Добірка наукової літератури з теми "Laser hybrid deposition"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Laser hybrid deposition".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Laser hybrid deposition"
Mikšovský, Jan, Miroslav Jelínek, Petr Písařík, Tomáš Kocourek, Jan Remsa, and Karel Jurek. "DLC/TI THIN FILMS PROPERTIES PREPARED BY HYBRID LASER TECHNOLOGIES." Acta Polytechnica CTU Proceedings 8 (June 30, 2017): 11–13. http://dx.doi.org/10.14311/app.2017.8.0011.
Повний текст джерелаQian, Ying Ping, Ju Hua Huang, and Hai Ou Zhang. "Study on the Factors Influencing the Layer Precision in Hybrid Plasma-Laser Deposition Manufacturing." Advanced Materials Research 97-101 (March 2010): 3828–31. http://dx.doi.org/10.4028/www.scientific.net/amr.97-101.3828.
Повний текст джерелаZhao, Yuhui, Zhiguo Wang, Jibin Zhao, Zhenfeng He, and Hongwei Zhang. "Comparison of Substrate Preheating on Mechanical and Microstructural Properties of Hybrid Specimens Fabricated by Laser Metal Deposition 316 L with Different Wrought Steel Substrate." Crystals 10, no. 10 (October 1, 2020): 891. http://dx.doi.org/10.3390/cryst10100891.
Повний текст джерелаJelínek, Miroslav, Tomáš Kocourek, Josef Zemek, and Jaromír Kadlec. "SiCxLayers Prepared by Hybrid Laser Deposition and PLD." Plasma Processes and Polymers 6, S1 (March 17, 2009): S366—S369. http://dx.doi.org/10.1002/ppap.200930803.
Повний текст джерелаFecht, Nikolaus. "Großbauteile per 3D-Druck/Large components – 3D-printed." wt Werkstattstechnik online 110, no. 11-12 (2020): 821–23. http://dx.doi.org/10.37544/1436-4980-2020-11-12-85.
Повний текст джерелаAntoszewski, Bogdan, Hubert Danielewski, Jan Dutkiewicz, Łukasz Rogal, Marek St Węglowski, Krzysztof Kwieciński, and Piotr Śliwiński. "Semi-Hybrid CO2 Laser Metal Deposition Method with Inter Substrate Buffer Zone." Materials 14, no. 4 (February 4, 2021): 720. http://dx.doi.org/10.3390/ma14040720.
Повний текст джерелаHubler, Graham K. "Pulsed Laser Deposition." MRS Bulletin 17, no. 2 (February 1992): 26–29. http://dx.doi.org/10.1557/s0883769400040586.
Повний текст джерелаGrzesik, Wit. "Hybrid manufacturing of metallic parts integrated additive and subtractive processes." Mechanik 91, no. 7 (July 9, 2018): 468–75. http://dx.doi.org/10.17814/mechanik.2018.7.58.
Повний текст джерелаQian, Ying Ping, Ju Hua Huang, and Hai Ou Zhang. "Influence of Laser Parameters on Precision in Hybrid Plasma Laser Deposition Manufacturing." Advanced Materials Research 97-101 (March 2010): 3811–15. http://dx.doi.org/10.4028/www.scientific.net/amr.97-101.3811.
Повний текст джерелаKocourek, Tomas, Miroslav Jelinek, Jaromir Kadlec, Cyril Popov, and Antonino Santoni. "Thin TiCN Films Prepared by Hybrid Magnetron-Laser Deposition." Plasma Processes and Polymers 4, S1 (April 2007): S651—S654. http://dx.doi.org/10.1002/ppap.200731603.
Повний текст джерелаДисертації з теми "Laser hybrid deposition"
Skåre, Daniel Gundersen. "Pulsed Laser Deposition of ZnO Nanostructures for Hybrid Inorganic/Organic Solar Cells." Thesis, Norwegian University of Science and Technology, Department of Electronics and Telecommunications, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9940.
Повний текст джерелаAu catalyst ZnO nanostructures have been grown on the a- and c-plane sapphire substrate by PLD. Influence of substrate lattice orientation, substrate surface and different substrate annealing temperature have been characterized by AFM, SEM and XRD. This report shows that a-plane sapphire substrate annealed at 1000 degree C and 1200 degree C improves the growth condition of Au catalyst ZnO nanostructures. For c-plane sapphire; annealing at 1200 degree C and 1400 degree C enhances the nanostructure growth. The better growth condition is a result of the terrace-and-step morphology seen on the substrate surface prior to growth. This report also indicates a correlation between the azimuthal in-plane alignment of the grown nanostructures and the sapphire substrate lattice orientation.
Ren, Lan. "Integrated process planning for a hybrid manufacturing system." Diss., Rolla, Mo. : Missouri University of Science and Technology, 2008. http://scholarsmine.mst.edu/thesis/pdf/Ren_09007dcc8046714a.pdf.
Повний текст джерелаVita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed April 18, 2008) Includes bibliographical references.
Juhasz, Michael J. "In and Ex-Situ Process Development in Laser-Based Additive Manufacturing." Youngstown State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ysu15870552278358.
Повний текст джерелаPerini, Matteo. "Additive manufacturing for repairing: from damage identification and modeling to DLD processing." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/268434.
Повний текст джерелаMatsumura, Masashi. "Synthesis, electrical properties, and optical characterization of hybrid zinc oxide/polymer thin films and nanostructures." Birmingham, Ala. : University of Alabama at Birmingham, 2007. https://www.mhsl.uab.edu/dt/2009r/matsumura.pdf.
Повний текст джерелаTitle from PDF t.p. (viewed Feb. 3, 2010). Additional advisors: Derrick R. Dean, Sergey B. Mirov, Sergey Vyazovkin, Mary Ellen Zvanut. Includes bibliographical references (p. 122-145).
Kulish, Aleksandr. "Etude paramétrique d’un procédé d’impression 3D (LMD) en vue d’optimiser l’intégrité matière : Application à l’alliage maraging 1.2709." Thesis, Lyon, 2022. http://www.theses.fr/2022LYSEE001.
Повний текст джерелаThe PhD thesis presented in this work is dedicated to the innovative method of plastic injection mould production. This method combines laser additive technology, namely, the Laser Metal Deposition (LMD) and technique of laser treatment aiming to reduce the residual stresses. Therefore, the main objective of the present work is to optimize and analyze the proposed fabrication method regarding the final properties of deposited parts. The parametrical study of “single-bead”, multi-bead “wall” and multi-bead “cube” LMD has been carried out. The LMD of cubic specimens has been analyzed with respect to the density, residual stresses and microstructure in order to find the optimal deposition parameters. The optimal LMD parameters have been verified during the longtime deposition of cubic and cylindrical specimens in a single operating session and after multiple pauses. The fatigue resistance as well as the density, microhardness and microstructure were then evaluated. The numerical simulation has been also performed to predict the thermal fields generated during LMD. Finally, this thesis includes the numerical and experimental study of laser treatment process aiming to reduce the residual stresses and avoid the possible long-lasting post-treatment such as aging
Abedrrabba, Sarra. "Solutions innovantes pour des filtres de fréquences volumiques et semi-volumiques performants, en céramique, silice fondue et thermoplastique COC/COP... : nouvelles alternatives pour les futurs programmes de satellite multimédia." Thesis, Brest, 2017. http://www.theses.fr/2017BRES0126/document.
Повний текст джерелаThe emergence of satellite high-speed internet for the coverage of rural zones is accompanied by numerous technological constraints. The current trend is to use higher frequency bands to release the satellite capacity for users. The increasing frequency requires new considerations especially for filtering needs which become notably strict in terms of performance and integration in small integrated circuits. This work introduces filtering solutions based on high quality factor Substrate Integrated Waveguides (SIW) using a novel 3D transition for a better integration in widely planar Hybrid ICs.The first chapter introduces the study’s context and the different elements justifying the use of the SIW technology.In fact, these structures profit from both the good quality factors of TE-modes propagating in the substrate and the easy fabrication process and integration of planar circuits. However, to increase the SIW quality factor, the substrate’s height should be increased which induces interconnection limitations such as long bond wires with high parasitic effects and large microstrip access lines with discontinuity problems and the propagation of parasitic modes. The adopted approach consists in imagining 3D shapes providing both mode and thickness matching between a microstrip line etched on a thin substrate and a high substrate SIW.The second chapter introduces the different manufacturing processes used for the substrate’s shaping and metallization. Three substrates are considered: Alumina, fused Silica and Cyclo Olefin Polymer COC. Alumina is widely used in space applications and has a well-mastered process. For equivalent dielectric losses, fused silica has a lower permittivity for bigger structures with less manufacturing tolerance sensitivity. Both Alumina and fused silica substrates are shaped using a laser ablation. The reachable substrate’s height using this machining method is relatively low. The polymer solution (COP) is elaborated using a molding process allowing higher substrates heights.The last chapter outlines the design steps of the different solutions and the measurement results of the first prototypes. These results are on the whole encouraging but require further development
Käbisch, Sven. "Hybridsolarzellen aus ZnO-Nanostrukturen und konjugierten Polymeren." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2015. http://dx.doi.org/10.18452/17240.
Повний текст джерелаHybrid solar cells are built from ZnO layers and ZnO nanostructures and Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b'']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT). The growth of the ZnO layers and nanostructures is performed with pulsed laser deposition (PLD) on sapphire substrates. The samples exhibit a c-axis orientation. The polarity of a ZnO layer determines the morphology of subsequently grown ZnO nanostructures. One can control the morphology between ZnO nanorods on an O-terminated layer and nanowalls on a Zn-terminated layer. Studies with convergent electron beam diffraction reveals that the ZnO nanostructures are always Zn-terminated. The interface between ZnO and PCPDTBT is studied with photoelectron spectroscopy and shows a vacuum level alignment between both materials. In principle, the interface is suitable for photovoltaic activity, however, the achieved power conversion efficiencies are very low. This is due to a low exciton dissociation efficiency, which can be improved by the use of sol-gel ZnO, small organic molecules, and a lower conductivity of the PLD ZnO. Nevertheless, the maximum power conversion efficiency amounts to 0.21 %, only.
Jaggernauth, Aneeta. "Polymer funcionalization of nano-graphene oxide by molecular layer deposition." Master's thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/14832.
Повний текст джерелаO presente trabalho aborda o processo de funcionalização por via seca de nanopartículas de óxido de grafeno (nano-GO) visando o estabelecimento de ligações a polietilenoglicol (PEG) na sua superfície. Atualmente utilizam-se métodos químicos de funcionalização por via húmida com esta finalidade, no entanto são demorados e resultam em perdas significativas de amostra. O trabalho foi realizado em duas fases: o GO foi primeiramente sintetizado em forma de filme e pó utilizando um método “Hummers” modificado, sendo caracterizado por FTIR, SEM e DLS; em seguida o GO foi exposto aos precursores do PEG num reator de deposição por camada molecular (MLD) sob condições de vácuo. Utilizaram-se temperaturas diversas de deposição, tendo-se observado uma adsorção ótima entre 90-100° C. Primeiramente, a deposição de PEG em pó de GO, com terminações de amina, confirmou por FTIR a presença dos picos característicos de PEG, aproximadamente aos 2925 cm-1 e 2850 cm-1, corroborando a funcionalização a seco do GO por um mecanismo de vaporização-condensação. A via MLD, usando TMA e EG como precursores foi então realizada no pó de GO, tendo proporcionado uma camada de passivação inicial rica em alumínio, na qual ciclos subsequentes de exposição ao monómero EG resultaram na sua adsorção e polimerização, tal como demonstrado por FTIR e análises EDS. O nano-GO-PEG é vantajoso para aplicações na área da biomedicina, incluindo sistemas de administração de fármacos, biossensores e terapia fototérmica. O PEG permite ao nano-GO ser reconhecido como biocompatível, estabelecendo uma superfície repelente e incrementando o transporte citoplasmático, permitindo assim características essenciais, tais como alta absorvância óptica, fluorescência e estabilidade em meio fisiológico, essenciais para os sistemas biológicos. O sucesso da produção do nano-GO funcionalizado com PEG pela via a seco aqui proposta poderá será favorável para outros tipos de funcionalização e copolimerização de nanopartículas.
This research aims to achieve a dry functionalization approach for covalently attaching polyethylene glycol (PEG) onto the surface of nano-graphene oxide (GO). Currently, wet chemical methods are used to achieve this, being characteristically time consuming and resulting in significant loss of sample. This work is carried out in two stages; GO is first synthesized using a modified Hummers’ method, and then characterized by FTIR, SEM and DLS; it is then produced in film and powder form, for exposure to precursors in an MLD reactor under rough vacuum conditions. GO films were exposed to PEG at variable temperatures, determining that at 90oC and 100oC the optimal adsorption occurred. Deposition of amine-terminated PEG on GO powder confirmed the presence of characteristic PEG peaks around 2925cm-1 and 2850cm-1 via FTIR, substantiating the dry functionalization of GO via vaporization-condensation. An MLD route, using TMA and EG precursors was then performed on GO powder, delivering an initial passivation layer of Al, onto which subsequent cycles of EG adsorbs, demonstrated by FTIR and EDS analysis. PEGylated-nano-GO is advantageous for applications in the area of biomedicine; including drug delivery systems, biosensors and photothermal therapy. PEG permits nano-GO to be recognized as biocompatible; establishing on it a non-fouling surface and increasing its cytoplasmic transport, thereby allowing its inherent characteristics such as high optical absorbance, fluorescence, and stability in physiological media to be pertinent to biological systems. Successful production of PEG functionalized nano-GO via the proposed method will be favourable for other possibilities of nanoparticle surface functionalization and copolymerization.
Lin, Youqin. "Deposition of a carbon or polypyrrole nano-layer on carbon nanotubes-alumina hybrids and its impact on their mechanical and physical properties." Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2012. http://www.theses.fr/2012ECAP0004.
Повний текст джерелаGrowth of carbon nanotubes (CNTs) on micro-sized alumina (Al2O3) particles helps to achieve a uniform dispersion of CNTs in matrices without CNT entanglement. This kind of CNT-Al2O3 hybrids also provides a promising solution to the CNT safety problem since they integrate CNTs with micrometric particles, extending dimension of CNT fillers from nano-scale to micro-scale. However, the adhesion between the CNTs and the Al2O3 particles doesn’t sufficiently enable to fix the CNTs firmly and stably. Besides, another crucial concern of CNTs is how to create a strong interfacial adhesion between CNTs and polymer matrices for good mechanical properties and meanwhile not to degrade CNTs’ electrical conductivity. Motivated by these considerations, this PhD thesis aims to establishing several techniques for deposition of an electrically conductive nano-layer on the surface of CNT-Al2O3 hybrids. And the impacts of the deposited nano-layer on the fixing the CNTs on the Al2O3 surface, on bulk electrical conductivity of the CNT-Al2O3 hybrids, and on the interfacial adhesion of CNT-Al2O3/epoxy composite systems are investigated in detail
Частини книг з теми "Laser hybrid deposition"
Manshina, Alina. "Laser-Induced Deposition of Metal and Hybrid Metal-Carbon Nanostructures." In Springer Series in Chemical Physics, 387–403. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05974-3_20.
Повний текст джерелаBadea, Nicoleta, M. Jelinek, T. Tite, Mariana Prodana, A. Campean, and Ioana Demetrescu. "The Behavior of SiC Films Fabricated by Hybrid Laser-Magnetron Deposition after Immersion." In Key Engineering Materials, 537–40. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-422-7.537.
Повний текст джерелаVan, L. H., M. H. Hong, and J. Ding. "Pulsed Laser Deposition and Fabrication of CoO/ZnO and CoO/TiO2 Nano-Hybrid Thin Film." In Solid State Phenomena, 131–34. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908451-18-3.131.
Повний текст джерелаGeorge, Steven M., Byunghoon Yoon, Robert A. Hall, Aziz I. Abdulagatov, Zachary M. Gibbs, Younghee Lee, Dragos Seghete, and Byoung H. Lee. "Molecular Layer Deposition of Hybrid Organic-Inorganic Films." In Atomic Layer Deposition of Nanostructured Materials, 83–107. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527639915.ch5.
Повний текст джерелаMeng, Xiangbo. "Molecular Layer Deposition of Organic–Inorganic Hybrid Materials." In Optoelectronic Organic–Inorganic Semiconductor Heterojunctions, 37–70. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, LLC, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9780367348175-3.
Повний текст джерелаPark, S. J., B. K. Ahn, Prashant Sudhir Alegaonkar, H. J. Shin, and Ji Beom Yoo. "Fabrication of Porous Al2O3 and TiO2 Thin Film Hybrid Composite Using Atomic Layer Deposition and Properties Study." In Solid State Phenomena, 1273–76. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-31-0.1273.
Повний текст джерелаTlotleng, Monnamme, Esther T. Akinlabi, Mukul Shukla, and Sisa Pityana. "Application of Laser Assisted Cold Spraying Process for Materials Deposition." In Surface Engineering Techniques and Applications, 177–221. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-5141-8.ch006.
Повний текст джерела"Organic and Hybrid Materials." In Atomic Layer Deposition, 207–13. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118747407.ch7.
Повний текст джерелаТези доповідей конференцій з теми "Laser hybrid deposition"
Kotlyarchuk, Bohdan K., and Dmytro I. Popovych. "Pulsed laser deposition of phosphor nitride thin films." In International Workshop on Optoelectronic and Hybrid Optical/Digital Systems for Image/Signal Processing, edited by Simon B. Gurevich, Zinovii T. Nazarchuk, and Leonid I. Muravsky. SPIE, 2000. http://dx.doi.org/10.1117/12.388454.
Повний текст джерелаZhong, Minlin, Ting Huang, Yu Gu, Changsheng Dong, Lin Li, and Wenjin Liu. "Fabrication and characterization of nanoporous manganese structure by laser deposition hybrid selective electrochemical dealloying." In ICALEO® 2011: 30th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2011. http://dx.doi.org/10.2351/1.5062207.
Повний текст джерелаKocourek, Tomáš, Miroslav Jelínek, Václav Studnička, and Jaromír Kadlec. "Study of thin TiCxN1-x films fabricated by hybrid magnetron-laser deposition." In SPIE Proceedings, edited by Pavel Tománek, Miroslav Hrabovský, Miroslav Miler, and Dagmar Senderákova. SPIE, 2006. http://dx.doi.org/10.1117/12.675656.
Повний текст джерелаGu, Yu, Mingxing Ma, Minlin Zhong, Wenjin Liu, Changsheng Dong, and Yide Kan. "Investigation on the electrochemical catalysis properties of Ni-decorated nanoporous copper formed by hybrid laser deposition." In ICALEO® 2009: 28th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2009. http://dx.doi.org/10.2351/1.5061564.
Повний текст джерелаStiff-Roberts, Adrienne D., Ryan Pate, Ryan McCormick, and Kevin R. Lantz. "RIR-MAPLE deposition of conjugated polymers and hybrid nanocomposites for application to optoelectronic devices." In INTERNATIONAL SYMPOSIUM ON HIGH POWER LASER ABLATION 2012. American Institute of Physics, 2012. http://dx.doi.org/10.1063/1.4739888.
Повний текст джерелаZhong, Minlin, Changsheng Dong, Ting Huang, and Mingxing Ma. "Tunable nanoporous metallic structures formed by hybrid laser deposition and chemical etching and their functionalization." In Laser and Tera-Hertz Science and Technology. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/ltst.2012.mf4a.1.
Повний текст джерелаTylczak, Erik, David Peterson, and Graham Candler. "Hybrid RANS/LES Simulation of Transverse Jet in Supersonic Crossflow with Laser Energy Deposition." In 40th Fluid Dynamics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-4856.
Повний текст джерелаSerbezov, Valery, and Sotir Sotirov. "One-step synthesis of hybrid inorganic-organic nanocomposite coatings by novel laser adaptive ablation deposition technique." In Seventeenth International School on Quantum Electronics: Laser Physics and Applications, edited by Tanja N. Dreischuh and Albena T. Daskalova. SPIE, 2013. http://dx.doi.org/10.1117/12.2012003.
Повний текст джерелаRuan, Jianzhong, Kunnayut Eiamsa-ard, Jun Zhang, and F. W. Liou. "Automatic Process Planning of a Multi-Axis Hybrid Manufacturing System." In ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/detc2002/dac-34138.
Повний текст джерелаAdinarayanappa, Somashekara Makireddypalli, and Suryakumar Simhambhatla. "Determination of Process Parameter for Twin-Wire Weld-Deposition Based Additive Manufacturing." In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34658.
Повний текст джерелаЗвіти організацій з теми "Laser hybrid deposition"
George, Steven M. Hybrid Organic-Inorganic Films Grown Using Molecular Layer Deposition. Fort Belvoir, VA: Defense Technical Information Center, March 2011. http://dx.doi.org/10.21236/ada540366.
Повний текст джерелаTian, Yongming, Yongqian Gao, and Sivakumar Challa. Layer-by-layer deposition of ultra-thin hybrid/microporous membrane for CO2 separation. Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1411444.
Повний текст джерела