Статті в журналах з теми "Lasers à fibre – Innovation"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Lasers à fibre – Innovation.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Lasers à fibre – Innovation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Peng, Saize. "Modeling and numerical simulation optimization of output spectrum of thulium-doped broadband fiber optic light source." Applied and Computational Engineering 11, no. 1 (September 25, 2023): 59–64. http://dx.doi.org/10.54254/2755-2721/11/20230208.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this research, the performance of thulium-doped fiber lasers is analyzed and a mathematical model is established. Thulium-doped fiber amplifiers are the focus of this article. A large number of simulations have been carried out in the MATLAB simulation environment, and the main work and innovation points are as follows: firstly, the energy level structure characteristics of thulium were studied, and its spectral characteristics were analyzed. After consulting some information, 3H4 to 3H6 energy level has been selected in modeling. Secondly, use the rate equations and the power propagation equations to provide a theoretical analysis of the pumping mode of thulium-doped fiber lasers. And a mathematical model of a thulium-doped fiber laser was established. The parameters such as fiber length and doping concentration in the model are discussed. Finally, to find the appropriate parameters, the genetic optimization algorithm is used to optimize the fiber length and doping concentration, and then we can get the parameters corresponding to the maximum output power of the thulium-doped fiber amplifier.
2

Leconte, Baptiste, Laurent Bigot, Philippe Roy, Raphael Jamier, Romain Dauliat, Marie-Alicia Malleville, Yves Quiquempois, Hicham El Hamzaoui, and Olivier Vanvincq. "Lasers de forte puissance : vers l’avènement de fibres optiques à aire effective extrême." Photoniques, no. 99 (November 2019): 23–27. http://dx.doi.org/10.1051/photon/20199923.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les systèmes lasers fibrés sont au coeur de nombreuses recherches académiques et constituent un marché annuel mondial dépassant le milliard d’euros. L’augmentation de la puissance en sortie de ces dispositifs a été rendue possible grâce à une innovation permanente portant sur la géométrie de fibres, les matériaux qui les constituent et les méthodes de synthèse associées. Après un bref rappel historique, nous rappelons quelques éléments de contexte et présentons quelques avancées récentes en matière de fibres à très grandes aires effectives.
3

Cayne, N., G. Jacobowitz, P. Lamparello, T. Maldonado, C. Rockman, M. Adelman, and L. S. Kabnick. "Endovenous procedures in varicose veins." Phlebologie 37, no. 05 (2008): 229–36. http://dx.doi.org/10.1055/s-0037-1622235.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
SummaryOver the past ten years endoveous treatment options for varicose veins have evovled considerably, offering clinicians a multitude of options to meet the needs of their patients. The endothermal ablation procedures have moved to the forefront as the choice modality for treating truncal reflux. Both radiofrequency ablation and endovenous laser ablation are widely accepted and interchangeable, showing comparable efficacy and safety. Although numerous endovenous laser wavelengths exist, the data indicates that the differences do not affect the efficacy or postoperative recovery of the procedure. The endovenous laser innovation that has shown early evidence of improved patient outcome is the jacket-tip fiber. The versatility of sclerotherapy makes it a critical component in the endovenous treatment of varicosities. Although not approved by the Food and Drug Administration (USA), the use of a foamed sclerosing agent is the fastest growing segment of sclerotherapy and an important treatment modality in the future of varicose vein treatment. Cutaneous lasers and intense pulse light devices contribute a crucial element, enabling clinicians to treat minute veins that may be impossible to treat with other therapies.
4

