Добірка наукової літератури з теми "Lateral heterostructures"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Lateral heterostructures".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Lateral heterostructures"
Guha, Puspendu, Joon Young Park, Janghyun Jo, Yunyeong Chang, Hyeonhu Bae, Rajendra Kumar Saroj, Hoonkyung Lee, Miyoung Kim, and Gyu-Chul Yi. "Molecular beam epitaxial growth of Sb2Te3–Bi2Te3 lateral heterostructures." 2D Materials 9, no. 2 (January 31, 2022): 025006. http://dx.doi.org/10.1088/2053-1583/ac421a.
Повний текст джерелаZhang, Jianzhi, Hongfu Huang, Junhao Peng, Chuyu Li, Huafeng Dong, Sifan Kong, Yiyuan Xie, Runqian Wu, Minru Wen, and Fugen Wu. "A Cost-Effective Long-Wave Infrared Detector Material Based on Graphene@PtSe2/HfSe2 Bidirectional Heterostructure: A First-Principles Study." Crystals 12, no. 9 (September 2, 2022): 1244. http://dx.doi.org/10.3390/cryst12091244.
Повний текст джерелаWan, Li-Kai, Yi-Xuan Xue, Jin-Wu Jiang, and Harold S. Park. "Machine learning accelerated search of the strongest graphene/h-BN interface with designed fracture properties." Journal of Applied Physics 133, no. 2 (January 14, 2023): 024302. http://dx.doi.org/10.1063/5.0131576.
Повний текст джерелаLiu, Xiaolong, and Mark C. Hersam. "Borophene-graphene heterostructures." Science Advances 5, no. 10 (October 2019): eaax6444. http://dx.doi.org/10.1126/sciadv.aax6444.
Повний текст джерелаМалевская, А. В., Н. Д. Ильинская та В. М. Андреев. "Разработка методов жидкостного травления разделительной меза-структуры при создании каскадных солнечных элементов". Письма в журнал технической физики 45, № 24 (2019): 14. http://dx.doi.org/10.21883/pjtf.2019.24.48795.17953.
Повний текст джерелаДавыдов, С. Ю. "Простые модели латеральных гетероструктур". Физика твердого тела 60, № 7 (2018): 1389. http://dx.doi.org/10.21883/ftt.2018.07.46129.015.
Повний текст джерелаLi, Xufan, Ming-Wei Lin, Junhao Lin, Bing Huang, Alexander A. Puretzky, Cheng Ma, Kai Wang, et al. "Two-dimensional GaSe/MoSe2misfit bilayer heterojunctions by van der Waals epitaxy." Science Advances 2, no. 4 (April 2016): e1501882. http://dx.doi.org/10.1126/sciadv.1501882.
Повний текст джерелаDavydov, S. Yu. "Simple Models of Lateral Heterostructures." Physics of the Solid State 60, no. 7 (July 2018): 1405–12. http://dx.doi.org/10.1134/s1063783418070089.
Повний текст джерелаWang, Zixuan, Wenshuo Xu, Benxuan Li, Qiaoyan Hao, Di Wu, Dianyu Qi, Haibo Gan, Junpeng Xie, Guo Hong, and Wenjing Zhang. "Selective Chemical Vapor Deposition Growth of WS2/MoS2 Vertical and Lateral Heterostructures on Gold Foils." Nanomaterials 12, no. 10 (May 16, 2022): 1696. http://dx.doi.org/10.3390/nano12101696.
Повний текст джерелаAlharbi, Safia Abdullah R., Kazi Jannatul Tasnim, and Ming Yu. "The first-principles study of structural and electronic properties of two-dimensional SiC/GeC lateral polar heterostructures." Journal of Applied Physics 132, no. 18 (November 14, 2022): 184301. http://dx.doi.org/10.1063/5.0127579.
Повний текст джерелаДисертації з теми "Lateral heterostructures"
Vallis, Stuart Lawrie. "Lateral and longitudinal surface superlattices on shallow GaAs heterostructures." Thesis, University of Glasgow, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320844.
Повний текст джерелаLai, Andrew P. (Andrew Pan). "Investigation of lateral gated quantum devices in Si/SiGe heterostructures." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/83775.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 73-75).
Quantum dots in Si/SiGe have long spin decoherence times, due to the low density of nuclear spins and weak coupling between nuclear and electronic spins. Because of this, they are excellent candidates for use as solid state qubits. The initial approach towards creating controllable Si/SiGe quantum dots was to fabricate them in delta doped heterostructures. We provide evidence that the delta doping layer in these heterostructures provides a parallel conduction path, which prevents one from creating controllable quantum dots. Instead, it may be more favorable to supply electrons in the 2DEG through capactive gating, instead of a delta doping layer. We therefore discuss efforts to fabricate Si/SiGe quantum dots from undoped heterostructures and the difficulties encountered. A new method for fabricating ohmics in undoped heterostructures is discussed. We also discuss parallel conduction which occurs in the Si cap layer of these undoped heterostructures, which appears to be a major obstacle towards achieving workable devices in undoped Si/SiGe heterostructures.
by Andrew P. Lai.
S.M.
Deborde, Jean-Laurent. "Lateral electron tunneling spectroscopy between low-dimensional electron systems in GaAs,AlGaAs heterostructures." Tönning Lübeck Marburg Der Andere Verl, 2009. http://d-nb.info/995773491/04.
Повний текст джерелаMaharjan, Nikesh. "Electronic band engineering of Transition metal dichalcogenides: First Principles Calculation." OpenSIUC, 2015. https://opensiuc.lib.siu.edu/theses/1661.
Повний текст джерелаGraf, Davy. "Electrons in reduced dimensions : from finite lateral superlattices in AlGaAs heterostructures to few-layer graphene /." Zürich : ETH, 2007. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17241.
Повний текст джерелаBradford, Jonathan. "Growth and characterisation of two-dimensional materials and their heterostructures on sic." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/134400/1/Jonathan_Bradford_Thesis.pdf.
Повний текст джерелаSerrano, richaud Elisa. "Modelling electronic and optical properties of 2D heterostructures." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP121.
Повний текст джерелаGraphene (Gr) and hexagonal boron nitride (hBN) have a similar lattice parameter (~1.5% mismatch) and different properties , Gr is a metal known by its high conductivity and hBN is a large gap insulator ~6eV) with a strong UV emission. Due to these two remarks, they are perfect candidates to be stacked side-by-side in a lateral heterostructures instead of one of the top of the other in a more common vertical heterostructure. In this thesis I will be interested at modelling the electronic and optical properties of lateral heterostructures composed of successive armchair graphene and boron nitride nanoribbons (AGBN). However, during the synthesis of this kind of heterostructures defects, such as roughness or non-hexagonal defect, may appear at the interface affecting to the properties of AGBN.In the first part of the thesis, will combine ab-initio techniques such a density functional theory (DFT) and a perturbative tight-binding (TB) modem to study the opposite and complementary sensitivity of the gapwidth of isolated Gr and hBN armchair nanoribbons (AGNR and ABNNR) upon different stimuli.In the next parts I will present the electronic structure of AGBN carry out with DFT and optical spec-trum calculated by GW and the Bethe-Salpeter equation (BSE). I will revise from the general features, like the band structure, to explaining in detail the role of each material and the characteristic confining of the exciton in the Gr part of the heterostructures.Parallel to this study, I will parametrise a semi-empirical TB model and set its limits of validity to de-scribe the absorption spectrum of AGBN in the independent-particle approximation. Therefore, I have to set a correspondence between excitonic peaks on the BSE absorption spectra and transitions in IP spec-tra will allow us to estimate excitonic effects from the TB IP spectra. In particular, this approach will be used in the last part of the thesis to finally characterise the impact of weak roughness at the interface or non-hexagonal defects like Stone-Wales or divacancies
Soucail, Bernard. "Contributions a l'etude des changements de dimensionnalite induits par des champs exterieurs ou par un confinement lateral dans les heterostructures de semiconducteurs iii-v." Paris 6, 1990. http://www.theses.fr/1990PA066693.
Повний текст джерелаLee, Sunyoung. "Distributed effects in power transistors and the optimization of the layouts of AlGaN/GaN HFETs." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1149095133.
Повний текст джерелаPiotrowicz, Pawel Jan Andrzej. "Fabrication and measurement of laterally confined double barrier heterostructures with wide wells." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627421.
Повний текст джерелаКниги з теми "Lateral heterostructures"
Horing, Norman J. Morgenstern. Retarded Green’s Functions. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0005.
Повний текст джерелаЧастини книг з теми "Lateral heterostructures"
Lima, A. P., C. Miskys, O. Ambacher, M. Stutzmann, R. Dimitrov, V. Tilak, M. J. Murphy, and L. F. Eastman. "AlGaN/GaN lateral polarity heterostructures." In Springer Proceedings in Physics, 303–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_139.
Повний текст джерелаWu, Yuh-Renn, Madhusudan Singh, and Jasprit Singh. "Lateral and Vertical Charge Transport in Polar Nitride Heterostructures." In Polarization Effects in Semiconductors, 111–59. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-68319-5_3.
Повний текст джерелаJeschke, Sabina, Olivier Pfeiffer, Joerg Schulze, and Marc Wilke. "Crystalline Ge1−x Sn x Heterostructures in Lateral High-Speed Devices." In Automation, Communication and Cybernetics in Science and Engineering 2009/2010, 597–608. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16208-4_52.
Повний текст джерелаKurtz, E., M. Schmidt, B. Dal Don, S. Wachter, D. Litvinov, D. Gerthsen, H. Kalt, and C. Klingshirn. "Properties of CdSe/ZnSe based quantum heterostructures with and without lateral confinement potentials." In Springer Proceedings in Physics, 391–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_181.
Повний текст джерелаHeinecke, Harald. "Concepts for Lateral III–V Heterostructures Fabricated by Surface Selective Growth in MOMBE." In Low Dimensional Structures Prepared by Epitaxial Growth or Regrowth on Patterned Substrates, 229–42. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0341-1_21.
Повний текст джерелаZytkiewicz, Z. R., and D. Dobosz. "Influence of Si Doping on Epitaxial Lateral Overgrowth of GaAs." In Heterostructure Epitaxy and Devices — HEAD’97, 71–74. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5012-5_9.
Повний текст джерелаMimila-Arroyo, J., and K. Somogyi. "Optical Gain Improvement of GaAs Lateral Photoresistive Elements by Sulphur Passivation of the Surface." In Heterostructure Epitaxy and Devices — HEAD’97, 251–54. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5012-5_48.
Повний текст джерелаBrinkop, F., C. Dahl, J. P. Kotthaus, G. Weimann, and W. Schlapp. "Microwave Conductivity of Laterally Confined Electron Systems in AlGaAs/GaAs Heterostructures." In Springer Series in Solid-State Sciences, 352–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84408-9_51.
Повний текст джерелаBakhtatou, Ali, and Ali Hamidani. "Design of a New Photo-Diode Based on (α-PbO)/(α-SnO) Lateral Heterostructure." In Springer Proceedings in Materials, 133–41. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1916-7_14.
Повний текст джерелаTagawa, Tomoya, and Shin-ichi Katayama. "Plasmons in laterally density modulated 2D electron gas in shallow etched single-heterostructures." In Springer Proceedings in Physics, 481–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_225.
Повний текст джерелаТези доповідей конференцій з теми "Lateral heterostructures"
Zhong, Yutong, Hanyuan Ma, Qian Lv, Yongzhuo Li, Jiabin Feng, Chen Li, Jialu Xu, Chenxin Yu, Ruitao Lv, and Cun-Zheng Ning. "Low-voltage Injection-free Electroluminescence Device based on a Monolayer MoSe2/WSe2 Lateral Heterostructure." In CLEO: Science and Innovations, SF2R.5. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sf2r.5.
Повний текст джерелаMalhotra, Yakshita, Yifan Shen, Yuanpeng Wu, Josey Hanish, Yifu Guo, Yixin Xiao, Kai Sun, Theodore Norris, and Zetian Mi. "Carrier Transfer From C-Plane to Semipolar-Plane Regions in a Red-Emitting InGaN/GaN Heterostructure." In CLEO: Applications and Technology, JTu2A.126. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jtu2a.126.
Повний текст джерелаTaghinejad, Hossein, and Ali Adibi. "Ultra-miniaturized lateral heterostructures in 2D semiconductors." In Active Photonic Platforms XIII, edited by Ganapathi S. Subramania and Stavroula Foteinopoulou. SPIE, 2021. http://dx.doi.org/10.1117/12.2593849.
Повний текст джерелаMarian, D., E. Dib, T. Cusati, A. Fortunelli, G. Iannaccone, and G. Fiori. "Two-dimensional transistors based on MoS2 lateral heterostructures." In 2016 IEEE International Electron Devices Meeting (IEDM). IEEE, 2016. http://dx.doi.org/10.1109/iedm.2016.7838413.
Повний текст джерелаVoronine, Dmitri V., and Sharad Ambardar. "Nanophotonics of coupled emitters in atomically thin lateral heterostructures." In Active Photonic Platforms XII, edited by Ganapathi S. Subramania and Stavroula Foteinopoulou. SPIE, 2020. http://dx.doi.org/10.1117/12.2569073.
Повний текст джерелаJeschke, Sabina, Olivier Pfeiffer, Joerg Schulze, and Marc Wilke. "Crystalline Ge1-xSnx Heterostructures in Lateral High-Speed Devices." In 2010 Fourth International Conference on Quantum, Nano and Micro Technologies (ICQNM). IEEE, 2010. http://dx.doi.org/10.1109/icqnm.2010.17.
Повний текст джерелаFontein, P. F., P. Hendriks, J. Wolter, A. Kucernak, R. Peat, and D. E. Williams. "Topography Of GaAs/AlgaAs Heterostructures Using The Lateral Photo Effect." In 1988 International Congress on Optical Science and Engineering. SPIE, 1989. http://dx.doi.org/10.1117/12.950344.
Повний текст джерелаHorst, S., S. W. Koch, G. Blume, G. Weiser, W. Ruhle, S. R. Johnson, J. B. Wang, et al. "Strong Lateral Confinement in Ga(AsSb)/GaAs/(AlGa)As Heterostructures." In CLEO '07. 2007 Conference on Lasers and Electro-Optics. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4452599.
Повний текст джерелаOlbrich, P., R. Ravash, T. Feil, S. D. Danilov, J. Allerdings, D. Weiss, E. L. Ivchenko, and S. D. Ganichev. "Terahertz photocurrents in heterostructures with one-dimensional lateral periodic potential." In 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2008). IEEE, 2008. http://dx.doi.org/10.1109/icimw.2008.4665696.
Повний текст джерелаKobayashi, Y., T. Saito, H. Tokuda, and M. Kuzuhara. "Electrical charaterization of lateral tunnel junctions fabricated on AlGaN/GaN heterostructures." In 2013 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK). IEEE, 2013. http://dx.doi.org/10.1109/imfedk.2013.6602242.
Повний текст джерелаЗвіти організацій з теми "Lateral heterostructures"
Tsui, D. C. Electronic Processes in Heterostructures, Strained-Layer Materials, and Laterally Patterned Structures. Fort Belvoir, VA: Defense Technical Information Center, September 1994. http://dx.doi.org/10.21236/ada294970.
Повний текст джерела