Дисертації з теми "Laser beam steering"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Laser beam steering.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-19 дисертацій для дослідження на тему "Laser beam steering".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Bas, Derek. "Laser Beam Steering with Thin Film GaAs on Plastic." Bowling Green State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1277119321.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hällstig, Emil. "Nematic Liquid Crystal Spatial Light Modulators for Laser Beam Steering." Doctoral thesis, Uppsala University, Quantum Chemistry, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4693.

Повний текст джерела
Анотація:

Laser beam control is important in many applications. Phase modulating spatial light modulators (SLMs) can be used to electronically alter the phase distribution of an optical wave-front and thus change the direction and shape of a laser beam. Physical constraints set limitations to the SLM and an ideal phase distribution can usually not be realised. In order to understand how such components can be used for non-mechanical beam control three nematic liquid crystal (NLC) SLMs have been thoroughly characterised and modelled.

The pixel structure and phase quantisation give a discrepancy between ideal and realised phase distributions. The impact on beam steering capability was examined by measurements and simulations of the intensity distribution in the far-field.

In two of the studied SLMs the pixel period was shorter than the thickness of the LC layer giving the optical phase shift. This results in a so-called “fringing field”, which was shown to degrade the phase modulation and couple light between polarisation modes. The deformation of the LC was simulated and a finite-difference time-domain (FDTD) algorithm was used to calculate how polarised light propagates through the optically anisotropic SLM.

Non-mechanical beam steering and tracking in an optical free-space communication link were demonstrated. Continual optimisation of the steering angle was achieved by feedback from a video camera.

The optical properties of the SLM in the time period right after a voltage update were studied. It was shown how light is redistributed between orders during the switching from one blazed grating to another. By appropriate choice of the blazed gratings the effects on the diffraction efficiency can be minimised.

The detailed knowledge of the SLM structure and its response to electronic control makes it possible to predict and optimise the device performance in future systems.

Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hällstig, Emil. "Nematic liquid crystal spatial light modulators for laser beam steering /." Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4693.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Liu, Yifan. "The True-Time-Delay (TTD) Laser Beam Steering System Design Based on Fourier Cell." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1237915468.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

SANTAGATA, ROSA. "Sub-nanometer length metrology for ultra-stable ring laser gyroscopes." Doctoral thesis, Rosa Santagata, 2015. http://hdl.handle.net/11365/1004514.

Повний текст джерела
Анотація:
Large-frame ring laser gyroscopes are extremely sensitive inertial detectors of rotational motion. When properly coupled to the ground, they provide precise measurements of the Earth rotation rate and give important informations to geodesy and geophysics. Recent advances in this technology led to consider the application of ring laser gyroscopes to fundamental physics. In this context is GINGER (Gyroscopes IN GEneral Relativity), a scientic proposal for testing General Relativity (local observation of the Lense-Thirring eect) with a ground-based array of ring laser gyroscopes. The experimental target is to locally measure the Earth rotation rate with a relative precision better than one part in 109, corresponding to an absolute rotational resolution of 10−14 rad/s. The main factor limiting the performances of the presently most stable ring laser gyroscopes is the uncontrolled deformation of their optical cavity, since instabilities in the cavity geometry introduce systematic errors in the rotational signal. Cavity geometry is typically kept stable by using monolithic frames made of ultra-low thermal expansion materials, and operating in very well isolated environments. An alternative approach is based on the active control of the shape in heterolithic cavities, by measuring and stabilizing the mirrors positions by means of laser-based length metrology. The goal of this thesis is the development of a stabilization system based on interferometric length metrology, with a view to improve the sensitivity of the new generation square ring laser gyroscopes, going beyond the level achievable with passive methods. The main idea proposed in this work is to exploit the diagonal resonators formed by opposite cavity mirrors, and to use their lengths as observables to constraint, against an optical reference standard, residual deformation degrees of freedom of the square cavity. As a rst step, a detailed model of the light propagation along the square cavity has been developed. This allowed us to quantify the eectiveness of the v xed length constraint of the diagonal resonators, and gave precise indications for the optimization strategy of the residual degrees of freedom. The optical frequency reference is a helium neon laser stabilized to the iodine molecular absorption. Since the power emitted by this laser is of only 300 µW, an optical amplier, based on the injection locking of a 15 mW diode laser, has been developed to guarantee a proper signal to noise ratio in the interferometric absolute length measurements. To stabilize the absolute lengths of the two diagonals, we proposed an original experimental method for the determination of both the optical resonance frequency and the free spectral range of each cavity. It is based on a triple-frequency modulation of the interrogating laser beam by electro-optic modulators. In a rst tabletop experiment, the method has been veried on two Fabry-Perot resonators that, composed by couples of spherical mirrors typically used in the He-Ne ring cavities, simulate the diagonals of a ring laser gyroscope on an optical bench. Here, the capability of setting equal the two lengths at the level of 500 nm, with residual uctuations only limited by the laser frequency noise, has been experimentally proved. As a nal result, we have applied the developed method to lock the diagonal cavities lengths of GP2 ring laser gyroscope, a square cavity 1.6 m in side length dedicated to the interferometric control of the cavity geometry deformations, and fully set up at the INFN laboratories in Pisa in June 2015
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Evans, Jonathan W. "Beam Switching of an Nd:YAG Laser Using Domain Engineered Prisms in Magnesium Oxide Doped Congruent Lithium Niobate." University of Dayton / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1281366442.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bugoffa, Salaheddeen G. "Acousto-Optic Scanning and Reflection Sensing for Large Area Object Search and Recovery." University of Dayton / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1470257122.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shi, Lei. "Tunable liquid crystal polarization gratings." [Kent, Ohio] : Kent State University, 2009. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=kent1258988951.