Zafar Ali, Syed, and Muhammad Khawar Islam. "Statistical dependence analysis of Erbium doped fiber ring lasers (EDFRL) chaos." Results in Optics 5 (December 2021): 100167. http://dx.doi.org/10.1016/j.rio.2021.100167.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhou, Ziyue. "Design of Spontaneous Emission Spectra Amplified by S-Band Fiber and Optimization of Output Spectral Peak Power." Highlights in Science, Engineering and Technology 72 (December 15, 2023): 1023–29. http://dx.doi.org/10.54097/tzfv4695.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The thulium-doped fiber amplifier stands out as the most promising amplifier within the S-band spectrum. This paper delves into the exploration of a 1.47um Tm^(3+)-doped fluorinated fiber amplifier as the primary subject of research. This paper approach begins by establishing the rate equation and power propagation equation for the thulium ion level structure, followed by rigorous mathematical analysis and solutions. Subsequently, we employ MATLAB programming to perform comprehensive calculations, scrutinizing the amplified spontaneous emission spectra's variation concerning Thulium-Doped Fiber Amplifier (TDFA) length and pump power. In a quest for optimal performance, this paper turn to the simulated annealing algorithm to fine-tune the doping concentration and fiber length, ultimately achieving the most favorable output spectral gain. Through systematic experimentation and parameter manipulation, we've unveiled a substantial breakthrough, with our research yielding an impressive optimal gain of 31.71 dB. The ramifications of this work extend far beyond the confines of this study. It sets a solid foundation for advancements in fiber fabrication and paves the way for the realization of fiber lasers, promising significant contributions to the expansion of S-band fiber communication systems. Our findings hold great promise and are poised to drive innovation in this critical area of telecommunications.
6

Srinivasan, Thulasi, and Murat Yildirim. "Advances in Ultrafast Fiber Lasers for Multiphoton Microscopy in Neuroscience." Photonics 10, no. 12 (November 26, 2023): 1307. http://dx.doi.org/10.3390/photonics10121307.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Multiphoton microscopy (MPM) has emerged as a vital tool in neuroscience, enabling deeper imaging with a broader field of view, as well as faster and sub-cellular resolution. Recent innovations in ultrafast fiber laser technology have revolutionized MPM applications in living brains, offering advantages like cost-effectiveness and user-friendliness. In this review, we explore the progress in ultrafast fiber laser technology, focusing on its integration into MPM for neuroscience research. We also examine the utility of femtosecond fiber lasers in fluorescence and label-free two- and three-photon microscopy applications within the field. Furthermore, we delve into future possibilities, including next-generation fiber laser designs, novel laser characteristics, and their potential for achieving high spatial and temporal resolution imaging. We also discuss the integration of fiber lasers with implanted microscopes, opening doors for clinical and fundamental neuroscience investigations.
7

Deepak, M. "A Study of Secured Enabled Passive Optical Network Enabling RoF." Indonesian Journal of Electrical Engineering and Computer Science 9, no. 1 (January 1, 2018): 43. http://dx.doi.org/10.11591/ijeecs.v9.i1.pp43-48.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
<p>Innovation is an incorporation of radio sign in optical fiber transmission inside of system foundations that are thought to be financially savvy, pragmatic and moderately adaptable framework setup for whole deal transport remote signs. This venture proposes a Next era PON construction modeling backings RoF and OFDMA signal coordination without WDM lasers, and exhibit that 10-Gb/s OFDMA and three RF signals at 2.1GHz are transmitted more than 20km SMF in a 32-ONU in both upstream and downstream bearing. A security control unit and an optical switch are utilized associating four Optical Line Terminations (OLTs) with everyone serving just 32 Optical Network Units (ONUs). Insurance control unit gathers data of ONUs served by each OLT, and when an OLT falls flat, it will educate an active OLT to help its unique ONUs together with the burden served by the fizzled OLT.</p>
8

