Добірка наукової літератури з теми "Lattice Boltzmann scheme"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Lattice Boltzmann scheme".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Lattice Boltzmann scheme"
Dubois, François, and Pierre Lallemand. "On Triangular Lattice Boltzmann Schemes for Scalar Problems." Communications in Computational Physics 13, no. 3 (March 2013): 649–70. http://dx.doi.org/10.4208/cicp.381011.270112s.
Повний текст джерелаVenturi, Sara, Silvia Di Francesco, Martin Geier, and Piergiorgio Manciola. "Forcing for a Cascaded Lattice Boltzmann Shallow Water Model." Water 12, no. 2 (February 6, 2020): 439. http://dx.doi.org/10.3390/w12020439.
Повний текст джерелаXu, Kun, and Li-Shi Luo. "Connection Between Lattice-Boltzmann Equation and Beam Scheme." International Journal of Modern Physics C 09, no. 08 (December 1998): 1177–87. http://dx.doi.org/10.1142/s0129183198001072.
Повний текст джерелаGao, Shangwen, Chengbin Zhang, Yingjuan Zhang, Qiang Chen, Bo Li, and Suchen Wu. "Revisiting a class of modified pseudopotential lattice Boltzmann models for single-component multiphase flows." Physics of Fluids 34, no. 5 (May 2022): 057103. http://dx.doi.org/10.1063/5.0088246.
Повний текст джерелаvan der Sman, R. G. M., and M. H. Ernst. "Convection-Diffusion Lattice Boltzmann Scheme for Irregular Lattices." Journal of Computational Physics 160, no. 2 (May 2000): 766–82. http://dx.doi.org/10.1006/jcph.2000.6491.
Повний текст джерелаQiu, Ruofan, Rongqian Chen, and Yancheng You. "An implicit-explicit finite-difference lattice Boltzmann subgrid method on nonuniform meshes." International Journal of Modern Physics C 28, no. 04 (April 2017): 1750045. http://dx.doi.org/10.1142/s0129183117500450.
Повний текст джерелаWen, Mengke, Weidong Li, and Zhangyan Zhao. "A hybrid scheme coupling lattice Boltzmann method and finite-volume lattice Boltzmann method for steady incompressible flows." Physics of Fluids 34, no. 3 (March 2022): 037114. http://dx.doi.org/10.1063/5.0085370.
Повний текст джерелаLALLEMAND, PIERRE, and LI-SHI LUO. "HYBRID FINITE-DIFFERENCE THERMAL LATTICE BOLTZMANN EQUATION." International Journal of Modern Physics B 17, no. 01n02 (January 20, 2003): 41–47. http://dx.doi.org/10.1142/s0217979203017060.
Повний текст джерелаWang, Liang, Zhaoli Guo, Baochang Shi, and Chuguang Zheng. "Evaluation of Three Lattice Boltzmann Models for Particulate Flows." Communications in Computational Physics 13, no. 4 (April 2013): 1151–72. http://dx.doi.org/10.4208/cicp.160911.200412a.
Повний текст джерелаVan Der Sman, R. G. M. "Lattice-Boltzmann Scheme for Natural Convection in Porous Media." International Journal of Modern Physics C 08, no. 04 (August 1997): 879–88. http://dx.doi.org/10.1142/s0129183197000758.
Повний текст джерелаДисертації з теми "Lattice Boltzmann scheme"
Karra, Satish. "Modeling electrospinning process and a numerical scheme using Lattice Boltzmann method to simulate viscoelastic fluid flows." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1347.
Повний текст джерелаSpäth, Peter. "Renewed Theory, Interfacing, and Visualization of Thermal Lattice Boltzmann Schemes." Doctoral thesis, Universitätsbibliothek Chemnitz, 2000. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200000648.
Повний текст джерелаIn dieser Doktorarbeit wird das Gitter-Boltzmann-Schema, eine heuristische Methode fuer die Simulation von Stroemungen innerhalb komplexer Raender, untersucht. Die zugrundeliegende Theorie wird unter neuen Gesichtspunkten, insbesondere dem Prinzip der Entropiemaximierung, betrachtet. Des weiteren werden neuartige Methoden fuer die Modellierung der Geometrie (einschl. beweglicher Raender) und der visuellen Darstellung aufgezeigt. Eine objektorientierte Implementierung wird vorgestellt, wobei die Kommunikation zwischen den Objekten über Interpreter-Objekte und die Kommunikation mit der Aussenwelt ueber Interprozess-Kommunikation gehandhabt wird. Mit dem neuen theoretischen Ansatz wird die Gueltigkeit bestehender Gitter-Boltzmann-Schemata fuer die Anwendung auf Stroemungen mit nicht konstanter Temperatur untersucht
Michelet, Jordan. "Extraction du fouillis de mer dans des images radar marin cohérent : modèles de champ de phases, méthodes de Boltzmann sur réseau, apprentissage." Electronic Thesis or Diss., La Rochelle, 2022. http://www.theses.fr/2022LAROS048.
Повний текст джерелаWe focus on the problem of sea clutter extraction in marine radar images. The aim is to develop image processing methods allowing us to avoid assumptions about the nature of the sea clutter and the signal of interest. On the one hand, we propose an original algorithm based on a variational approach : a multiphase model with diffuse interface. The results obtained show that the algorithm is efficient when the signal of interest has a sufficiently large signal-to-clutter ratio. On the other hand, we focus on the implementation of lattice Boltzmann schemes for convection-diffusion problems with non-constant advection velocity and non-zero source term. We describe the computation of the consistency obtained by asymptotic analysis at the acoustic scale and with a multiple relaxation time collision operator, and study the stability of these schemes in a particular case. The obtained results show that the proposed schemes allow removing the residual noise and to enhance the signal of interest on the image obtained with the first method. Finally, we propose a learning method allowing us to avoid assumptions on the nature of the signal of interest. Indeed, in addition to the variational approach, we propose an algorithm based on pulse-Doppler processing when the signal of interest is exo-clutter and has a low signal-to-clutter ratio. The results obtained from the proposed double auto-encoder, being comparable to the results provided by each of the two methods, allow validating this approach
Uphoff, Sonja [Verfasser], and Manfred [Akademischer Betreuer] Krafczyk. "Development and Validation of turbulence models for Lattice Boltzmann schemes / Sonja Uphoff ; Betreuer: Manfred Krafczyk." Braunschweig : Technische Universität Braunschweig, 2013. http://d-nb.info/1175821896/34.
Повний текст джерелаFévrier, Tony. "Extension et analyse des schémas de Boltzmann sur réseau : les schémas à vitesse relative." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112316/document.
Повний текст джерелаIn this PhD thesis, a new class of lattice Boltzmann schemes called relative velocity schemes is introduced and studied. The purpose of lattice Boltzmann schemes is to approximate problems of macroscopic nature using the microscopic dynamic of Boltzmann type kinetic equations. They compute particle distributions through two phases of transport and relaxation, the particles moving on the nodes of a cartesian lattice. The multiple relaxation times schemes---MRT of d'Humières---, whose relaxation uses a set of moments, linear combinations of the particle distributions, constitutes the initial framework of the thesis. The relative velocity schemes extend the MRT d'Humières schemes. They originate from the cascaded automaton of Geier which provides more stability for the low viscosity regime of the Navier-Stokes equations. Their difference with the d'Humières schemes is carried by the relaxation : a set of moments relative to a velocity field parameter function of space and time is used. This difference is represented by a shifting matrix sending the fixed moments---The d'Humières schemes are associated with a zero velocity field parameter---On the relative moments. The algebraic structure of this matrix is studied. The cascaded automaton is then interpreted as a relative velocity scheme for a new set of polynomials defining the moments. The consistency study of the relative velocity schemes with the equivalent equations method is a keypoint of the thesis. These equations are derived for an arbitrary number of dimensions and velocities. They are then illustrated on examples like the D2Q9 scheme for the Navier-Stokes equations. These equivalent equations are also a tool to predict the stability behaviour of the schemes by analysing their diffusion and dispersion terms. In a last part, the stability according to the velocity field parameter is studied. Two cases especially interest us : a parameter equal to zero---D'Humières schemes---And equal to the fluid velocity---Cascaded automaton. The D2Q9 scheme for the Navier-Stokes equations is numerically studied with a linear Von Neumann analysis and some non linear test cases. The stability of the relative velocity schemes depends on the choice of the polynomials defining the moments. The most important improvement occurs if the polynomials of the cascaded automaton are chosen. We finally study the theoretical and numerical stability of a minimal bidimensional scheme for a linear advection diffusion equation. If the velocity field parameter is chosen equal to the advection velocity, some dispersion terms of the equivalent equations vanish unlike the d'Humières scheme. This implies a better stability behaviour for high velocities, characterized thanks to theoretical weighted stability notion
Jobic, Yann. "Numerical approach by kinetic methods of transport phenomena in heterogeneous media." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4723/document.
Повний текст джерелаA novel kinetic scheme satisfying an entropy condition is developed, tested and implemented for the simulation of practical problems. The construction of this new entropic scheme is presented. A classical hyperbolic system is approximated by a discrete velocity vector kinetic scheme (with the simplified BGK collisional operator), but applied to an inviscid compressible gas dynamics system with a small Mach number parameter, according to the approach of Carfora and Natalini (2008). The numerical viscosity is controlled, and tends to the physical viscosity of the Navier-Stokes system. The proposed numerical scheme is analyzed and formulated as an explicit finite volume flux vector splitting (FVS) scheme that is very easy to implement. It is close in spirit to Lattice Boltzmann schemes, but it has the advantage to satisfy a discrete entropy inequality under a CFL condition and a subcharacteristic stability condition involving a cell Reynolds number. The new scheme is proved to be second-order accurate in space. We show the efficiency of the method in terms of accuracy and robustness on a variety of classical benchmark tests. Some physical problems have been studied in order to show the usefulness of both schemes. The LB code was successfully used to determine the longitudinal dispersion of metallic foams, with the use of a novel indicator. The entropic code was used to determine the permeability tensor of various porous media, from the Fontainebleau sandstone (low porosity) to a redwood tree sample (high porosity). These results are pretty accurate. Finally, the entropic framework is applied to the advection-diffusion equation as a passive scalar
Kotnala, Sourabh. "Lattice Boltzmann Relaxation Scheme for Compressible Flows." Thesis, 2012. http://etd.iisc.ac.in/handle/2005/3257.
Повний текст джерелаKotnala, Sourabh. "Lattice Boltzmann Relaxation Scheme for Compressible Flows." Thesis, 2012. http://hdl.handle.net/2005/3257.
Повний текст джерелаChen, Su-Yuan, and 陳司原. "Development of Semiclassical Lattice Boltzmann Method Using Multi Relaxation Time Scheme for Flow Field Simulation." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/99784384360484233614.
Повний текст джерела國立臺灣大學
應用力學研究所
100
A Multi Relaxation Time Semiclassical Lattice Boltzmann Method based on the Uehling-Uhlenbeck Boltzmann-BGK equation (Uehling-Uhlenbeck Boltzmann Bhatnagar-Gross-Krook Equation)and Multi Relaxation Time Lattice Boltzmann Method(MRT-LBM)is presented. The method is directly derived by projecting the kinetic governing equation onto the tensor Hermite polynomials and various hydrodynamic approximation orders can be achieved. Simulations of the lid driven cavity flows based on D2Q9 lattice model for several Reynolds numbers and three different particles that obey Bose-Einstein and Fermi-Dirac and Maxwell-Boltzmann statistics are shown to illustrate the method. The results indicate distinct characteristics of the effects of quantum statistics.
Kuriščák, Pavel. "Simulace proudění nenewtonovských tekutin pomocí lattice Boltzmannovy metody." Master's thesis, 2011. http://www.nusl.cz/ntk/nusl-313927.
Повний текст джерелаКниги з теми "Lattice Boltzmann scheme"
Kun, Xu. Connection between the lattice Boltzmann equation and the beam scheme. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1999.
Знайти повний текст джерелаSucci, Sauro. Lattice Boltzmann Models for Microflows. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0029.
Повний текст джерелаSucci, Sauro. Entropic Lattice Boltzmann. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0021.
Повний текст джерелаSucci, Sauro. Lattice Relaxation Schemes. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0014.
Повний текст джерелаCantor, Brian. The Equations of Materials. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198851875.001.0001.
Повний текст джерелаЧастини книг з теми "Lattice Boltzmann scheme"
Vergassola, Massimo, R. Benzi, and S. Succi. "A Lattice Boltzmann Scheme for the Burger Equation." In Correlations and Connectivity, 320–21. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2157-3_37.
Повний текст джерелаvan der Sman, R. G. M. "Lattice Boltzmann Scheme for Diffusion on Triangular Grids." In Lecture Notes in Computer Science, 1072–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44860-8_111.
Повний текст джерелаAlbuquerque, Paul, Davide Alemani, Bastien Chopard, and Pierre Leone. "Coupling a Lattice Boltzmann and a Finite Difference Scheme." In Computational Science - ICCS 2004, 540–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-25944-2_70.
Повний текст джерелаDerksen, J. J., J. L. Kooman, and H. E. A. van den Akker. "Parallel fluid flow simulations by means of a lattice-Boltzmann scheme." In High-Performance Computing and Networking, 524–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0031625.
Повний текст джерелаZhang, Tao, and Shuyu Sun. "A Compact and Efficient Lattice Boltzmann Scheme to Simulate Complex Thermal Fluid Flows." In Lecture Notes in Computer Science, 149–62. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93713-7_12.
Повний текст джерелаMohamad, A. A. "Multi-Relaxation Schemes." In Lattice Boltzmann Method, 101–5. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-455-5_7.
Повний текст джерелаMohamad, A. A. "Multi-Relaxation Schemes." In Lattice Boltzmann Method, 145–49. London: Springer London, 2019. http://dx.doi.org/10.1007/978-1-4471-7423-3_10.
Повний текст джерелаDünweg, B., P. Ahlrichs, and R. Everaers. "Simulation of the Dynamics of Polymers in Solution via a Hybrid Molecular Dynamics-Lattice Boltzmann Scheme." In Springer Proceedings in Physics, 260–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-59406-9_32.
Повний текст джерелаBanda, Mapundi Kondwani. "Variants of Relaxation Schemes and the Lattice Boltzmann Model Relaxation Systems." In Numerical Mathematics and Advanced Applications, 89–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18775-9_6.
Повний текст джерелаSaritha Reddy, Gaddam, and R. Banerjee. "Evaluation of Forcing Schemes in Pseudopotential Based Multiphase Lattice Boltzmann Model." In Fluid Mechanics and Fluid Power – Contemporary Research, 1003–10. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2743-4_94.
Повний текст джерелаТези доповідей конференцій з теми "Lattice Boltzmann scheme"
Seta, Takeshi, Kenichi Okui, and Eisyun Takegoshi. "Lattice Boltzmann Simulation of Nucleation." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45163.
Повний текст джерелаHsu, C. T., S. W. Chiang, and K. F. Sin. "A Novel Dynamics Lattice Boltzmann Method for Gas Flows." In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-31237.
Повний текст джерелаUbertini, Stefano. "Computational Fluid Dynamics Through an Unstructured Lattice Boltzmann Scheme." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41194.
Повний текст джерелаKravets, Bogdan, Muhammad S. Khan, and Harald Kruggel-Emden. "Development and application of a thermal lattice Boltzmann scheme." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4912623.
Повний текст джерелаKamali, R., and A. H. Tabatabaee Frad. "Simulation of Hypersonic Viscous Flow Past a 2D Circular Cylinder Using Lattice Boltzmann Method." In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30482.
Повний текст джерелаFu, S. C., W. W. F. Leung, and R. M. C. So. "A Lattice Boltzmann Method Based Numerical Scheme for Microchannel Flows." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67654.
Повний текст джерелаMa, Yu, Yahui Wang, Kuilong Song, and Qian Sun. "Adaptive Mesh Refinement for Neutron Transfer With Lattice Boltzmann Scheme." In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-66093.
Повний текст джерелаYe Zhao. "GPU-accelerated surface denoising and morphing with lattice Boltzmann scheme." In 2008 IEEE International Conference on Shape Modeling and Applications (SMI). IEEE, 2008. http://dx.doi.org/10.1109/smi.2008.4547942.
Повний текст джерелаSun, Xiuyu, Zhiqiang Wang, and George Chen. "Parallel active contour with Lattice Boltzmann scheme on modern GPU." In 2012 19th IEEE International Conference on Image Processing (ICIP 2012). IEEE, 2012. http://dx.doi.org/10.1109/icip.2012.6467208.
Повний текст джерелаMikheev, Sergei A., and Gerasim V. Krivovichev. "Numerical analysis of two-step finite-difference-based lattice Boltzmann scheme." In 2014 International Conference on Computer Technologies in Physical and Engineering Applications (ICCTPEA). IEEE, 2014. http://dx.doi.org/10.1109/icctpea.2014.6893313.
Повний текст джерела