Повний текст джерела
Анотація:
Thesis (Ph.D.)--Kent State University, 2009.
Title from PDF t.p. (viewed Apr. 22, 2010). Advisor: Philip Bos. Keywords: Liquid crystal; beam steering; polarization gratings; diffraction efficiency; decentered microlens array. Includes bibliographical references (p. 216-219).
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tran, Tuan-Anh. "Multiple-input multiple-output optical wireless communications." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:094fbe23-88c3-49c4-b64b-a1de40674123.

Повний текст джерела
Анотація:
Visible-light optical wireless communications (OWC) is a potential technology that can help resolve the crowdedness of the radio-frequency bands, whilst conveniently exploiting energy-saving light-emitting diodes (LEDs) as transmitters for both illumination and communications. Since there usually are many LEDs in a lighting unit, OWC has a multi- input multi-output (MIMO) geometry which, thanks to its channel diversity, can offer wireless local networks at data-rates many times higher than possible with single-channel systems. In such systems, MIMO-detection methods to separate the different optical channels play an important role in improving the system performance by helping reduce cross-talk between channels. To measure the performance of a particular geometry for MIMO communications, a simulation study, reported in this thesis, found that, amongst the signal- independent metrics, the condition number may be used as a rough predictor of the performance, whilst the channel Signal-to-Interference-and-Noise Ratio (SINR) is the most appropriate for geometry assessment. Combined with the fact that the overall performance of a MIMO system is mostly dominated by its worst channel, this indicates that the most effective way to improve the system performance is to maximise the worst channel’s SINR. One of the possible solutions to improving the SINRs is to use holograms to steer the transmitter images such that their distributions over the photo-detectors reduce overlaps. As LEDs emit partially-coherent light, the beam steering has to be carried out with partially- coherent illumination. By using two lenses to parallelise and collect partially-coherent light before and after the hologram, respectively, the source and image intensity distributions, and the autocorrelation of the hologram can be related in a succinct mathematical relationship. This leads to the development of three computational algorithms based on the autocorrelation function to obtain a quantised hologram with the desired beam-steering capability. These algorithms have their cost functions and performance comparison done at the hologram plane instead of the image plane, which therefore takes less time than traditional image-based methods. Specifically, one of these algorithms is able to save significant time over both the other autocorrelation-based algorithms and the direct binary-search, by 33% and by 50% respectively. A simulation-based study and a corresponding experiment, both reported in this thesis, found that the one of the proposed algorithms had poor power efficiency, whilst the other two were both highly effective in generating digital holograms with precise and power-efficient beam-steering performance. Of these two algorithms, one had superior time performance and was likely the best of the three proposed autocorrelation-based algorithms for generating beam-steering holograms. MIMO-OWC simulation also demonstrated the capability of using beam-steering holograms to design the channel and improve the system performance. Combining reported findings, a strategy can be devised to optimise the throughput of an imaging MIMO-OWC system for a given transmitted power.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Khan, Sajjad. "Liquid Crystal Optics for Communications, Signal Processing and 3-D Microscopic Imaging." Doctoral diss., University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3389.