Dianov, E. M. "Fibre lasers." Quantum Electronics 46, no. 12 (December 28, 2016): 1067. http://dx.doi.org/10.1070/qel16270.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fermann, Martin E., and Ingmar Hartl. "Ultrafast fibre lasers." Nature Photonics 7, no. 11 (October 20, 2013): 868–74. http://dx.doi.org/10.1038/nphoton.2013.280.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Heber, Joerg. "Solar fibre lasers." Nature Materials 11, no. 4 (March 22, 2012): 266. http://dx.doi.org/10.1038/nmat3295.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Vasdekis, A. E., G. E. Town, G. A. Turnbull, and I. D. W. Samuel. "Fluidic fibre dye lasers." Optics Express 15, no. 7 (2007): 3962. http://dx.doi.org/10.1364/oe.15.003962.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Pureur, David, and Alexandre Biasi. "Les lasers à fibre." Photoniques, no. 51 (January 2011): 47–48. http://dx.doi.org/10.1051/photon/20115147.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Jauregui, Cesar, Jens Limpert, and Andreas Tünnermann. "High-power fibre lasers." Nature Photonics 7, no. 11 (October 20, 2013): 861–67. http://dx.doi.org/10.1038/nphoton.2013.273.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Fermann, Martin E., and Ingmar Hartl. "Erratum: Ultrafast fibre lasers." Nature Photonics 7, no. 12 (October 28, 2013): 1006. http://dx.doi.org/10.1038/nphoton.2013.317.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Fermann, Martin E., and Ingmar Hartl. "Erratum: Ultrafast fibre lasers." Nature Photonics 7, no. 12 (October 28, 2013): 1006. http://dx.doi.org/10.1038/nphoton.2013.319.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Pile, David. "Fibre lasers: Triwavelength source." Nature Photonics 10, no. 10 (September 29, 2016): 621. http://dx.doi.org/10.1038/nphoton.2016.195.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Chernysheva, Maria, Aleksey Rozhin, Yuri Fedotov, Chengbo Mou, Raz Arif, Sergey M. Kobtsev, Evgeny M. Dianov, and Sergei K. Turitsyn. "Carbon nanotubes for ultrafast fibre lasers." Nanophotonics 6, no. 1 (January 6, 2017): 1–30. http://dx.doi.org/10.1515/nanoph-2015-0156.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractCarbon nanotubes (CNTs) possess both remarkable optical properties and high potential for integration in various photonic devices. We overview, here, recent progress in CNT applications in fibre optics putting particular emphasis on fibre lasers. We discuss fabrication and characterisation of different CNTs, development of CNT-based saturable absorbers (CNT-SA), their integration and operation in fibre laser cavities putting emphasis on state-of-the-art fibre lasers, mode locked using CNT-SA. We discuss new design concepts of high-performance ultrafast operation fibre lasers covering ytterbium (Yb), bismuth (Bi), erbium (Er), thulium (Tm) and holmium (Ho)-doped fibre lasers.
18

