Дисертації з теми "Lattice Boltzmann scheme"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-15 дисертацій для дослідження на тему "Lattice Boltzmann scheme".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Karra, Satish. "Modeling electrospinning process and a numerical scheme using Lattice Boltzmann method to simulate viscoelastic fluid flows." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1347.
Повний текст джерелаSpäth, Peter. "Renewed Theory, Interfacing, and Visualization of Thermal Lattice Boltzmann Schemes." Doctoral thesis, Universitätsbibliothek Chemnitz, 2000. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200000648.
Повний текст джерелаIn dieser Doktorarbeit wird das Gitter-Boltzmann-Schema, eine heuristische Methode fuer die Simulation von Stroemungen innerhalb komplexer Raender, untersucht. Die zugrundeliegende Theorie wird unter neuen Gesichtspunkten, insbesondere dem Prinzip der Entropiemaximierung, betrachtet. Des weiteren werden neuartige Methoden fuer die Modellierung der Geometrie (einschl. beweglicher Raender) und der visuellen Darstellung aufgezeigt. Eine objektorientierte Implementierung wird vorgestellt, wobei die Kommunikation zwischen den Objekten über Interpreter-Objekte und die Kommunikation mit der Aussenwelt ueber Interprozess-Kommunikation gehandhabt wird. Mit dem neuen theoretischen Ansatz wird die Gueltigkeit bestehender Gitter-Boltzmann-Schemata fuer die Anwendung auf Stroemungen mit nicht konstanter Temperatur untersucht
Michelet, Jordan. "Extraction du fouillis de mer dans des images radar marin cohérent : modèles de champ de phases, méthodes de Boltzmann sur réseau, apprentissage." Electronic Thesis or Diss., La Rochelle, 2022. http://www.theses.fr/2022LAROS048.
Повний текст джерелаWe focus on the problem of sea clutter extraction in marine radar images. The aim is to develop image processing methods allowing us to avoid assumptions about the nature of the sea clutter and the signal of interest. On the one hand, we propose an original algorithm based on a variational approach : a multiphase model with diffuse interface. The results obtained show that the algorithm is efficient when the signal of interest has a sufficiently large signal-to-clutter ratio. On the other hand, we focus on the implementation of lattice Boltzmann schemes for convection-diffusion problems with non-constant advection velocity and non-zero source term. We describe the computation of the consistency obtained by asymptotic analysis at the acoustic scale and with a multiple relaxation time collision operator, and study the stability of these schemes in a particular case. The obtained results show that the proposed schemes allow removing the residual noise and to enhance the signal of interest on the image obtained with the first method. Finally, we propose a learning method allowing us to avoid assumptions on the nature of the signal of interest. Indeed, in addition to the variational approach, we propose an algorithm based on pulse-Doppler processing when the signal of interest is exo-clutter and has a low signal-to-clutter ratio. The results obtained from the proposed double auto-encoder, being comparable to the results provided by each of the two methods, allow validating this approach
Uphoff, Sonja [Verfasser], and Manfred [Akademischer Betreuer] Krafczyk. "Development and Validation of turbulence models for Lattice Boltzmann schemes / Sonja Uphoff ; Betreuer: Manfred Krafczyk." Braunschweig : Technische Universität Braunschweig, 2013. http://d-nb.info/1175821896/34.
Повний текст джерелаFévrier, Tony. "Extension et analyse des schémas de Boltzmann sur réseau : les schémas à vitesse relative." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112316/document.
Повний текст джерелаIn this PhD thesis, a new class of lattice Boltzmann schemes called relative velocity schemes is introduced and studied. The purpose of lattice Boltzmann schemes is to approximate problems of macroscopic nature using the microscopic dynamic of Boltzmann type kinetic equations. They compute particle distributions through two phases of transport and relaxation, the particles moving on the nodes of a cartesian lattice. The multiple relaxation times schemes---MRT of d'Humières---, whose relaxation uses a set of moments, linear combinations of the particle distributions, constitutes the initial framework of the thesis. The relative velocity schemes extend the MRT d'Humières schemes. They originate from the cascaded automaton of Geier which provides more stability for the low viscosity regime of the Navier-Stokes equations. Their difference with the d'Humières schemes is carried by the relaxation : a set of moments relative to a velocity field parameter function of space and time is used. This difference is represented by a shifting matrix sending the fixed moments---The d'Humières schemes are associated with a zero velocity field parameter---On the relative moments. The algebraic structure of this matrix is studied. The cascaded automaton is then interpreted as a relative velocity scheme for a new set of polynomials defining the moments. The consistency study of the relative velocity schemes with the equivalent equations method is a keypoint of the thesis. These equations are derived for an arbitrary number of dimensions and velocities. They are then illustrated on examples like the D2Q9 scheme for the Navier-Stokes equations. These equivalent equations are also a tool to predict the stability behaviour of the schemes by analysing their diffusion and dispersion terms. In a last part, the stability according to the velocity field parameter is studied. Two cases especially interest us : a parameter equal to zero---D'Humières schemes---And equal to the fluid velocity---Cascaded automaton. The D2Q9 scheme for the Navier-Stokes equations is numerically studied with a linear Von Neumann analysis and some non linear test cases. The stability of the relative velocity schemes depends on the choice of the polynomials defining the moments. The most important improvement occurs if the polynomials of the cascaded automaton are chosen. We finally study the theoretical and numerical stability of a minimal bidimensional scheme for a linear advection diffusion equation. If the velocity field parameter is chosen equal to the advection velocity, some dispersion terms of the equivalent equations vanish unlike the d'Humières scheme. This implies a better stability behaviour for high velocities, characterized thanks to theoretical weighted stability notion
Jobic, Yann. "Numerical approach by kinetic methods of transport phenomena in heterogeneous media." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4723/document.
Повний текст джерелаA novel kinetic scheme satisfying an entropy condition is developed, tested and implemented for the simulation of practical problems. The construction of this new entropic scheme is presented. A classical hyperbolic system is approximated by a discrete velocity vector kinetic scheme (with the simplified BGK collisional operator), but applied to an inviscid compressible gas dynamics system with a small Mach number parameter, according to the approach of Carfora and Natalini (2008). The numerical viscosity is controlled, and tends to the physical viscosity of the Navier-Stokes system. The proposed numerical scheme is analyzed and formulated as an explicit finite volume flux vector splitting (FVS) scheme that is very easy to implement. It is close in spirit to Lattice Boltzmann schemes, but it has the advantage to satisfy a discrete entropy inequality under a CFL condition and a subcharacteristic stability condition involving a cell Reynolds number. The new scheme is proved to be second-order accurate in space. We show the efficiency of the method in terms of accuracy and robustness on a variety of classical benchmark tests. Some physical problems have been studied in order to show the usefulness of both schemes. The LB code was successfully used to determine the longitudinal dispersion of metallic foams, with the use of a novel indicator. The entropic code was used to determine the permeability tensor of various porous media, from the Fontainebleau sandstone (low porosity) to a redwood tree sample (high porosity). These results are pretty accurate. Finally, the entropic framework is applied to the advection-diffusion equation as a passive scalar
Kotnala, Sourabh. "Lattice Boltzmann Relaxation Scheme for Compressible Flows." Thesis, 2012. http://etd.iisc.ac.in/handle/2005/3257.
Повний текст джерелаKotnala, Sourabh. "Lattice Boltzmann Relaxation Scheme for Compressible Flows." Thesis, 2012. http://hdl.handle.net/2005/3257.
Повний текст джерелаChen, Su-Yuan, and 陳司原. "Development of Semiclassical Lattice Boltzmann Method Using Multi Relaxation Time Scheme for Flow Field Simulation." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/99784384360484233614.
Повний текст джерела國立臺灣大學
應用力學研究所
100
A Multi Relaxation Time Semiclassical Lattice Boltzmann Method based on the Uehling-Uhlenbeck Boltzmann-BGK equation (Uehling-Uhlenbeck Boltzmann Bhatnagar-Gross-Krook Equation)and Multi Relaxation Time Lattice Boltzmann Method(MRT-LBM)is presented. The method is directly derived by projecting the kinetic governing equation onto the tensor Hermite polynomials and various hydrodynamic approximation orders can be achieved. Simulations of the lid driven cavity flows based on D2Q9 lattice model for several Reynolds numbers and three different particles that obey Bose-Einstein and Fermi-Dirac and Maxwell-Boltzmann statistics are shown to illustrate the method. The results indicate distinct characteristics of the effects of quantum statistics.
Kuriščák, Pavel. "Simulace proudění nenewtonovských tekutin pomocí lattice Boltzmannovy metody." Master's thesis, 2011. http://www.nusl.cz/ntk/nusl-313927.
Повний текст джерелаRuhi, Ankit. "Kinetic Theory Based Numerical Schemes for Incompressible Flows." Thesis, 2016. http://etd.iisc.ac.in/handle/2005/3072.
Повний текст джерелаRuhi, Ankit. "Kinetic Theory Based Numerical Schemes for Incompressible Flows." Thesis, 2016. http://hdl.handle.net/2005/3072.
Повний текст джерелаDeshmukh, Rohan L. "Lattice Boltzmann Relaxation Schemes for High Speed Flows." Thesis, 2016. https://etd.iisc.ac.in/handle/2005/4480.
Повний текст джерелаD'ORAZIO, Annunziata. "Kinetic schemes for fluid flows with heat transfer." Doctoral thesis, 2004. http://hdl.handle.net/11573/181641.
Повний текст джерелаSpäth, Peter Michael [Verfasser]. "Renewed theory, interfacing, and visualization of thermal lattice Boltzmann schemes / vorgelegt von Peter Michael Späth." 2000. http://d-nb.info/967852307/34.
Повний текст джерела