Повний текст джерела
Анотація:
This dissertation proposes, studies and experimentally demonstrates novel liquid crystal (LC) optics to solve challenging problems in RF and photonic signal processing, freespace and fiber optic communications and microscopic imaging. These include free-space optical scanners for military and optical wireless applications, variable fiber-optic attenuators for optical communications, photonic control techniques for phased array antennas and radar, and 3-D microscopic imaging. At the heart of the applications demonstrated in this thesis are LC devices that are non-pixelated and can be controlled either electrically or optically. Instead of the typical pixel-by-pixel control as is custom in LC devices, the phase profile across the aperture of these novel LC devices is varied through the use of high impedance layers. Due to the presence of the high impedance layer, there forms a voltage gradient across the aperture of such a device which results in a phase gradient across the LC layer which in turn is accumulated by the optical beam traversing through this LC device. The geometry of the electrical contacts that are used to apply the external voltage will define the nature of the phase gradient present across the optical beam. In order to steer a laser beam in one angular dimension, straight line electrical contacts are used to form a one dimensional phase gradient while an annular electrical contact results in a circularly symmetric phase profile across the optical beam making it suitable for focusing the optical beam. The geometry of the electrical contacts alone is not sufficient to form the linear and the quadratic phase profiles that are required to either deflect or focus an optical beam. Clever use of the phase response of a typical nematic liquid crystal (NLC) is made such that the linear response region is used for the angular beam deflection while the high voltage quadratic response region is used for focusing the beam. Employing an NLC deflector, a device that uses the linear angular deflection, laser beam steering is demonstrated in two orthogonal dimensions whereas an NLC lens is used to address the third dimension to complete a three dimensional (3-D) scanner. Such an NLC deflector was then used in a variable optical attenuator (VOA), whereby a laser beam coupled between two identical single mode fibers (SMF) was mis-aligned away from the output fiber causing the intensity of the output coupled light to decrease as a function of the angular deflection. Since the angular deflection is electrically controlled, hence the VOA operation is fairly simple and repeatable. An extension of this VOA for wavelength tunable operation is also shown in this dissertation. A LC spatial light modulator (SLM) that uses a photo-sensitive high impedance electrode whose impedance can be varied by controlling the light intensity incident on it, is used in a control system for a phased array antenna. Phase is controlled on the Write side of the SLM by controlling the intensity of the Write laser beam which then is accessed by the Read beam from the opposite side of this reflective SLM. Thus the phase of the Read beam is varied by controlling the intensity of the Write beam. A variable fiber-optic delay line is demonstrated in the thesis which uses wavelength sensitive and wavelength insensitive optics to get both analog as well as digital delays. It uses a chirped fiber Bragg grating (FBG), and a 1xN optical switch to achieve multiple time delays. The switch can be implemented using the 3-D optical scanner mentioned earlier. A technique is presented for ultra-low loss laser communication that uses a combination of strong and weak thin lens optics. As opposed to conventional laser communication systems, the Gaussian laser beam is prevented from diverging at the receiving station by using a weak thin lens that places the transmitted beam waist mid-way between a symmetrical transmitter-receiver link design thus saving prime optical power. LC device technology forms an excellent basis to realize such a large aperture weak lens. Using a 1-D array of LC deflectors, a broadband optical add-drop filter (OADF) is proposed for dense wavelength division multiplexing (DWDM) applications. By binary control of the drive signal to the individual LC deflectors in the array, any optical channel can be selectively dropped and added. For demonstration purposes, microelectromechanical systems (MEMS) digital micromirrors have been used to implement the OADF. Several key systems issues such as insertion loss, polarization dependent loss, wavelength resolution and response time are analyzed in detail for comparison with the LC deflector approach. A no-moving-parts axial scanning confocal microscope (ASCM) system is designed and demonstrated using a combination of a large diameter LC lens and a classical microscope objective lens. By electrically controlling the 5 mm diameter LC lens, the 633 nm wavelength focal spot is moved continuously over a 48 [micro]m range with measured 3-dB axial resolution of 3.1 [micro]m using a 0.65 numerical aperture (NA) micro-objective lens. The ASCM is successfully used to image an Indium Phosphide twin square optical waveguide sample with a 10.2 [micro]m waveguide pitch and 2.3 [micro]m height and width. Using fine analog electrical control of the LC lens, a super-fine sub-wavelength axial resolution of 270 nm is demonstrated. The proposed ASCM can be useful in various precision three dimensional imaging and profiling applications.
Ph.D.
Optics and Photonics
Optics
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Reardon, Christopher P. "Free space optical interconnects for speckled computing." Thesis, St Andrews, 2009. http://hdl.handle.net/10023/698.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Sun, Fei. "Thermally induced beam steering in high power diode-pumped planar waveguide lasers." Thesis, Heriot-Watt University, 2007. http://hdl.handle.net/10399/94.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Penner, Robert Scott. "Focusing, wavelength tuning, beam steering and beam shaping of circular grating surface emitting distributed Bragg reflector lasers." Diss., The University of Arizona, 1999. http://hdl.handle.net/10150/284042.

Повний текст джерела
Анотація:
Over the past decade, circular grating surface emitting DBR lasers (CGSELs) have progressed from theory to reality. These devices possess several properties that make them attractive options for such applications as optical interconnects and laser arrays. These advantages include low divergence angles, circular beam profiles, and high power output. In this dissertation, the addition of new functionality to these lasers including wavelength tunability, focusing, beam steering and beam shaping is investigated. The theory governing device operation is presented. Pertinent discussions include the coupled mode equations, grating coupling, focusing and changes to the effective index of refraction resulting from current injection through a transparent electrode on the grating. The development and refinement of the device fabrication process is detailed. Key milestones in the grating writing process included achieving first order gratings (Λ = 0.15 μm), creating chirped period gratings for focusing and optimizing the linewidth and uniformity of the grating for high power devices. Of equal importance in obtaining high efficiency devices was the reactive ion etch process. Two different etch recipes were developed: one for mesa-definition and a shallower grating-defining etch. Significant evaluation of the electrical and optical properties of the transparent electrode, Indium Tin Oxide, was performed. Incorporating ITO into the fabrication process required optimization of deposition, patterning, etching and annealing. Device performance, efficiency and functionality improved with each generation. Consequentially, over 225 mW of output power for a injection current of 600 mA, or a slope efficiency of 0.43 mW/mA, was produced by the final generation of high power CGSELs. Focusing was demonstrated by the creation of individual devices with different focal lengths. Coarse mode selection was obtained by removing radial segments of the circular grating thereby eliminating both feedback coupling and surface outcoupling. Dynamic functionality such as beam steering and wavelength tuning was also realized for devices with ITO. Over 1° of beam steering was achieved for an ITO injection current of 35 mA. Similarly, over 1 nm of tuning, or 0.5 nm of continuous tuning, was accomplished. In conclusion, possibilities for improvements in device performance and future work are suggested.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

French, Kyle J. "Growth of Optical Quality Lead Magnesium Niobate-Lead Titanate Thick Films." University of Dayton / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1575993750125728.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Tanagardi, Mehmet. "Radiation Pattern Reconfigurable Horn Antenna Based on Parasitic Layer Concept." DigitalCommons@USU, 2019. https://digitalcommons.usu.edu/etd/7623.

Повний текст джерела
Анотація:
In recent years, multi-functional reconfigurable antennas (MRA) has attracted much attention in wireless communication. The reconfigurable antenna can adapt itself with changing system conditions, and it can provide different multi-functionalities which can give better system performances. Instead of using multiple antennas, a single reconfigurable antenna can provide the same performance and occupy less space. By using the parasitic layer technique, an antenna can be turned into a reconfigurable antenna. The main objective of this thesis is to study radiation pattern reconfiguration of the horn antenna by using the parasitic layer concept. The MRA consists of a single horn, dielectric loaded truncated pyramid (DLTP), and the parasitic layer. The antenna that is chosen in this thesis is the horn antenna because it provides high directivity. DLTP is used for magnification purpose. The results show that three modes of operations that provide better performances compared to the single horn antenna are achieved.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Ali, Mohamed Ali Sayed Ahmed Ahmed. "Développement de nouveaux composants passifs multicouches et l'implémentation d'une matrice de Butler large-bande et compacte en technologie GIS." Thesis, Toulouse, INPT, 2010. http://www.theses.fr/2010INPT0027/document.

Повний текст джерела
Анотація:
Les systèmes de communications sans fils actuels imposent des contraintes très sévères en termes de la capacité du canal, la qualité de transmission tout en gardant les niveaux d'interférences et multi-trajets assez faibles. De telles contraintes ont rendu les antennes multifaisceaux un élément essentiel dans ces systèmes. Parmi les techniques permettant de réaliser une antenne multifaisceaux (sans avoir recours aux systèmes à balayages électroniques), un réseau d'antennes élémentaires est associé à un réseau d'alimentation (une matrice) à formation de faisceau (Beam Forming Network-BFN). Parmi les différents types de ces matrices, la matrice de Butler a reçu une attention particulière. Ceci est dû au fait qu'elle est théoriquement sans pertes et qu'elle emploie un nombre minimum de composants (coupleurs et déphaseurs) afin de générer l'ensemble de faisceaux orthogonaux demandé (avec l'hypothèse que le nombre de faisceau est une puissance de 2). Néanmoins, la matrice de Butler a un problème de conception majeur. Ce problème réside dans la structure de la matrice qui renferme des croisements ce qui a été adressé par différents travaux de recherches dans la littérature. Les Guide Intégré au Substrat (GIS) offrent des caractéristiques intéressants pour la conception des composants microondes et millimétriques faciles à intégrer sur un même support avec d'autres composants planaires. Les composants à base de GIS combinent les avantages des guides d'ondes rectangulaires, comme leur grand facteur de qualité Q, leur faibles pertes tout en étant compatible avec les technologies à faibles coûts comme le PCB et le LTCC. Vus ses caractéristiques attrayants, la technologie GIS devient un bon candidat pour la réalisation des matrices multifaisceaux faciles à intégrer avec d'autres systèmes en technologies planaires ou à base de guide GIS. Dans cette thèse, de nouveaux composants passifs sont développés en exploitant la technologie GIS en multicouches en vue de la réalisation d'une matrice de Butler 4x4 compacte et large bande. Les composants recherchés sont donc des coupleurs et des déphaseurs ayant des performances large bande en termes des amplitudes des coefficients de transmissions et les phases associés tout en gardant de faibles niveaux de pertes et de bonnes isolations. Différents techniques pour l'implémentation de déphaseurs large bande en technologie GIS sont présentés. Une nouvelle structure à base d'une propagation composite : main gauche main droite (Composite Right/Left- Handed, CRLH) dans un guide d'onde est proposée. La structure consiste d'un guide d'onde monocouche ayant des fenêtres inductives et des fentes transversales à réactances capacitives pour synthétiser l'inductance parallèle et la capacité série main gauche, respectivement. La structure est adaptée pour les réalisations de déphaseurs compacts en technologie GIS. Bien que les pertes d'insertions restent dans le même ordre de grandeur de celles des structures CRLH à base d'éléments non-localisés, ces niveaux de pertes restent relativement grands par rapport aux applications nécessitant plusieurs déphaseurs. Les déphaseurs à bases de GIS ayant des longueurs égales et des largeurs variables sont ensuite abordés. Ce type de déphaseur est effectivement très adapté à la technologie GIS qui permet des réalisations de parcours avec différentes formes (parcours droits, courbés, coudés, ..) tout en assurant des différences de phase large bande. Afin de satisfaire de faibles pertes d'insertions pour une large dynamique de phase, la longueur de ces déphaseurs est en compromis avec les variations progressives des différentes largeurs associées aux valeurs de déphasages requises. Une transition large bande, double couche et à faible perte est ainsi proposée. La transition est analysée à partir de son circuit électrique équivalent afin d'étudier les performances en termes de l'amplitude et la phase du coefficient de transmission par rapport aux différents paramètres structurels de la transition. Cette transition est ensuite exploitée pour développer un déphaseur à trois couches, large bande, en GIS. La structure consiste effectivement d'un guide d'onde replié à plusieurs reprises sur luimême selon la longueur dans une topologie trois couches à faibles pertes. De nouveaux coupleurs double couche en GIS sont également proposés. Pour les applications BFNs, une structure originale d'un coupleur large bande est développée. La structure consiste de deux guides d'onde parallèles qui partagent leur grand mur ayant une paire de fentes inclinées et décalées par rapport au centre de la structure. Une étude paramétrique détaillée est faite pour étudier l'impact des différents paramètres des fentes sur l'amplitude et la phase du coefficient de transmission. Le coupleur proposé a l'avantage d'assurer une large dynamique de couplage ayant des performances larges bandes en termes des amplitudes et les phases des coefficients de transmission avec de faibles pertes et de bonnes isolations entre le port d'entré et celui isolé. D'autre part, contrairement à d'autres travaux antérieurs et récents qui souffraient d'une corrélation directe entre la phase en transmission et le niveau de couplage, la structure proposée permet de contrôler le niveau de couplage en maintenant presque les mêmes valeurs de phase en transmission pour différents niveaux de couplage. Ceci le rend un bon candidat pour les BFNs déployant différents coupleurs telle la matrice de Nolen. Une deuxième structure originale d’un coupleur bibande est également proposée. La structure consiste de deux coupleurs concentriques en guide nervuré intégré au substrat avec un motif innovant de démultiplexage à base de GIS. Ce coupleur a été développé conjointement avec M. Tarek Djerafi de l’Ecole Polytechnique de Montréal dans un cadre de collaboration avec le Prof. Ke Wu. Finalement, pour l'implémentation de la matrice de Butler, la topologie double couche est explorée à deux niveaux. Le premier consiste à optimiser les caractéristiques électriques de la matrice, tandis que le second concerne l'optimisation de la surface occupée afin de rendre la matrice la plus compacte possible sans dégrader ses performances électriques. D'une part, la structure double couche présente une solution intrinsèque au problème de croisement permettant ainsi une plus grande flexibilité pour la compensation de phase sur une large bande de fréquence. Ceci est réalisé par une conception adéquate de la surface géométrique sur chaque couche de substrat et optimiser les différentes sections de GIS avec les différents parcours adoptés. La deuxième étape consiste effectivement à optimiser la surface sur chaque couche en profitant de la technologie GIS. Ceci consiste à réaliser des murs latéraux communs entre différents chemin électrique de la matrice en vue d'une compacité optimale. Les deux prototypes de matrices de Butler 4x4 sont optimisés, fabriqués et mesurés. Les résultats de mesures sont en bon accord avec ceux de la simulation. Des niveaux d'isolations mieux que - 15 dB avec des niveaux de réflexions inférieurs à -12 dB sont validés expérimentalement sur plus de 24% de bande autour de 12.5 GHz. Les coefficients de transmission montrent de faibles dispersions d'environ 1 dB avec une moyenne de -6.8 dB, et 10° par rapport aux valeurs théoriques, respectivement, sur toute la bande de fréquence
Multibeam antennas have become a key element in nowadays wireless communication systems where increased channel capacity, improved transmission quality with minimum interference and multipath phenomena are severe design constraints. These antennas are classified in two main categories namely adaptive smart antennas and switched-beam antennas. Switched-beam antennas consist of an elementary antenna array connected to a Multiple Beam Forming Network (M-BFN). Among the different M-BFNs, the Butler matrix has received particular attention as it is theoretically lossless and employs the minimum number of components to generate a given set of orthogonal beams (provided that the number of beams is a power of 2). However, the Butler matrix has a main design problem which is the presence of path crossings that has been previously addressed in different research works. Substrate Integrated Waveguide (SIW) features interesting characteristics for the design of microwave and millimetre-wave integrated circuits. SIW based components combine the advantages of the rectangular waveguide, such as the high Q factor (low insertion loss) and high power capability while being compatible with low-cost PCB and LTCC technologies. Owing to its attractive features, the use of SIW technology appears as a good candidate for the implementation of BFNs. The resulting structure is therefore suitable for both waveguide-like and planar structures. In this thesis, different novel passive components (couplers and phase shifters) have been developed exploring the multi-layer SIW technology towards the implementation of a two-layer compact 4×4 Butler matrix offering wideband performances for both transmission magnitudes and phases with good isolation and input reflection characteristics. Different techniques for the implementation of wideband fixed phase shifters in SIW technology are presented. First, a novel waveguide-based CRLH structure is proposed. The structure is based on a single-layer waveguide with shunt inductive windows (irises) and series transverse capacitive slots, suitable for SIW implementations for compact phase shifters. The structure suffers relatively large insertion loss which remains however within the typical range of non-lumped elements based CRLH implementations. Second, the well-known equal length, unequal width SIW phase shifters is discussed. These phase shifters are very adapted for SIW implementations as they fully exploit the flexibility of the SIW technology in different path shapes while offering wideband phase characteristics. To satisfy good return loss characteristics with this type of phase shifters, the length has to be compromised with respect to the progressive width variations associated with the required phase shift values. A twolayer, wideband low-loss SIW transition is then proposed. The transition is analyzed using its equivalent circuit model bringing a deeper understanding of its transmission characteristics for both amplitude and phase providing therefore the basic guidelines for electromagnetic optimization. Based on its equivalent circuit model, the transition can be optimized within the well equal-length SIW phase shifters in order to compensate its additional phase shift within the frequency band of interest. This twolayer wideband phase shifter scheme has been adopted in the final developed matrix architecture.This transition is then exploited to develop a three-layer, multiply-folded waveguide structure as a good candidate for compensated-length, variable width, low-loss, compact wideband phase shifters in SIW technology. Novel two-layer SIW couplers are also addressed. For BFNs applications, an original structure for a two-layer 90° broadband coupler is developed. The proposed coupler consists of two parallel waveguides coupled together by means of two parallel inclined-offset resonant slots in their common broad wall. A complete parametric study of the coupler is carried out including the effect of the slot length, inclination angle and offset on both the coupling level and the transmission phase. The first advantage of the proposed coupler is providing a wide coupling dynamic range by varying the slot parameters allowing the design of wideband SIW Butler matrix in two-layer topology. In addition, previously published SIW couplers suffer from direct correlation between the transmission phase and the coupling level, while the coupler, hereby proposed, allows controlling the transmission phase without significantly affecting the coupling level, making it a good candidate for BFNs employing different couplers, such as, the Nolen matrix. A novel dual-band hybrid ring coupler is also developed in multi-layer Ridged SIW (RSIW) technology. This coupler has been jointly developed with Tarek Djerafi in a collaboration scenario with Prof. Ke Wu from the Ecole Polytechnique de Montréal. The coupler has an original structure based on two concentric rings in RSIW topology with the outer ring periodically loaded with radial, stub-loaded transverse slots. A design procedure is presented based on the Transverse Resonance Method (TRM) of the ridged waveguide together with the simple design rules of the hybrid ring coupler. A C/K dual band coupler with bandwidths of 8.5% and 14.6% centered at 7.2 GHz and 20.5 GHz, respectively, is presented. The coupler provides independent dual band operation with low-dispersive wideband operation. Finally, for the Butler matrix design, the two-layer SIW implementation is explored through a two-fold enhancement approach for both the matrix electrical and physical characteristics. On the one hand, the two-layer topology allows an inherent solution for the crossing problem allowing therefore more flexibility for phase compensation over a wide frequency band. This is achieved by proper geometrical optimization of the surface on each layer and exploiting the SIW technology in the realization of variable width waveguides sections with the corresponding SIW bends. On the other hand, the two-layer SIW technology is exploited for an optimized space saving design by implementing common SIW lateral walls for the matrix adjacent components seeking maximum size reduction. The two corresponding 4×4 Butler matrix prototypes are optimized, fabricated and measured. Measured results are in good agreement with the simulated ones. Isolation characteristics better than -15 dB with input reflection levels lower than -12 dB are experimentally validated over 24% frequency bandwidth centered at 12.5 GHz. Measured transmission magnitudes and phases exhibit good dispersive characteristics of 1dB, around an average value of -6.8 dB, and 10° with respect to the theoretical phase values, respectively, over the entire frequency band
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Samantaray, Swastik. "Robust Adaptive Control of a Laser Beam System for Static and Moving Targets." Thesis, 2016. http://hdl.handle.net/2005/3204.

Повний текст джерела
Анотація:
The motivation of this thesis is to propose a robust control technique for a laser beam system with target estimation. The laser beam is meant to track and fall on a particular portion of the target until the operation is accomplished. There are many applications of such a system. For example, laser range finder uses laser beam to determine the distance of the target from the source. Recently, unmanned aerial drones have been developed that run on laser power. Drone batteries can be recharged with power sup-ply from laser source on the ground. Laser is also used in high energy laser weapon for defence applications. However, laser beams travelling long distances deviate from the desired location on the target due to continually changing atmospheric parameters (jitter effect) such as pressure, temperature, humidity and wind speed. This deviation error is controlled precisely using a lightweight fast steering mirror (FSM) for fine correction. Furthermore, for a moving target, minimizing the deviation of the beam is not sufficient. Hence, in coarse correction, the target has to be tracked by determining its position and assigning the corresponding azimuth and elevation angles to the laser sources. Once these firing angles are settled within an accuracy of +3 mrad, the effort for minimizing the beam deviation (fine correction) takes place to improve the accu-racy to +10 rad. The beam deviation due to jitter effect is measured by a narrow field of view (NFOV) camera at a high frame rate (1000 frames per second), which takes one frame to com-pute this error information. As a result, controller receives error information witha delay from NFOV. This data cannot be modelled for prediction and hence, a few promising data driven techniques have been implemented for one step ahead prediction of the beam deviation. The predictions are performed over a set of sliding window data online after rejecting the outliers through least square approximated straight line. In time domain, methods like auto-regressive least square, polynomial extrapolation (zeroth, first and second order), Chebyshev polynomial extrapolation, spline curve extrapolation are implemented. Further, a convex combination of zeroth order hold and spline extrapolation is implemented. In frequency domain, Fourier series-Fourier transform and L-point Discrete Fourier Transform stretching are implemented where the frequency component of the signal are analysed properly and propagated for one step ahead prediction. After one step ahead prediction, three nominal controllers (PID, DI and DLQR) are designed such that the output of FSM tracks the predicted beam deviation and the performances of these controllers are compared. Since the FSM is excited by high frequency signals, its performance degrades, which leads to parameter degradation in the mathematical model. Hence, three adaptive controllers have been implemented, namely, model reference adaptive control (MRAC), model reference adaptive sliding mode control (MRASMC) and model following neuro-adaptive control (MFNAC). The parameters of the FSM model are degraded up to 20% and the model is augmented with cross coupling terms because the same mirror is used for horizontal and vertical beam deviation. With this condition, the tracking performance and control rate energy consumption of the implemented adaptive controllers are analysed to choose the best among them. For a moving target, in coarse correction, two tracking radars are placed to measure the position of the target. However, this information is assumed to be noisy, for which an extended Kalman filter is implemented. Once the position of the target is known, the desired firing angles of the laser sources are determined. Given the laser source steering mathematical model, a controller is designed such that it tracks the desired firing angle. Once the residual error of the coarse correction settles inside 3 mrad, fine correction takes part to reduce the residual error to 10 rad. The residual error magnitude of the proposed mechanization was analysed for a moving target by perturbing the FSM model by 20% and zeroth order hold predictor with different combinations of angle tolerance and frame tolerance.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Cox, Wesley. "Magnetic steering of the ion beam in the Helicon Double Layer Thruster." Phd thesis, 2010. http://hdl.handle.net/1885/150366.