Corner, L. "Fibre lasers for gamma colliders." European Physical Journal Special Topics 223, no. 6 (May 2014): 1207–11. http://dx.doi.org/10.1140/epjst/e2014-02174-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Kurkov, Andrei S., and Evgenii M. Dianov. "Moderate-power cw fibre lasers." Quantum Electronics 34, no. 10 (October 31, 2004): 881–900. http://dx.doi.org/10.1070/qe2004v034n10abeh002739.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Davydov, B. L., and D. I. Yagodkin. "A LiNbO3switch for fibre lasers." Quantum Electronics 35, no. 11 (November 30, 2005): 1071–74. http://dx.doi.org/10.1070/qe2005v035n11abeh009851.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Carter, Jeremy N., Richard G. Smart, Anne C. Tropper, and David C. Hanna. "Thulium-doped fluorozirconate fibre lasers." Journal of Non-Crystalline Solids 140 (January 1992): 10–15. http://dx.doi.org/10.1016/s0022-3093(05)80732-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Langridge, P. E., and W. J. Firth. "Doubly nonlinear fibre loop lasers." Optics Communications 86, no. 2 (November 1991): 170–76. http://dx.doi.org/10.1016/0030-4018(91)90555-r.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Desfarges-Berthelemot, Agnès, Vincent Kermène, David Sabourdy, Johan Boullet, Philippe Roy, Jerôme Lhermite, and Alain Barthélémy. "Coherent combining of fibre lasers." Comptes Rendus Physique 7, no. 2 (March 2006): 244–53. http://dx.doi.org/10.1016/j.crhy.2006.01.019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Turitsyn, Sergei K., Sergey A. Babin, Dmitry V. Churkin, Ilya D. Vatnik, Maxim Nikulin, and Evgenii V. Podivilov. "Random distributed feedback fibre lasers." Physics Reports 542, no. 2 (September 2014): 133–93. http://dx.doi.org/10.1016/j.physrep.2014.02.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Canning, John. "Fibre lasers and related technologies." Optics and Lasers in Engineering 44, no. 7 (July 2006): 647–76. http://dx.doi.org/10.1016/j.optlaseng.2005.02.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Gabzdyl, Jack. "Fibre lasers make their mark." Nature Photonics 2, no. 1 (January 2008): 21–23. http://dx.doi.org/10.1038/nphoton.2007.268.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Lauridsen, V. C., J. H. Povlsen, and P. Varming. "Design of DFB fibre lasers." Electronics Letters 34, no. 21 (1998): 2028. http://dx.doi.org/10.1049/el:19981446.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Mears, R. J., and S. R. Baker. "Erbium fibre amplifiers and lasers." Optical and Quantum Electronics 24, no. 5 (May 1992): 517–38. http://dx.doi.org/10.1007/bf00619752.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Alsous, M. B., J. Bittebierre, R. Richier, and H. Ahmad. "Construction of all-fibre fibre lasers with multidielectric mirrors." Pure and Applied Optics: Journal of the European Optical Society Part A 5, no. 6 (November 1996): 777–90. http://dx.doi.org/10.1088/0963-9659/5/6/004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Surin, A. A., S. V. Larin, T. E. Borisenko, K. Yu Prusakov, and Yu S. Stirmanov. "High-power cw visible lasers pumped by Raman fibre lasers." Quantum Electronics 46, no. 12 (December 28, 2016): 1097–101. http://dx.doi.org/10.1070/qel16222.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Woodward, Robert, and Edmund Kelleher. "2D Saturable Absorbers for Fibre Lasers." Applied Sciences 5, no. 4 (November 30, 2015): 1440–56. http://dx.doi.org/10.3390/app5041440.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Kochanowicz, M., D. Dorosz, J. Żmojda, and J. Dorosz. "Beam Quality of Multicore Fibre Lasers." Acta Physica Polonica A 118, no. 6 (December 2010): 1177–82. http://dx.doi.org/10.12693/aphyspola.118.1177.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Bouteiller, J. C. "Linewidth predictions for Raman fibre lasers." Electronics Letters 39, no. 21 (2003): 1511. http://dx.doi.org/10.1049/el:20030980.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Supriya, Lakshmi. "Bacterial fibre shines lasers through water." New Scientist 235, no. 3140 (August 2017): 7. http://dx.doi.org/10.1016/s0262-4079(17)31643-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Kurkov, Andrei S. "Fifth Russian Workshop on Fibre Lasers." Quantum Electronics 42, no. 9 (September 30, 2012): 753. http://dx.doi.org/10.1070/qe2012v042n09abeh014943.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Babin, S. A., and S. L. Semjonov. "Eighth Russian Workshop on Fibre Lasers." Quantum Electronics 48, no. 12 (December 18, 2018): 1083. http://dx.doi.org/10.1070/qel16921.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Ibsen, M., E. Rønnekleiv, G. J. Cowle, M. N. Zervas, and R. I. Laming. "Multiple wavelength all-fibre DFB lasers." Electronics Letters 36, no. 2 (2000): 143. http://dx.doi.org/10.1049/el:20000195.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Liao, Z. M., and G. P. Agrawal. "Mode-partition noise in fibre lasers." Electronics Letters 36, no. 14 (2000): 1188. http://dx.doi.org/10.1049/el:20000862.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Chen, W. C., W. C. Xu, F. Song, M. C. Shen, D. A. Han, and L. B. Chen. "Vector solitons in femtosecond fibre lasers." European Physical Journal D 48, no. 2 (March 19, 2008): 255–60. http://dx.doi.org/10.1140/epjd/e2008-00048-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Chen, W. C., W. C. Xu, F. Song, M. C. Shen, D. A. Han, and L. B. Chen. "Vector solitons in femtosecond fibre lasers." European Physical Journal D 50, no. 1 (November 2008): 123. http://dx.doi.org/10.1140/epjd/e2008-00194-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Sabourdy, D., V. Kermène, A. Desfarges-Berthelemot, L. Lefort, A. Barthélémy, C. Mahodaux, and D. Pureur. "Power scaling of fibre lasers with all-fibre interferometric cavity." Electronics Letters 38, no. 14 (2002): 692. http://dx.doi.org/10.1049/el:20020505.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Kobtsev, Sergey. "Methods of Radiation Wavelength Tuning in Short-Pulsed Fibre Lasers." Photonics 11, no. 1 (December 28, 2023): 28. http://dx.doi.org/10.3390/photonics11010028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Methods of output wavelength tuning in short-pulsed fibre lasers are analysed. Many of them rely on spectral selection principles long used in other types of lasers. For compatibility with the fibre-optical format, the corresponding elements are sealed in compact, airtight volumes with fibre-optical radiation input and output. A conclusion is presented about the relatively small number of inherently “fibre-optical” ways of tuning the wavelength of radiation. It is demonstrated that the range of output wavelength tuning in short-pulsed fibre lasers may span hundreds of nanometres (even without extension beyond the active medium gain contour through nonlinear effects). From the presented review results, it may be concluded that the search for the optimal tuning method complying with the user-preferred all-PM-fibre short-pulsed laser design is not yet complete.
43

He, Wentao, and Zhiwei Men. "Analysis on Transmission Characteristics of Stimulated Raman Scattering Based on the Multi-Sensor Signal Enhancement Technique." Scientific Programming 2022 (May 11, 2022): 1–9. http://dx.doi.org/10.1155/2022/5726718.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In recent 20 years, fibre laser system has been developed rapidly and widely used for its high quality, high efficiency, high robustness, and compactness. However, there are still many factors (such as non-linear effect, thermal effect, and mode instability) that limit the further increase of power of fibre laser system. Stimulated Raman scattering (SRS) is one of the main limitations in the transmission process of fibre lasers. It not only reduces the output efficiency of fibre lasers, but also increases the damage risk of reverse Stokes light to the system. Recent studies have shown that SRS in low-mode fibres can lead to quasi-static mode degradation in addition to mode instability. With the introduction of multi-sensor enhancement technology in the fibre field, it becomes an effective means to popularise high-power and high-beam quality fibre lasers. Based on the multi-sensor signal enhancement technology, this paper explores the influence of this technology on the output efficiency of SRS in the mode-reducing fibre laser, which provides a new idea and method for the output efficiency and transmission analysis method of fibre laser.
44

ZHANG Xue-xia, 张雪霞, 葛廷武 GE Ting-wu, 谭祺瑞 TAN Qi-rui, 刘琛辰 LIU Chen-chen, and 王智勇 WANG Zhi-yong. "Research of Yb-doped All Fibre Lasers." ACTA PHOTONICA SINICA 44, no. 10 (2015): 1014002. http://dx.doi.org/10.3788/gzxb20154410.1014002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Kobtsev, Sergey M. "Artificial saturable absorbers for ultrafast fibre lasers." Optical Fiber Technology 68 (January 2022): 102764. http://dx.doi.org/10.1016/j.yofte.2021.102764.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Cheng Xue, 程雪, 王建立 Wang Jianli, and 刘昌华 Liu Changhua. "Beam combining of high energy fibre lasers." Infrared and Laser Engineering 47, no. 1 (2018): 103011. http://dx.doi.org/10.3788/irla201847.0103011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

France, P. W. "A Review of Fluoride Glass Fibre Lasers." Materials Science Forum 67-68 (January 1991): 503–8. http://dx.doi.org/10.4028/www.scientific.net/msf.67-68.503.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Shi, Jindan, Shaif-ul Alam, and Morten Ibsen. "Highly efficient Raman distributed feedback fibre lasers." Optics Express 20, no. 5 (February 15, 2012): 5082. http://dx.doi.org/10.1364/oe.20.005082.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Tsuji, Masakazu. "IPG fibre lasers and aluminium welding applications." Welding International 23, no. 10 (September 14, 2009): 717–22. http://dx.doi.org/10.1080/09507110902836846.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Woodward, R. I. "Dispersion engineering of mode-locked fibre lasers." Journal of Optics 20, no. 3 (February 14, 2018): 033002. http://dx.doi.org/10.1088/2040-8986/aaa9f5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії