Добірка наукової літератури з теми "Lattice gas system"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Lattice gas system".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Lattice gas system"
Yepez, Jeffrey. "Lattice-Gas Quantum Computation." International Journal of Modern Physics C 09, no. 08 (December 1998): 1587–96. http://dx.doi.org/10.1142/s0129183198001436.
Повний текст джерелаFradkin, Eduardo. "Superfluidity of the Lattice Anyon Gas." International Journal of Modern Physics B 03, no. 12 (December 1989): 1965–95. http://dx.doi.org/10.1142/s0217979289001275.
Повний текст джерелаSUDO, YASUSHI. "LATTICE GAS TIME DOMAIN METHODS FOR ACOUSTICS WITH REDUCED COMPUTER MEMORY REQUIREMENTS." Journal of Computational Acoustics 09, no. 04 (December 2001): 1239–58. http://dx.doi.org/10.1142/s0218396x0100053x.
Повний текст джерелаRAMIREZ-PASTOR, ANTONIO J., FEDERICO J. ROMÁ, and JOSÉ L. RICCARDO. "CONFIGURATIONAL ENTROPY IN GENERALIZED LATTICE-GAS MODELS." International Journal of Modern Physics B 23, no. 22 (September 10, 2009): 4589–627. http://dx.doi.org/10.1142/s0217979209053308.
Повний текст джерелаAwazu, Akinori. "Complex transport phenomena in a simple lattice gas system." Physica A: Statistical Mechanics and its Applications 373 (January 2007): 425–32. http://dx.doi.org/10.1016/j.physa.2006.05.039.
Повний текст джерелаWang, Yuanshi, Hong Wu, and Junhao Liang. "Dynamics of a lattice gas system of three species." Communications in Nonlinear Science and Numerical Simulation 39 (October 2016): 38–57. http://dx.doi.org/10.1016/j.cnsns.2016.02.027.
Повний текст джерелаSatulovsky, Javier E., and Tânia Tomé. "Stochastic lattice gas model for a predator-prey system." Physical Review E 49, no. 6 (June 1, 1994): 5073–79. http://dx.doi.org/10.1103/physreve.49.5073.
Повний текст джерелаSchmittmann, B. "CRITICAL BEHAVIOR OF THE DRIVEN DIFFUSIVE LATTICE GAS." International Journal of Modern Physics B 04, no. 15n16 (December 1990): 2269–306. http://dx.doi.org/10.1142/s0217979290001066.
Повний текст джерелаWang, Yuanshi, and Hong Wu. "Population dynamics of intraguild predation in a lattice gas system." Mathematical Biosciences 259 (January 2015): 1–11. http://dx.doi.org/10.1016/j.mbs.2014.11.001.
Повний текст джерелаSzász, A. "The exact solution of the real square-lattice-gas system." physica status solidi (b) 140, no. 2 (April 1, 1987): 415–20. http://dx.doi.org/10.1002/pssb.2221400212.
Повний текст джерелаДисертації з теми "Lattice gas system"
Rudzinsky, Michael Steven. "Theoretical and Simulation Studies of a Driven Diffusive System." Diss., Virginia Tech, 2000. http://hdl.handle.net/10919/26162.
Повний текст джерелаPh. D.
Mukhamadiarov, Ruslan Ilyich. "Controlling non-equilibrium dynamics in lattice gas models." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/102629.
Повний текст джерелаDoctor of Philosophy
In recent years a new interesting research avenue has emerged in far-from-equilibrium statistical physics, namely studies of collective behavior in spatially non-uniform systems. Whereas substantial progress has been made in understanding the origins and the often universal nature of cooperative behavior in systems far from equilibrium, it is still unclear whether it is possible to control their global collective and randomly determined dynamics through local manipulations. Therefore, a comprehensive characterization of spatially non-uniform systems out of equilibrium is required. In the first system, we explore a variant of the two-dimensional lattice gas with completely biased diffusion in one direction and attractive particle interactions. By lattice gas we mean a lattice filled with particles that can hop on nearest-neighbor empty sites. The system we are considering is a lattice that is split into two regions, which in turn are maintained at distinct temperatures T > Tc and Tc, respectively, with Tc indicating the critical temperature for the second-order phase transition. The geometry of the lattice was arranged such that the temperature boundaries are oriented perpendicular or parallel to the external particle drive that is responsible for a completely biased diffusion. When the temperature boundaries are oriented perpendicular to the drive, in the hotter region with temperature T > Tc, the system evolves as if there are no attractive interactions between the particles, and experiences particle blockage in front of the temperature boundary from the hotter region held at T>Tc to the critical region held at Tc. This accumulation of particles at the temperature boundary is induced by elongated collections of particle, i.e., particle clusters in the critical region. We observe the particle density profiles (density(x) vs x plots) in both high-and low-temperature subsystems to be similar to the density profiles found for other well-characterized (T)ASEP models with open boundary conditions, which are in the coexistence and maximal-current phases, and which are respectively governed by hyperbolic and trigonometric tangent functions. Yet if the lower temperature is set to Tc, we detect marked corrections to the hyperbolic and trigonometric tangent-like density profiles due to fluctuations, e.g., we observe the algebraic power-law decay of the density near the interfaces into the cooler region with the critical KLS exponent. For a parallel orientation of the temperature boundaries, we have explored the changes in the particle dynamics of the two-temperature KLS model that are induced by our choice of the particle hopping rates across the temperature boundaries. If these particle hopping rates at the temperature interfaces satisfy particle-hole symmetry (i.e. remain unchanged when particles are replaced with holes and vice versa), the particle current difference across them generates a current vector flow diagram akin to an infinite flat vortex sheet. We have studied how the particle density fluctuations in both temperature regions scale with the system size, and observed that the scaling is controlled by the respective temperature values. If the colder subsystem is maintained at the KLS critical temperature Tcold = Tc, while the hotter subsystem's temperature is set much higher Thot >> Tc, the particle currents at the interface greatly suppresses particle exchange between the two temperature regions. As a result of the ensuing effective subsystem separation from each other, strong fluctuations persist in the critical region, whence the particle density fluctuations scale with the KLS critical exponents. However, if both temperatures are set well above the critical temperature, the particle density fluctuations scale with different scaling exponents, that fall into the totally asymmetric exclusion process (TASEP) universality class. We have also measured the rate of the entropy production in both subsystems; it displays intriguing algebraic decay in the critical region, while it reaches quickly a small but non-zero value in the hotter region. The second system is a lattice filled with particles of different types that hop around the lattice and are subjected to different sorts of reactions. That process simulates the spread of the COVID-19 epidemic using the paradigmatic random-process-based Susceptible-Infectious-Recovered (SIR) model. In our effort to control the spread of the infection of a lattice, we robustly find that the intensity and spatial spread of the epidemic second wave can be limited to a manageable extent provided release of these restrictions is delayed sufficiently (for a duration of at least thrice the time until the peak of the unmitigated outbreak).
Hickey, Joseph. "Beyond Classical Nucleation Theory: A 2-D Lattice-Gas Automata Model." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23147.
Повний текст джерелаSCOLA, GIUSEPPE. "Applications of Cluster Expansion." Doctoral thesis, Gran Sasso Science Institute, 2021. http://hdl.handle.net/20.500.12571/21994.
Повний текст джерелаAnderson, Mark Jule Jr. "Cooperative Behavior in Driven Lattice Systems with Shifted Periodic Boundary Conditions." Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/30606.
Повний текст джерелаPh. D.
Kim, Kyung Hyuk. "Stochastic driven systems far from equilibrium /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/9719.
Повний текст джерелаBull, Daniel James. "Static and dynamic correlation in lattice gas systems : an application to the intermetallic hydride ZrVâ‚‚Hx." Thesis, University of Salford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.272776.
Повний текст джерелаHurley, Margaret M. "Analysis of the dipolar lattice gas as a model for self-assembly in 1 and 2-dimensional systems /." The Ohio State University, 1992. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487780393265179.
Повний текст джерелаHa, Meesoon. "Scaling and phase transitions in one-dimensional nonequilibrium driven systems /." Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/9758.
Повний текст джерелаLi, Linjun. "Systems Driven out of Equilibrium with Energy Input at Interfaces or Boundaries." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/77884.
Повний текст джерелаPh. D.
Книги з теми "Lattice gas system"
D, Doolen Gary, ed. Lattice gas methods for partial differential equations: A volume of lattice gas reprints and articles, including selected papers from the workshop on large nonlinear systems, held August, 1987 in Los Alamos, New Mexico. Redwood City, Calif: Addison-Wesley, 1989.
Знайти повний текст джерелаD, Doolen Gary, and Workshop on Large Nonlinear Systems (1987 : Los Alamos, N.M.), eds. Lattice gas methods for partial differential equations: A volume of lattice gas reprints and articles including selcted papers from the Workshop on Large Nonlinear Systems, held August 1987 in Los Alamos, New Mexico. Redwood City, Calif: Addison-Wesley, 1990.
Знайти повний текст джерелаChopard, Bastien. Cellular automata modeling of physical systems. Cambridge, [England]: Cambridge University Press, 1998.
Знайти повний текст джерелаCellular automata and modeling of complex physical systems: Proceedings of the winter school, Les Houches, France, February 21-28, 1989. Berlin: Springer-Verlag, 1989.
Знайти повний текст джерелаManneville, P., N. Boccara, and G. Y. Vichniac. Cellular Automata and Modeling of Complex Physical Systems: Proceedings of the Winter School, Les Houches, France, February 21-28, 1989 (Springer Proceedings in Physics). Springer, 1990.
Знайти повний текст джерелаDroz, Michel, and Bastien Chopard. Cellular Automata Modeling of Physical Systems. Cambridge University Press, 2011.
Знайти повний текст джерелаDroz, Michel, and Bastien Chopard. Cellular Automata Modeling of Physical Systems. Cambridge University Press, 2009.
Знайти повний текст джерелаCellular Automata Modeling of Physical Systems (Collection Alea-Saclay: Monographs and Texts in Statistical Physics). Cambridge University Press, 2005.
Знайти повний текст джерелаЧастини книг з теми "Lattice gas system"
Lemarchand, A., and M. Mareschal. "A Lattice-GAS Model for a Reaction-Diffusion System." In Computer Simulation in Materials Science, 259–72. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1628-9_15.
Повний текст джерелаPandey, R. B. "Non-Arrhenius Conductivity in a Driven System of Interacting Lattice Gas." In Springer Proceedings in Physics, 166–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-79293-9_14.
Повний текст джерелаKrug, Joachim, and Herbert Spohn. "Dynamical System Describing the Low Temperature Phase of a Driven Lattice Gas." In Nonlinear Evolution and Chaotic Phenomena, 255–67. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1017-4_19.
Повний текст джерелаKobori, Tomoyoshi, and Tsutomu Maruyama. "A High Speed Computation System for 3D FCHC Lattice Gas Model with FPGA." In Field Programmable Logic and Application, 755–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45234-8_73.
Повний текст джерелаDeutsch, Andreas, Haralambos Hatzikirou, and Carsten Mente. "Lattice-Gas Cellular Automaton Models." In Encyclopedia of Systems Biology, 1106–8. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_282.
Повний текст джерелаTovbin, Yuriy K. "The Lattice-Gas Model in Microaero-Hydrodynamics Problems." In Continuum Models and Discrete Systems, 165–71. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2316-3_27.
Повний текст джерелаLiccardo, A., and A. Fierro. "A Stochastic Lattice-Gas Model for Influenza Spreading." In Proceedings of the European Conference on Complex Systems 2012, 679–85. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00395-5_84.
Повний текст джерелаRoss, D. K., D. A. Faux, M. W. McKergow, D. L. T. Wilson, and S. K. Sinha. "Coherent Quasi-Elastic Scattering of Neutrons from Lattice Gas Systems." In Springer Proceedings in Physics, 116–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71007-0_19.
Повний текст джерелаHatzikirou, Haralambos, and Andreas Deutsch. "Lattice-Gas Cellular Automaton Modeling of Emergent Behavior in Interacting Cell Populations." In Understanding Complex Systems, 301–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12203-3_13.
Повний текст джерелаOshanin, G., J. De Coninck, M. Moreau, and S. F. Burlatsky. "Phase boundary dynamics in a one-dimensional non-equilibrium lattice gas." In Nonlinear Phenomena and Complex Systems, 69–108. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2149-7_4.
Повний текст джерелаТези доповідей конференцій з теми "Lattice gas system"
Hsu, C. T., S. W. Chiang, and K. F. Sin. "A Novel Dynamics Lattice Boltzmann Method for Gas Flows." In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-31237.
Повний текст джерелаMatsukuma, Yosuke, Masaki Minemoto, and Yutaka Abe. "Numerical Simulation of Flow Around Melting Object by Lattice Gas Automata Method." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45161.
Повний текст джерелаFang, Junlin, Qian Sun, Yu Ji, Zishen Ye, Jun Sun, and Zhe Sui. "Numerical Investigation on Heat Transfer Features of Gas-Cooled Open Lattice Reactor in Normal Operations." In 2022 29th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icone29-92925.
Повний текст джерелаKashyap, Dhrubajyoti, and Anoop K. Dass. "Entropy Generation Analysis of Mixed Convection Flow in a Nanofluid Filled Porous Cavity Using a Two-Component Lattice Boltzmann Method." In ASME 2019 Gas Turbine India Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gtindia2019-2544.
Повний текст джерелаLauwers, Daniel, Matthias Meinke, and Wolfgang Schröder. "A coupled lattice Boltzmann/finite volume method for turbulent gas-liquid bubbly flows." In VI ECCOMAS Young Investigators Conference. València: Editorial Universitat Politècnica de València, 2021. http://dx.doi.org/10.4995/yic2021.2021.12211.
Повний текст джерелаNoui-Mehidi, Mohamed Nabil. "Numerical Simulations of the Flow Past Crescent Cylinders – Flow Monitoring." In Middle East Oil, Gas and Geosciences Show. SPE, 2023. http://dx.doi.org/10.2118/213942-ms.
Повний текст джерелаGao, Yuan. "Comparing the Permeability Calculation Between Different System Size of the Computational Gas Diffusion Layer Sample in PEMFC." In ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2014 8th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fuelcell2014-6323.
Повний текст джерелаTanigawa, Hirofumi, and Takaharu Tsuruta. "Lattice Gas Analysis on Two-Phase Flow in Cathode of Polymer Electrolyte Fuel Cells." In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32759.
Повний текст джерелаMadiebo, Kingsley I., Hadi Nasrabadi, and Eduardo Gildin. "Mesoscopic Simulation of Slip Motion for Gas Flow in Nanochannels." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-53696.
Повний текст джерелаKapral, Raymond. "Discrete Dynamics of Spatio-Temporal Structures." In Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.is9.
Повний текст джерелаЗвіти організацій з теми "Lattice gas system"
Elton, A. B. H. A numerical theory of lattice gas and lattice Boltzmann methods in the computation of solutions to nonlinear advective-diffusive systems. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6480937.
Повний текст джерела