Повний текст джерела
Анотація:
Experiments are performed in the CHI KUNG plasma reactor to study the effect of introducing transverse components (aligned along the x-axis) to the cylindrically symmetric magnetic field (aligned along the z-axis) to produce magnetic steering of the ion beam in the Helicon Double Layer Thruster (HDLT). CHI KUNG is a cylindrical helicon plasma reactor, on which the first HDLT prototype is based, consisting of a 15 cm diameter, 31 cm long Pyrex source tube attached contiguously to a 32 cm diameter, 30 cm long aluminium diffusion chamber. Coaxially surrounding the source tube is an 18 cm long double saddle antenna connected to an L-matching network/generator system, fed with 13.56 MHz of radio-frequency power. Enclosing the source tube and antenna are two coaxial solenoids, referred to as the source and exit solenoids, which generate a diverging magnetic field. The peak magnetic field magnitudes produced by the source and exit solenoids are 132 G and 118 G, respectively, when a current of 3 A is flowing through each solenoid, pointing north into the diffusion chamber. Argon gas is fed in through the diffusion chamber and pumped to an operational pressure of 0.3 mTorr by a turbomolecular/rotary pumping system. Under these conditions, a double layer is formed ~ 5 cm inside the exit of the source tube, which accelerates a population of ions to form an ion beam that can be detected in the diffusion chamber. In this thesis, spatial measurement techniques are developed to measure the properties of the ion beam in the diffusion chamber, downstream of the double layer. Of particular interest is the ion beam density, and an analysis is developed to determine this parameter from the spatial data. Because the ion beam in the diffusion chamber is surrounded by ambient plasma, a retarding field energy analyzer (RFEA) is used to measure the flux of ions as a function of their energy, to separate the fast moving beam from the population of thermal background ions. A spatial map of the ion beam density can be obtained by sweeping the RFEA across the exit of the source tube at a number of different z{u00AC}axial positions, downstream of the double layer. As the ion beam travels into the diffusion chamber, a 5.70 {u00B1}0.4{u00B0} angle is observedbetween the ion beam reactor and the z-axis. This asymmetry has not before been observed in the largely cylindrically symmetric CHI KUNG reactor and the possible causes for this asymmetry are discussed. By introducing either one or two transverse solenoids to the CHI KUNG source region, asymmetric components of the magnetic field may be introduced and the resulting effect on the ion beam vector is observed. Experiments are broken up into two categories, with the effect of a single transverse solenoid initially investigated to demonstrate the phenomenon of magnetic steering in the HDLT. Subsequent experiments explore the use of an additional second transverse solenoid to better understand the magnetic steering phenomenon. The effect of varying the magnitude and polarity of the single transverse magnetic field (changing the solenoidal current) is observed to cause the ion beam to deflect away from the main axis (the z-axis), with larger transverse solenoidal currents resulting in greater angles of deflection. The direction of ion beam deviation is determined by the polarity of the transverse solenoid, with the ion beam deflecting in the direction of the transverse solenoid polarity. Deflection of the ion beam is measured up to -26.1{u00B0} {u00B1} 0.8{u00B0} and 13.5{u00B0} {u00B1} 0.7{u00B0} for single transverse solenoidal currents of 4 A north-out and 3 A north{u00AC}in, where north-out and north-in indicate the polarity of the transverse solenoid pointing in-to or out-of the source tube. Adding a second transverse solenoid, and orienting the two coaxial transverse solenoids in the same direction (in the negative x-direction) results in deflections of the ion beam for lower solenoidal currents. A current of 1.25 A flowing through both the transverse solenoids is observed to produce deflection of the ion beam up to 18.0{u00B0} {u00B1} 0.5{u00B0}, with the direction of deflection parallel to the transverse solenoidal polarity. By obtaining, for the first time, a spatial map of the ion beam downstream of a double layer in CHI KUNG, other properties of the ion beam can be obtained. The divergence of the ion beam is considered for a number of different measurement geometries and analyses, and reveals divergences similar to the more widely developed gridded ion engines. The experimental investigation of magnetic steering in the HDLT is uncommon in most electric thrusters, and the magnetic steering capabilities demonstrated in this thesis represent a significant advantage for the Helicon Double Layer Thruster as an alternative for electric propulsion missions.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Zakariya, Abdullah. "Monolithically Integrated Broadly Tunable Light Emitters based on Selectively Intermixed Quantum Wells." Doctoral diss., 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/6210.

Повний текст джерела
Анотація:
A monolithically integrated broadly tunable MQW laser that utilizes a combined impurity-free vacancy disordering (IFVD) of quantum wells and optical beam steering techniques is proposed and investigated experimentally. The device consists of a beam-steering section and an optical amplifier section fabricated on a GaAs/AlGaAs quantum well (QW) p-i-n heterostructure. The beam steering section forms a reconfigurable optical waveguide that can be moved laterally by applying separately controlled electrical currents to two parallel contact stripes. The active core of the gain section is divided in into selectively intermixed regions. The selective intermixing of the QW in the gain section results in neighboring regions with different optical bandgaps. The wavelength tuning is accomplished by steering the amplified optical beam through the selected region where it experiences a peak in the gain spectrum determined by the degree of intermixing of the QW. The laser wavelength tunes to the peak in the gain spectrum of that region. The IFVD technique relies on a silica (SiO2) capped rapid thermal annealing and it has been found that the degree of intermixing of the QW with the barrier material is dependent on the thickness of the SiO2 film. The QW sample is first encapsulated with a 400nm thick SiO2 film grown by plasma enhanced chemical vapor deposition (PECVD). In the gain section, the SiO2 film is selectively etched using multiple photolithographic and reactive ion etching steps whereas the SiO2 film is left intact in all the remaining areas including the beam-steering section. The selective area quantum well intermixing is then induced by a single rapid thermal annealing step at 975°C for a 20s duration to realize a structure with quantum well that has different bandgaps in the key regions. Optical characterizations of the intermixed regions have shown a blue shift of peak of the electroluminescence emission of 5nm, 16nm and 33nm for the uncapped, 100nm and 200nm respectively when compared to the as grown sample. The integrated laser exhibited a wavelength tuning range of 17nm (799nm to 816nm). Based on the same principle of QW selective intermixing, we have also designed and fabricated a monolithically integrated multi-wavelength light emitting diode (LED). The LED emits multiple wavelength optical beams from one compact easy to fabricate QW structure. Each wavelength has an independent optical power control, allowing the LED to emit one or more wavelengths at once. The material for the LED is the same AlGaAs/GaAs QW p-i-n heterostructure described above. The device is divided into selectively intermixed regions on a single QW structure using IFVD technique to create localized intermixed regions. Two different designs have been implemented to realize either an LED with multiple output beams of different wavelengths or an LED with a single output beam that has dual wavelength operation capabilities. Experimental results of the multiple output beams LED have demonstrated electrically controlled optical emission of 800nm, 789nm and 772nm. The single output LED has experimentally been shown to produce wavelength emission of 800nm and/or 772nm depending on electrical activation of the two aligned intermixed regions.
Ph.D.
Doctorate
Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії