed over the past few years with the discovery of layered semiconducting magnetic crystals, for example CrI 3 and VI 2 . We have also very recently discovered unconventional magnetism in semiconducting Mo-based TMD systems 2H-MoTe 2 and 2H-MoSe 2 [Guguchia et. al., Science Advances 2018, 4(12)]. Moreover, we also show the evidence for the involvement of magnetism in semiconducting tungsten diselenide 2H-WSe 2 . These results open a path to studying the interplay of 2D physics, semiconducting properties and magnetism in TMDs. It also opens up a host of new opportunities to obtain tunable magnetic semiconductors, forming the basis for spintronics.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chia, Xinyi, Alex Yong Sheng Eng, Adriano Ambrosi, Shu Min Tan, and Martin Pumera. "Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides." Chemical Reviews 115, no. 21 (October 2015): 11941–66. http://dx.doi.org/10.1021/acs.chemrev.5b00287.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lim, Chee Shan, Shu Min Tan, Zdeněk Sofer, and Martin Pumera. "Impact Electrochemistry of Layered Transition Metal Dichalcogenides." ACS Nano 9, no. 8 (August 4, 2015): 8474–83. http://dx.doi.org/10.1021/acsnano.5b03357.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Jawaid, Ali, Justin Che, Lawrence F. Drummy, John Bultman, Adam Waite, Ming-Siao Hsiao, and Richard A. Vaia. "Redox Exfoliation of Layered Transition Metal Dichalcogenides." ACS Nano 11, no. 1 (January 4, 2017): 635–46. http://dx.doi.org/10.1021/acsnano.6b06922.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Su, Guohui, Xing Wu, Wenqi Tong, and Chungang Duan. "Two-Dimensional Layered Materials-Based Spintronics." SPIN 05, no. 04 (December 2015): 1540011. http://dx.doi.org/10.1142/s2010324715400111.

Повний текст джерела
Анотація:
The recent emergence of two-dimensional (2D) layered materials — graphene and transition metal dichalcogenides — opens a new avenue for exploring the internal quantum degrees of freedom of electrons and their potential for new electronics. Here, we provide a brief review of experimental achievements concerning electrical spin injection, spin transport, graphene nanoribbons spintronics and transition metal dichalcogenides spin and pseudospins. Future research in 2D layered materials spintronics will need to address the development of applications such as spin transistors and spin logic devices, as well as exotic physical properties including pseudospins-valley phenomena in graphene and other 2D materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chia, Xinyi, and Martin Pumera. "Layered transition metal dichalcogenide electrochemistry: journey across the periodic table." Chemical Society Reviews 47, no. 15 (2018): 5602–13. http://dx.doi.org/10.1039/c7cs00846e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wang, Shanshan, Alex Robertson, and Jamie H. Warner. "Atomic structure of defects and dopants in 2D layered transition metal dichalcogenides." Chemical Society Reviews 47, no. 17 (2018): 6764–94. http://dx.doi.org/10.1039/c8cs00236c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Huang, Yanmin, Zhuo Ma, Yunxia Hu, Dongfeng Chai, Yunfeng Qiu, Guanggang Gao, and PingAn Hu. "An efficient WSe2/Co0.85Se/graphene hybrid catalyst for electrochemical hydrogen evolution reaction." RSC Advances 6, no. 57 (2016): 51725–31. http://dx.doi.org/10.1039/c6ra08618g.

Повний текст джерела
Анотація:
Transition metal doped layered transition metal dichalcogenides (TMDs) are regarded as promising hydrogen evolution reaction (HER) candidates due to exposed active sites at both edges and basal planes.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wang, Wenhui, Zhongti Sun, Wenshuai Zhang, Quanping Fan, Qi Sun, Xudong Cui, and Bin Xiang. "First-principles investigations of vanadium disulfide for lithium and sodium ion battery applications." RSC Advances 6, no. 60 (2016): 54874–79. http://dx.doi.org/10.1039/c6ra07586j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Layered metal dichalcogenides"

1

Ritschel, Tobias. "Electronic self-organization in layered transition metal dichalcogenides." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-188265.

Повний текст джерела
Анотація:
The interplay between different self-organized electronically ordered states and their relation to unconventional electronic properties like superconductivity constitutes one of the most exciting challenges of modern condensed matter physics. In the present thesis this issue is thoroughly investigated for the prototypical layered material 1T-TaS2 both experimentally and theoretically. At first the static charge density wave order in 1T-TaS2 is investigated as a function of pressure and temperature by means of X-ray diffraction. These data indeed reveal that the superconductivity in this material coexists with an inhomogeneous charge density wave on a macroscopic scale in real space. This result is fundamentally different from a previously proposed separation of superconducting and insulating regions in real space. Furthermore, the X-ray diffraction data uncover the important role of interlayer correlations in 1T-TaS2. Based on the detailed insights into the charge density wave structure obtained by the X-ray diffraction experiments, density functional theory models are deduced in order to describe the electronic structure of 1T-TaS2 in the second part of this thesis. As opposed to most previous studies, these calculations take the three-dimensional character of the charge density wave into account. Indeed the electronic structure calculations uncover complex orbital textures, which are interwoven with the charge density wave order and cause dramatic differences in the electronic structure depending on the alignment of the orbitals between neighboring layers. Furthermore, it is demonstrated that these orbital-mediated effects provide a route to drive semiconductor-to-metal transitions with technologically pertinent gaps and on ultrafast timescales. These results are particularly relevant for the ongoing development of novel, miniaturized and ultrafast devices based on layered transition metal dichalcogenides. The discovery of orbital textures also helps to explain a number of long-standing puzzles concerning the electronic self-organization in 1T-TaS2 : the ultrafast response to optical excitations, the high sensitivity to pressure as well as a mysterious commensurate phase that is commonly thought to be a special phase a so-called “Mott phase” and that is not found in any other isostructural modification.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kganyago, Khomotso R. "A Theoretical Study of Alkali Metal Intercalated Layered Metal Dichalcogenides and Chevrel Phase Molybdenum Chalcogenides." Thesis, University of Limpopo (Turfloop Campus), 2004. http://hdl.handle.net/10386/702.

Повний текст джерела
Анотація:
Thesis (Ph.D. (Engineering mechanics)) --University of Limpopo, 2004
This thesis explores the important issues associated with the insertion of Mg2+ and Li+ into the solid materials: molybdenum sulphide and titanium disulphide. This process, which is also known as intercalation, is driven by charge transfer and is the basic cell reaction of advanced batteries. We perform a systematic computational investigation of the new Chevrel phase, MgxMo6S8 for 0 ≤ x ≤ 2, a candidate for high energy density cathode in prototype rechargeable magnesium (Mg) battery systems. Mg2+ intercalation property of the Mo6S8 Chevrel phase compound and accompanied structural changes were evaluated. We conduct our study within the framework of both the local-density functional theory and the generalised gradient approximation techniques. Analysis of the calculated energetics for different magnesium positions and composition suggest a triclinic structure of MgxMo6S8 (x = 1 and 2). The results compare favourably with experimental data. Band-structure calculations imply the existence of an energy gap located ~1 eV above the Fermi level, which is a characteristic feature of the electronic structure of the Chevrel compounds. Calculations of electronic charge density suggest a charge transfer from Mg to the Mo6S8 cluster, which has a significant effect on the Mo-Mo bond length. There is relatively no theoretical work, in particular ab initio pseudopotential calculations, reported in literature on structural stability, cations "site energy" calculations, and pressure work. Structures obtained on the basis from experimental studies of other ternary molybdenum sulphides are examined with respect to pressure-induced structural transformation. We report the first bulk and linear moduli of the new Chevrel phase structures. This thesis also studies the reaction between lithium and titanium disulfide, which is the perfect intercalation reaction, with the product having the same structure over the range of reaction 0  x  1 in LixTiS2. Calculated lattice parameters, bulk moduli, linear moduli, elastic constants, density of states, and Mulliken populations are reported. Our calculations confirm that there is a single phase present with an expansion of the crystalline lattice as is typical for a solid solution, about 10% perpendicular to the basal plane layers. A slight expansion of the lattice in the basal plane is also observed due to the electron density increasing on the sulfur ions. Details on the correlation between the electronic structure and the energetic (i.e. the thermodynamics) of intercalation are obtained by establishing the connection between the charge transfer and lithium intercalation into TiS2. The theoretical determination of the densities of states for the pure TiS2 and Li1TiS2 confirms a charge transfer. Lithium charge is donated to the S (3p) and Ti (3d) orbitals. Comparison with experiment shows that the calculated optical properties for energies below 12 eV agrees well with reflectivity spectra. The structural and electronic properties of the intercalation compound LixTiS2, for x = 1/4, 3/4, and 1, are also investigated. This study indicates that the following physical changes in LixTiS2 are induced by intercalation: (1) the crystal expands uniaxially in the c-direction, (2) no staging is observed. We also focus on the intercalation voltage where the variation of the cell potential with the degree of discharge for LiTiS2 is calculated. Our results show that it can be predicted with these well-developed total energy methods. The detailed understanding of the electronic structure of the intercalation compounds provided by this method gives an approach to the interpretation of the voltage composition profiles of electrode materials, and may now clearly be used routinely to determine the contributions of the anode and cathode processes to the cell voltage. Hence becoming an important tool in the selection and design of new systems. Keywords Magnesium rechargeable battery; Chevrel, Lithium batteries; Li and Mg-ion insertion; TiS2; Mo6S8; Charge transfer; reflectivity, intercalation, elastic constants, voltage, EOS, Moduli.
the National Research Foundation, the Royal Society(U.K),the Council for Scientific and Industrial Research,and Eskom
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nur, Baizura Binti Mohamed. "Study on photoluminescence quantum yields of atomically thin-layered two-dimensional semiconductors transition metal dichalcogenides." Kyoto University, 2018. http://hdl.handle.net/2433/233854.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ritschel, Tobias [Verfasser], Bernd [Akademischer Betreuer] Büchner, Jochen [Akademischer Betreuer] Geck, and Kai [Akademischer Betreuer] Roßnagel. "Electronic self-organization in layered transition metal dichalcogenides / Tobias Ritschel. Betreuer: Bernd Büchner ; Jochen Geck. Gutachter: Bernd Büchner ; Kai Roßnagel." Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://d-nb.info/1079468161/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Grosse, Corinna. "Structural and electrical characterization of novel layered intergrowth compounds." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2016. http://dx.doi.org/10.18452/17432.

Повний текст джерела
Анотація:
Die untersuchten Ferekristalle sind neuartige Verwachsungs-Schichtverbindungen aus m Monolagen von Niobdiselenid (NbSe2), die wiederholt mit n atomaren Bilagen von Bleiselenid (PbSe) oder Zinnselenid (SnSe) geschichtet sind. Niobdiselenid als Volumenmaterial besitzt eine Schichtstruktur und ist ein Supraleiter. Aufgrund ihrer gezielt einstellbaren atomar geschichteten Struktur können Ferekristalle als Modellsysteme für geschichtete Supraleiter dienen. In dieser Arbeit werden ihre strukturellen und elektrischen Eigenschaften untersucht. Mittels Transmissionselektronenmikroskopie wird ihre turbostratisch ungeordnete, nanokristalline Struktur nachgewiesen. Die atomare Struktur innerhalb der einzelnen Schichten ist ähnlich wie in den Volumenmaterialien NbSe2, PbSe und SnSe, wobei die kristallographischen c-Achsen parallel zur Stapelrichtung der Ferekristalle zeigen. Eine quantitative Analyse unter Verwendung eines Zwei-Schicht-Modells für den spezifischen Widerstand, Hall-Koeffizienten und Magnetwiderstand liefert ähnliche Ladungsträgersorten, -dichten und –beweglichkeiten in den NbSe2-Schichten, wie sie für isolierte Einzellagen von NbSe2 berichtet wurden. Diese unterscheiden sich von denen des Volumenmaterials NbSe2. Erstmals wurde ein Übergang der Ferekristalle in den supraleitenden Zustand nachgewiesen. Die Sprungtemperaturen sind dabei in etwa auf die Hälfte der Sprungtemperaturen der jeweiligen nicht turbostratisch ungeordneten Misfit-Schichtverbindungen reduziert. Diese Reduzierung kann der turbostratischen Unordnung der Ferekristalle zugeordnet werden. Das Verhältnis zwischen der schichtsenkrechten Ginzburg-Landau-Kohärenzlänge und dem Abstand zwischen den supraleitenden Schichten ist bei den Ferekristallen kleiner als bei den nicht ungeordneten Misfit-Schichtverbindungen, was Ferekristalle zu vielversprechenden Kandidaten für (quasi-)zweidimensionale Supraleiter macht.
The investigated ferecrystals are novel layered intergrowth compounds consisting of m monolayers of niobium diselenide (NbSe2) stacked repeatedly with n atomic bilayers of lead selenide (PbSe) or tin selenide (SnSe). Bulk NbSe2 is a layered compound showing superconductivity. Due to their artificially atomic-scale layered structure, which is tunable on the atomic scale, ferecrystals can serve as model systems for layered superconductors. In this study, their structural and electrical properties are investigated. Using transmission electron microscopy their turbostratically disordered, nanocrystalline structure is revealed. The atomic structure within the individual layers is similar as for bulk NbSe2, PbSe and SnSe, with the crystallographic c-axes parallel to the stacking direction in the ferecrystals. A quantitative analysis using a two-layer model fit for the electrical resistivity, Hall coefficient and magnetoresistance yields a similar carrier type, density and mobility in the NbSe2 layers as reported for isolated NbSe2 monolayers. These values differ from those of bulk NbSe2. For the first time, a normal-to-superconducting transition has been detected in ferecrystals. The transition temperatures of the ferecrystals are reduced to about a half of those of analogous non-disordered misfit layer compounds. This reduction in transition temperature can be correlated to the turbostratic disorder in ferecrystals. The ratio between the cross-plane Ginzburg-Landau coherence length and the cross-plane distance between the NbSe2 layers for the ferecrystals is lower than for non-disordered misfit layer compounds, making ferecrystals promising candidates for (quasi-)two-dimensional superconductors.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rahneshin, Vahid. "Versatile High Performance Photomechanical Actuators Based on Two-dimensional Nanomaterials." Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-dissertations/549.

Повний текст джерела
Анотація:
The ability to convert photons into mechanical motion is of significant importance for many energy conversion and reconfigurable technologies. Establishing an optical-mechanical interface has been attempted since 1881; nevertheless, only few materials exist that can convert photons of different wavelengths into mechanical motion that is large enough for practical import. Recently, various nanomaterials including nanoparticles, nanowires, carbon nanotubes, and graphene have been used as photo-thermal agents in different polymer systems and triggered using near infrared (NIR) light for photo-thermal actuation. In general, most photomechanical actuators based on sp bonded carbon namely nanotube and graphene are triggered mainly using near infra-red light and they do not exhibit wavelength selectivity. Layered transition metal dichalcogenides (TMDs) provide intriguing opportunities to develop low cost, light and wavelength tunable stimuli responsive systems that are not possible with their conventional macroscopic counterparts. Compared to graphene, which is just a layer of carbon atoms and has no bandgap, TMDs are stacks of triple layers with transition metal layer between two chalcogen layers and they also possess an intrinsic bandgap. While the atoms within the layers are chemically bonded using covalent bonds, the triple layers can be mechanically/chemically exfoliated due to weak van der Waals bonding between the layers. Due to the large optical absorption in these materials, they are already being exploited for photocatalytic, photoluminescence, photo-transistors, and solar cell applications. The large breaking strength together with large band gap and strong light- matter interaction in these materials have resulted in plethora of investigation on electronic, optical and magnetic properties of such layered ultra-thin semiconductors. This dissertation will go in depth in the synthesis, characterization, development, and application of two- dimensional (2D) nanomaterials, with an emphasis on TMDs and molybdenum disulfide (MoS2), when used as photo-thermal agents in photoactuation technologies. It will present a new class of photo-thermal actuators based on TMDs and hyperelastic elastomers with large opto-mechanical energy conversion, and investigate the layer-dependent optoelectronics and light-matter interaction in these nanomaterials and nanocomposites. Different attributes of semiconductive nanoparticles will be studied through different applications, and the possibility of globally/locally engineering the bandgap of such nanomaterials, along with its consequent effect on optomechanical properties of photo thermal actuators will be investigated. Using liquid phase exfoliation in deionized water, inks based on 2D- materials will be developed, and inkjet printing of 2D materials will be utilized as an efficient method for fast fabrication of functional devices based on nanomaterials, such as paper-graphene-based photo actuators. The scalability, simplicity, biocompatibility, and fast fabrication characteristics of the inkjet printing of 2D materials along with its applicability to a variety of substrates such as plastics and papers can potentially be implemented to fabricate high-performance devices with countless applications in soft robotics, wearable technologies, flexible electronics and optoelectronics, bio- sensing, photovoltaics, artificial skins/muscles, transparent displays and photo-detectors.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Browning, Robert. "Synthesis and Characterization of the 2-Dimensional Transition Metal Dichalcogenides." PDXScholar, 2017. https://pdxscholar.library.pdx.edu/open_access_etds/3483.

Повний текст джерела
Анотація:
In the last 50 years, the semiconductor industry has been scaling the silicon transistor to achieve faster devices, lower power consumption, and improve device performance. Transistor gate dimensions have become so small that short channel effects and gate leakage have become a significant problem. To address these issues, performance enhancement techniques such as strained silicon are used to improve mobility, while new high-k gate dielectric materials replace silicon oxide to reduce gate leakage. At some point the fundamental limit of silicon will be reached and the semiconductor industry will need to find an alternate solution. The advent of graphene led to the discovery of other layered materials such as the transition metal dichalcogenides. These materials have a layered structure similar to graphene and therefore possess some of the same qualities, but unlike graphene, these materials possess sizeable bandgaps between 1-2 eV making them useful for digital electronic applications. Since initially discovered, most of the research on these films has been from mechanically exfoliated flakes, which are easily produced due to the weak van der Waals force binding the layers together. For these materials to be considered for use in mainstream semiconductor technology, methods need to be explored to grow these films uniformly over a large area. In this research, atomic layer deposition (ALD) was employed as the growth technique used to produce large area uniform thin films of several different transition metal dichalcogenides. By optimizing the ALD growth parameters, it is possible to grow high quality films a few to several monolayers thick over a large area with good uniformity. This has been demonstrated and verified using several physical analytical tests such as Raman spectroscopy, photoluminescence, x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron spectroscopy, and scanning electron microscopy, which show that these films possess the same qualities as those of the mechanically exfoliated films. Back-gated field effect transistors were created and electrical characterization was performed to determine if ALD grown films possess the same electronic properties as films produced from other methods. The tests revealed that the ALD grown films have high field effect mobility and high current on/off ratios. The WSe2 films also exhibited ambipolar electrical behavior making them a possible candidate for complementary metal-oxide semiconductor (CMOS) technology. Ab-initio density functional theory calculations were performed and compared to experimental properties of MoS2 and WSe2 films, which show that the ALD films grown in this research match theoretical predictions. The transconductance measurements from the WSe2 devices used, matched very well with the theoretical calculations, bridging the gap between experimental data and theoretical predictions. Based upon this research, ALD growth of TMD films proves to be a viable alternative for silicon based digital electronics.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

ALEITHAN, SHROUQ H. "Mono-to-few Layers Transition Metal Dichalcogenides, Exciton Dynamics, and Versatile Growth of Naturally Formed Contacted Devices." Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1522165070034846.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chono, Hiroomi. "Nonequilibrium quantum phenomena and topological superconductivity in atomic layer materials." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263449.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

PIATTI, ERIK. "Electrochemical gating for superconductivity engineering in materials towards the 2D limit." Doctoral thesis, Politecnico di Torino, 2017. http://hdl.handle.net/11583/2669688.

Повний текст джерела
Анотація:
In this thesis work we explored the capability of electrochemical gating to reliably control the ground state of several chosen materials, with a specific focus on the engineering of the superconducting state. We also experimented with different electrolyte compositions in order to best match the electrochemical requirements of the various materials under study (e.g., chemical stability). In the presentation of the results, we will move from the thicker, bulk-like materials down to the truly two-dimensional properties of thin exfoliated single crystals. Chapter 1 presents a general analysis of the field-effect technique based on an electrolytic gate. We discuss the basic principle that allows for the existence of ultrahigh electric fields at the device surface, together with the several pratical limitations and criticalities the technique entails. In particular, we consider the critical distinction between purely electrostatic gating and the regimes where various types of electrochemical interactions are activated between the sample and the electrolyte. We also discuss in detail a purely electrochemical measurement that can be performed on the complete devices in order to determine the amount of charge accumulated in the electric double layer. Chapter 2 shows a selection of our results on superconducting thin films. We analyze extensively the response of conventional BCS superconductor niobium nitride to EDL gating as a function of film thickness (∼ 40−10 nm), and we interpret our data in the framework of a bulk control of the superconducting transition mediated by proximity effect. We then extend our analysis to more complex materials. We show preliminary results on state-of-the-art thin films (∼ 20 nm) of two-gap superconductor magnesium diboride. Finally, we consider thin films of iron-based superconductor barium iron arsenide and show how its Tc can be modulated by the electric field only in the smallest thicknesses available by state-of-the-art growth techniques (∼ 10 nm). Chapter 3 presents our results on thin flakes (∼ 5−10 nm) of transition metal dichalcogenides. We explore via EDL gating the valley occupation in the conduction and of semiconducting molybdenum and tungsten disulphides at high carrier densities. We show preliminary evidence linking the emergence of EDL-induced superconductivity with the population of secondary minima in the bandstructure for molybdenum disulphide. We also exploit electrochemical gating beyond the electrostatic regime to perform field-assisted intercalation of molybdenum disulphide with alkali ions, in an effort to demonstrate both surface and bulk gate-controlled superconductivity in the same device architecture. We find preliminary evidence for the onset of a possible Charge-Density-Wave phase at very high ion doping. Chapter 4 is entirely devoted to our results on few-layer graphene. While we did not observe any gate-induced superconductivity (down to T= 3.5 K) even at the highest induced carrier densities ∼ 6 · 1014 cm-2, we were able to extensively study the dominant scattering mechanisms both in the high and low temperature regimes; in particular, we showed that inelastic scattering for T . 90 K is dominated by electron-electron collisions, in contrast with what was found in the literature for single-layer graphene. Moreover, we observed the emergence of quantum coherence phenomena (weak localization) for T . 20 K in these previously unreached conditions of ultrahigh carrier doping. Finally, in the Conclusions we summarize the most significant results obtained during this thesis work together with the questions that are still left open. Furthermore, we consider some perspectives and future lines of research that could be pursued in the framework of electrolyte gating.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Layered metal dichalcogenides"

1

Toxic Gas Sensors and Biosensors. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901175.

Повний текст джерела
Анотація:
The book focuses on novel sensor materials and their environmental and healthcare applications, such as NO2 detection, toxic gas and biosensing, hydrazine determination, glucose sensing and the detection of toxins and pollutants on surfaces. Materials covered include catalytic nanomaterials, metal oxides, perovskites, zeolites, spinels, graphene-based gas sensors, CNT/Ni nanocomposites, glucose biosensors, single and multi-layered stacked MXenes, black phosphorus, transition metal dichalcogenides and P3OT thin films.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Layered metal dichalcogenides"

1

Naito, Michio, Hironori Nishihara, and Tilman Butz. "Layered Transition Metal Dichalcogenides." In Physics and Chemistry of Materials with Low-Dimensional Structures, 35–112. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-1299-2_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lerf, A. "Layered Transition Metal Dichalcogenides." In Inorganic Reactions and Methods, 269–73. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145203.ch167.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Polcar, Tomas. "Solid Lubricants, Layered-Hexagonal Transition Metal Dichalcogenides." In Encyclopedia of Tribology, 3180–86. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_1260.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Liang, W. Y. "Electronic Properties of Transition Metal Dichalcogenides and Their Intercalation Complexes." In Intercalation in Layered Materials, 31–73. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4757-5556-5_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Brec, R., and J. Rouxel. "Reactivity and Phase Transitions in Transition Metal Dichalcogenides Intercalation Chemistry." In Intercalation in Layered Materials, 75–91. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4757-5556-5_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Brown, Frederick C. "Charge Density Waves in the Transition-Metal Dichalcogenides: Recent Experimental Advances." In Structural Phase Transitions in Layered Transition Metal Compounds, 267–92. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4576-0_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jaegermann, W., and D. Tonti. "Surface Science Investigations of Intercalation Reactions with Layered Metal Dichalcogenides." In New Trends in Intercalation Compounds for Energy Storage, 289–354. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0389-6_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wiley, John B., Philippe R. Bonneau, Randolph E. Treece, Robert F. Jarvis, Edward G. Gillan, Lin Rao, and Richard B. Kaner. "Solid-State Metathesis Routes to Layered Transition-Metal Dichalcogenides and Refractory Materials." In ACS Symposium Series, 369–83. Washington, DC: American Chemical Society, 1992. http://dx.doi.org/10.1021/bk-1992-0499.ch026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Anderson, O., W. Drube, G. Karschnick, I. Schäfer, and M. Skibowski. "Angular Resolved Photoemission and Inverse Photoemission Studies of Layered Transition Metal Dichalcogenides." In Proceedings of the 17th International Conference on the Physics of Semiconductors, 1473–76. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4615-7682-2_335.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tributsch, H. "Electronic Structure, Coordination Photoelectrochemical Pathways and Quantum Energy Conversion by Layered Transition Metal Dichalcogenides." In Physics and Chemistry of Materials with Low-Dimensional Structures, 83–119. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-1301-2_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Layered metal dichalcogenides"

1

Kyuluk, L. "Radiative Processes In Layered Transition Metal Dichalcogenides." In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994508.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wang, Jun, Ningning Dong, Saifeng Zhang, and Yuanxin Li. "Two-photon absorption in layered transition metal dichalcogenides." In Organic Photonic Materials and Devices XX, edited by Christopher E. Tabor, François Kajzar, Toshikuni Kaino, and Yasuhiro Koike. SPIE, 2018. http://dx.doi.org/10.1117/12.2288365.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wang, Jun. "Nonlinear optical effects in layered transition metal dichalcogenides (Conference Presentation)." In Nanophotonics, edited by David L. Andrews, Jean-Michel Nunzi, Andreas Ostendorf, and Angus J. Bain. SPIE, 2018. http://dx.doi.org/10.1117/12.2306578.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Buryakov, A. M., A. V. Gorbatova, and D. I. Khusyainov. "The generation of THz radiation in layered transition metal dichalcogenides." In PROCEEDINGS OF INTERNATIONAL CONGRESS ON GRAPHENE, 2D MATERIALS AND APPLICATIONS (2D MATERIALS 2019). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0055452.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ong, Y. J., J. W. Chai, W. Y. Wu, and S. W. Tong. "Transparent-Reflective Switchable Glass Using Multi-layered Transition Metal Dichalcogenides." In 2023 IEEE 18th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE, 2023. http://dx.doi.org/10.1109/nems57332.2023.10190960.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tselikov, Gleb I. "High-refractive-index anisotropic nanoparticles based on layered transition metal dichalcogenides." In Synthesis and Photonics of Nanoscale Materials XVIII, edited by Andrei V. Kabashin, Jan J. Dubowski, David B. Geohegan, and Maria Farsari. SPIE, 2021. http://dx.doi.org/10.1117/12.2578718.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tseng, Frank, Daniel Gunlycke, and Ergun Simsek. "Theory and applications of strongly bound excitons in layered transition-metal dichalcogenides." In 2015 IEEE Photonics Conference (IPC). IEEE, 2015. http://dx.doi.org/10.1109/ipcon.2015.7323440.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Maldonado, Melissa, Manoel L. da Silva Neto, Pilar G. Vianna, Henrique B. Ribeiro, Lucas M. Martinho, Gleice C. M. Germano, Isabel C. S. Carvalho, et al. "Nonlinear Absorption and Optical Limiting Effect in Redox Exfoliated Layered Transition Metal Dichalcogenides." In Latin America Optics and Photonics Conference. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/laop.2018.w4e.3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bautista, Jessica E. Q., Cecília L. A. V. Campos, Manoel L. da Silva-Neto, Cid B. de Araújo, Ali M. Jawaid, Robert Busch, Richard A. Vaia, and Anderson S. L. Gomes. "Spatial self-phase modulation in liquid suspensions of 2D layered metal transition dichalcogenides with linearly and circularly polarized light." In Latin America Optics and Photonics Conference. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/laop.2022.tu1a.5.

Повний текст джерела
Анотація:
We discuss the physical mechanism responsible for spatial self-phase modulation in suspensions of 2D transition metal dichalcogenides using linearly and circularly polarized light, showing its thermal origin when CW or MHz-mode-locked lasers are employed.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Germano, Gleice C. M., Manoel L. da Silva Neto, Melissa Maldonado, Alexandre R. Camara, Leonardo F. Araújo, Ali M. Jawaid, Richard A. Vaia, André L. Moura, Anderson S. L. Gomes, and Isabel C. S. Carvalho. "Picosecond Thermal Nonlinearities in 2D – NbS2." In Latin America Optics and Photonics Conference. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/laop.2022.tu4a.2.

Повний текст джерела
Анотація:
Here we investigate the third-order Nonlinear Optical (NLO) properties of Layered Transition Metal Dichalcogenides (LTMDs), the metallic NbS2. The Z-scan technique was employed to characterize the nonlinear refraction (NLR) and nonlinear absorption (NLA) behavior in the picosecond regime.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії