Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Lactobacillu.

Статті в журналах з теми "Lactobacillu"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Lactobacillu".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Gaglio, Raimondo, Antonio Alfonzo, Noemi Polizzotto, Onofrio Corona, Nicola Francesca, Giuseppe Russo, Giancarlo Moschetti, and Luca Settanni. "Performances of Different Metabolic Lactobacillus Groups During the Fermentation of Pizza Doughs Processed from Semolina." Fermentation 4, no. 3 (August 3, 2018): 61. http://dx.doi.org/10.3390/fermentation4030061.

Повний текст джерела
Анотація:
The main hypothesis of this work is that facultative and obligate heterofermentative Lactobacillus species can differently impact the final characteristics of pizza. The objective was to evaluate separately the behavior of the facultative heterofermentative species (FHS), such as Lactobacillus sanfranciscensis, Lactobacillu brevis, and Lactobacillus rossiae, and to obligate the heterofermentative species (OHS), including Lactobacillus plantarum, Lactobacillus graminis, and Lactobacillus curvatus, in the sourdoughs to be used for pizza production. The production of the experimental pizzas was carried out with semolina (Triticum turgidum L. ssp. durum). The acidification process, followed by pH, total titratable acidity (TTA), and lactic acid bacteria (LAB) development indicated for all of the experimental trials kinetics is comparable to those of the controls. The fermentation quotient of the FHS trial was particularly higher than that of the other trials, including the control production performed with a sourdough inoculum used in an artisanal bakery. The dominance of the added strains indicated the clear persistence of L. sanfranciscensis PON 100336, L. brevis 200571, and L. plantarum PON 100148 in the obligate–facultative heterofermentative species (OFHS) trial. The pizzas were baked without seasoning in order to investigate weight loss, color, morphology, and a generation of volatile organic compounds (VOCs). The data showed the differences among trials regarding the inocula. Eight classes of VOCs were detected in the pizza samples with aldehydes, esters, alcohols, and acids as major compounds. The sensory attributes were significantly different for the judges and the pizzas. The multivariate statistical approach found marked differences among the trials. The results indicated that the application of mixed cultures of the facultative heterofermentative species of Lactobacillus determined high quality pizzas.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chen, Chunfei, Leilei Yu, Fengwei Tian, Jianxin Zhao, and Qixiao Zhai. "Identification of Novel Bile Salt-Tolerant Genes in Lactobacillus Using Comparative Genomics and Its Application in the Rapid Screening of Tolerant Strains." Microorganisms 10, no. 12 (November 30, 2022): 2371. http://dx.doi.org/10.3390/microorganisms10122371.

Повний текст джерела
Анотація:
Under bile salt treatment, strains display significant differences in their tolerance ability, suggesting the existence of diverse resistance mechanisms in Lactobacillus; however, the genes involved in this protective process are not fully understood. In this study, novel target genes associated with bile salt tolerance in Lactobacillus were identified using comparative genomics for PCR detection and the rapid screening of tolerant strains. The bile salt tolerance of 107 lactobacilli isolated from different origins was assessed, and 26 strains with comparatively large differences were selected for further comparative genomic analysis. Tolerant strains had 112 specific genes that were enriched in the phosphotransferase system, the two-component system, carbohydrate metabolism, and the ATP-binding cassette transporter. Six genes from Lactobacillus were cloned into the inducible lactobacillal expression vector pSIP403. Overexpression in the host strain increased its tolerance ability by 11.86–18.08%. The novel genes identified here can be used as targets to design primers for the rapid screening of bile salt-tolerant lactobacilli. Altogether, these results deepen our understanding of bile salt tolerance mechanisms in Lactobacillus and provide a basis for further rapid assessments of tolerant strains.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bilkova, A., H. Kinova Sepova, M. Bukovsky, and L. Bezakova. "Antibacterial potential of lactobacilli isolated from a lamb." Veterinární Medicína 56, No. 7 (August 11, 2011): 319–24. http://dx.doi.org/10.17221/1583-vetmed.

Повний текст джерела
Анотація:
The antimicrobial properties of three potential probiotic strains of lactobacilli isolated from a lamb (Lactobacillus murinus C, Lactobacillus mucosae D and Lactobacillus reuteri E) were studied using the streak line method and the agar well diffusion assay. The probiotic lactobacilli strains Lactobacillus rhamnosus ATCC 53103, Lactobacillus reuteri ATCC 55730, Lactobacillus reuteri ATCC 55845 and Lactobacillus plantarum DSM 9843 were used for comparison. Using the streak line method the inhibitory activity of lactobacilli products towards ten Gram-positive and Gram-negative potential pathogenic bacteria under different cultivation conditions (anaeorobic or microaerobic preincubation of lactobacilli for 24 h or 48 h) was tested. The strongest inhibitory activity was demonstrated by the Lactobacillus reuteri E strain. The most sensitive strains to the antimicrobial activity of lactobacilli were Yersinia enterocolitica clinical isolate (19.9 ± 6.8 mm) and Listeria monocytogenes ATCC 51774 (17.7 ± 6.0 mm) after microaerobic and anaerobic preincubation, respectively. Generally, microaerobic conditions and longer preincubation of lactobacilli resulted in stronger inhibition of target bacteria. The inhibitory activity of lactobacilli towards selected lactobacilli strains was also tested. Only low inhibition of growth was observed. In the agar well diffusion assay the inhibitory effect of natural and modified lactobacilli culture cell-free supernatants, obtained from MRS broth cultures, on Staphylococcus aureus ATCC 6538 growth was determined. Supernatants were modified by heat (10 min/60 °C; 60 min/100 °C) and protease treatment and neutralization of pH. Neutralization elicited the most significant impact on the activity of supernatants and resulted in total loss of activity. After all other modifications supernatants retained some residual activity. The highest inhibitory activity was observed for the cell-free supernatant produced by Lactobacillus mucosae D.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ghazaei, Ciamak. "Isolation and Characterization of Lactic Acid Bacteria From Milk and Their Effects on the Pathogenic Bacteria." Research in Molecular Medicine 8, no. 4 (October 26, 2020): 189–200. http://dx.doi.org/10.32598/rmm.8.4.4.

Повний текст джерела
Анотація:
Background: Probiotics are “live microbial cells” that are beneficial for human and animal health. Lactobacilli are such a diverse group of bacteria with similar metabolic and physiological characteristics, and constitute important and beneficial gut microflora. During carbohydrate fermentation, lactobacilli produce lactic acid as an end product in metabolism. Hence, lactobacilli have high significance to be used as probiotics in the food industry, because of their acidifying properties. Also, lactobacilli are considered “safe”, owing to their ubiquitous presence in the food. Many researchers provided evidence for the presence of lactobacilli in milk sources. Thus, the present study aimed to isolate and characterize different lactobacilli strains from milk sources and analyze their “probiotic potential”. Materials and methods: Forty-one lactobacilli isolates were obtained from raw cow milk. Then, the strains were characterized by morphological identification and biochemical tests. Besides, probiotic potentials were evaluated with the bile tolerance test, antibiotic susceptibility test, and determining suitable pH for the optimal growth of lactobacilli. The lactobacilli isolates were also analyzed for their probiotic characteristics and the release of antimicrobial substances. Their antimicrobial activities against pathogenic strains were assessed by determining the minimum inhibitory concentration, with the help of agar diffusion methods. Results: From 50 milk samples, 41 lactobacilli isolates were obtained, out of which five lactobacilli strains were identified as Lactobacillus casei, Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus acidophilus, and Lactobacillus lactis. Moreover, 35 isolates showed an inhibitory effect. These strains were able to survive and grow in 0.5% to 2.5% bile salt concentrations. Lactic acid bacteria were susceptible to antibiotics, and 35 isolates obtained from raw milk showed an inhibitory effect against pathogenic bacteria. The observed minimum inhibitory concentration ranged from 50 to 100 µL and varied between the different pathogens. Conclusion: Out of 41 Lactobacillus isolates obtained from cow milk samples, 35 were identified with probiotic characteristics. Hence, this study highlighted the novel probiotic bacteria and validated the antimicrobial properties of the Lactobacillus spp against pathogenic bacteria.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bobcek, B., Ľ. Gajdosová, M. Kacániová, J. Lejková, L. Hleba, and V. Kmeť. "Antibacterial susceptibility of lactobacilli isolated from pork meat of conventional breeding." Biotehnologija u stocarstvu 27, no. 3 (2011): 799–807. http://dx.doi.org/10.2298/bah1103799b.

Повний текст джерела
Анотація:
The aim of this study was monitoring of antibiotic resistance of Enterobacteriaceae genera isolated from musculus longissimus at thoracis and musculus semimembranosus of pork. The pigs was feeding in two groups (control and experimental wit selenium application). For the antibiotic susceptibility testing disk diffusion method was used. Lactobacillus species were tested against two antibiotics: ampiciline, tetracycline. For the detection and identification of lactobacilli we used MRS and Rogose agar. For identification of lactobacilli MALDI-TOF-MS were used. The higher resistance of isolated bacteria were found on ampicillin (29%) and on tetracycline (46%) in experimental group. The lower resistance of isolated bacteria were found on ampicillin (25%) and on tetracycline (35%) in control group. The most resistance bacteria of Lactobacillus genus was Lactobacillus plantarum in control and experimental group, too. From MLT and MSM pork meat Lactobacillus species Lactobacillus reuteri, L. crispatus, L.paracasei, L. farcimins and L curvatus and from non-lactobacilli Lactococcus lastis, Pediococcus pentosaceus were isolated (Table 2). The higher isolated species from lactobacilli genera was Lactobacillus paracasei in control group with 35.63 % and Lactobacillus reuteri in experimental group with 25.83%.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

MURAD, H. A., R. I. REFAEA та E. M. ALY. "Utilization of UF-Permeate for Production of β-galactosidase by Lactic Acid Bacteria". Polish Journal of Microbiology 60, № 2 (2011): 139–44. http://dx.doi.org/10.33073/pjm-2011-019.

Повний текст джерела
Анотація:
Four lactobacilli strains (Lactobacillus bulgaricus, Lactobacillus acidophilus, Lactobacilus casei and Lactobacillus reuteri) were grown in MRS broth and three lactococci strains (Streptococcus thermophilus, Lactococcus lactis subsp. Lactis and Lactococcus lactis subsp. lactis biovar. diacetilactis) were grown in M17 broth. L. reuteri and S. thermophilus were chosen on the basis of the best mean beta-galactosidase activity of 10.44 and 10.01 U/ml respectively, for further studies on permeate-based medium. The maximum production of beta-galactosidase by L. reuteri was achieved at lactose concentration of 6%, initial pH 5.0-7.5, ammonium phosphate as nitrogen source at a concentration of 0.66 g N/L and incubation temperature at 30 degrees C/24 hrs to give 6.31 U/ml. While in case of S. thermophilus, maximum beta-galactosidase production was achieved at 10% lactose concentration of permeate medium, supplemented with phosphate buffer ratio of 0.5:0.5 (KH2PO4:K2HPO4, g/L), at initial pH 6.0-6.5, ammonium phosphate (0.66g N/L) as nitrogen source and incubation temperature 35 degrees C for 24 hrs to give 7.85 U/ml.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Stojanov, Spase, Tina Vida Plavec, Julijana Kristl, Špela Zupančič, and Aleš Berlec. "Engineering of Vaginal Lactobacilli to Express Fluorescent Proteins Enables the Analysis of Their Mixture in Nanofibers." International Journal of Molecular Sciences 22, no. 24 (December 20, 2021): 13631. http://dx.doi.org/10.3390/ijms222413631.

Повний текст джерела
Анотація:
Lactobacilli are a promising natural tool against vaginal dysbiosis and infections. However, new local delivery systems and additional knowledge about their distribution and mechanism of action would contribute to the development of effective medicine. This will be facilitated by the introduction of the techniques for effective, inexpensive, and real-time tracking of these probiotics following their release. Here, we engineered three model vaginal lactobacilli (Lactobacillus crispatus ATCC 33820, Lactobacillus gasseri ATCC 33323, and Lactobacillus jensenii ATCC 25258) and a control Lactobacillus plantarum ATCC 8014 to express fluorescent proteins with different spectral properties, including infrared fluorescent protein (IRFP), green fluorescent protein (GFP), red fluorescent protein (mCherry), and blue fluorescent protein (mTagBFP2). The expression of these fluorescent proteins differed between the Lactobacillus species and enabled quantification and discrimination between lactobacilli, with the longer wavelength fluorescent proteins showing superior resolving power. Each Lactobacillus strain was labeled with an individual fluorescent protein and incorporated into poly (ethylene oxide) nanofibers using electrospinning, as confirmed by fluorescence and scanning electron microscopy. The lactobacilli retained their fluorescence in nanofibers, as well as after nanofiber dissolution. To summarize, vaginal lactobacilli were incorporated into electrospun nanofibers to provide a potential solid vaginal delivery system, and the fluorescent proteins were introduced to distinguish between them and allow their tracking in the future probiotic-delivery studies.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dong, Jie, Yun Sheng Jiang, Hai Yu, Wen Juan Zhang, and Yu Feng Liu. "Study on Lactobacillus Isolation from Rabbit Meat Sausage and its Fermentation Property." Applied Mechanics and Materials 140 (November 2011): 431–40. http://dx.doi.org/10.4028/www.scientific.net/amm.140.431.

Повний текст джерела
Анотація:
Three lactobacilli (L26, L34 , L106) isolated from naturally fermented rabbit sausage in a traditional way are identified as lactobacillus plantarum, lactobacillus sake and lactobacillus fructosus. Further study of its fermentation property shows that three lactobacilli are effective in acid production, alkali resistant, nitrite resistant and bacteriostatic, and are antagonisticaction free, which can be used as combined rabbit meat starter.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Výrostková, Jana, Ivana Regecová, Mariana Kováčová, Slavomír Marcinčák, Eva Dudriková, and Jana Maľová. "Antimicrobial Resistance of Lactobacillus johnsonii and Lactobacillus zeae in Raw Milk." Processes 8, no. 12 (December 10, 2020): 1627. http://dx.doi.org/10.3390/pr8121627.

Повний текст джерела
Анотація:
Lactobacillus johnsonii and Lactobacillus zeae are among the lactobacilli with probiotic properties, which occur in sour milk products, cheeses, and to a lesser extent in raw milk. Recently, resistant strains have been detected in various species of lactobacilli. The aim of the study was to determine the incidence of resistant Lactobacillus johnsonii and Lactobacillus zeae strains in various types of raw milk. A total of 245 isolates were identified by matrix-assisted laser desorption/ionization mass spectrometry and polymerase chain reaction methods as Lactobacillus sp., of which 23 isolates of Lactobacillus johnsonii and 18 isolates of Lactobacillus zeae were confirmed. Determination of susceptibility to selected antibiotics was performed using the E-test and broth dilution method, where 7.3% of lactobacilli strains were evaluated as ampicillin-resistant, 14.7% of isolates as erythromycin-resistant, and 4.9% of isolates as clindamycin-resistant. The genus Lactobacillus johnsonii had the highest resistance to erythromycin (34.8%), similar to Lactobacillus zeae (33.3%). Of the 41 isolates, the presence of the gene was confirmed in five Lactobacillus johnsonii strains and in two strains of Lactobacillus zeae. The presence of resistant strains of Lactobacillus johnsonii and Lactobacillus zeae is a potential risk in terms of spreading antimicrobial resistance through the food chain.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

CHANG, M. H., and T. C. CHEN. "Reduction of Campylobacter jejuni in a Simulated Chicken Digestive Tract by Lactobacilli Cultures." Journal of Food Protection 63, no. 11 (November 1, 2000): 1594–97. http://dx.doi.org/10.4315/0362-028x-63.11.1594.

Повний текст джерела
Анотація:
Studies were conducted to investigate the impact of a selected lactobacilli mixed culture on Campylobacter jejuni in simulated chicken digestive tract models. Veronal buffer solutions corresponding to the pH of successive segments of the chicken digestive tract were prepared. The lactobacilli mixtures were prepared by mixing four fresh lactobacilli cultures, including Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus crispatus, and Lactobacillus brevis. The C. jejuni and lactobacilli mixture were mixed with sterile poultry feed, and the previously prepared veronal buffer solutions were then added separately. The mixture was incubated at 41.1°C for various lengths of time with periodic agitation. The feed passage time for five segments of the digestive tract were adopted: crop (pH 4.5), 30 min; proventriculus (pH 4.4), 15 min; gizzard (pH 2.6), 90 min; small intestine (pH 6.2), 90 min; and large intestine (pH 6.3), 15 min. The Campylobacter and lactobacilli were enumerated. An antagonistic effect on C. jejuni by the tested lactobacilli spp. was found in individual sections and the complete simulated digestive tract models. In the simulated complete chicken digestion system, no C. jejuni were found during the final incubation period when a lactobacilli mixture was present. The results of this in vitro study indicate the potential value of future in vivo studies.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Karlsson, M., and J. Jass. "Lactobacilli differently regulate expression and secretion of CXCL8 in urothelial cells." Beneficial Microbes 3, no. 3 (September 1, 2012): 195–203. http://dx.doi.org/10.3920/bm2012.0011.

Повний текст джерела
Анотація:
Modulation of the immune response is an established feature of certain lactobacilli. CXCL8 is an inflammatory chemokine released by the urinary tract mucosa after contact with uropathogenic Escherichia coli during urinary tract infection and is crucial for proper infiltration of immune cells. Nevertheless, persistently high levels of CXCL8 are associated with pathogenicity and malignancy. In this study, we tested twelve Lactobacillus strains for their ability to influence CXCL8 release from urothelial cells. We evaluated how strains from different Lactobacillus species could regulate CXCL8 in human 5637 urothelial cells, either resting cells or cells concomitantly challenged with heat-killed E. coli. A majority of the tested species altered CXCL8 release from the urothelial cells after 24 hours of stimulation. Most species increased CXCL8 release, whereas a few lactobacilli efficiently suppressed CXCL8 secretion from E. coli-challenged cells. While strong CXCL8 modulators such as Lactobacillus reuteri and Lactobacillus delbrueckii were unable to degrade CXCL8 in the extracellular environment, effects on IL8 transcription were evident for selected lactobacilli. Although IL8 transcription was affected by lactobacilli, the influence on mRNA transcript did not correlate to the impact on CXCL8 release. Phylogenetic analysis based on a 16S rRNA dendrogram of the tested lactobacilli and their effect on CXCL8 revealed some linkage to specific Lactobacillus groups. Testing the immunomodulatory nature of lactobacilli can prove important when selecting new probiotic microbes. Moreover, we believe that phylogenetic and phenotypic similarities could be used to analyse the traits governing such modulation.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Journal, Baghdad Science. "Effect of Lactobacilli sources on Escherichia coli and Staphylococcus aureus adherence to uroepithelial cells." Baghdad Science Journal 8, no. 3 (September 4, 2011): 723–27. http://dx.doi.org/10.21123/bsj.8.3.723-727.

Повний текст джерела
Анотація:
The inhibitory action of four lactobacilli isolates Lactobacillus bulgaricus, L. acidophilus, L. plantarum and L. fermentum, isolated from four different samples; yoghurt, vinegar, saliva and vagina respectively, on Escherichia coli and Staphylococcus aureus adhesion to uroepithelial cells were investigated. Results showed that all Lactobacillus isolates or their supernatant were able to reduce the number of the uropathogens attached to uroepithelial cells. However, inhibition level of lactobacilli cells was higher than their supernatant. Nevertheless, the human indigenous lactobacilli (L. fermentum and L. plantarum) were more competitive than food lactobacilli (L. acidophilus and L. bulgaricus).
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Amirkhanova, Zhanerke, Saule Akhmetova, Samat Kozhakhmetov, Almagul Kushugulova, Rakhat Bodeeva, Zauresh Issina, and Marat Tusbayev. "Screening of Antimicrobial and Adhesive Activity of Lactobacilli Isolated from the National Food Products from Different Districts of the Karaganda Region (Kazakhstan)." Open Access Macedonian Journal of Medical Sciences 9, A (September 24, 2021): 827–32. http://dx.doi.org/10.3889/oamjms.2021.7053.

Повний текст джерела
Анотація:
BACKGROUND: It is a national priority to look for new probiotic bacteria with highly active biological properties to create a new generation of probiotics, ferments, therapeutic, and prophylactic fermented milk products, taking into account ethnocultural and regional characteristics. AIM: The aim of the study is to assess probiotic properties of strains of lactobacilli (antimicrobial and adhesive), which are isolated from national lactic acid products from different districts of the Karaganda region (Kazakhstan). MATERIALS AND METHODS: There were modern microbiological methods applied during the experiment. To determine the morpho-cultural properties, the following methods were used: Gram staining, a catalase test, serial dilutions. The Matrix Supported Laser Desorption/Ionization Flight Time Mass Spectrometry was used for identification, and the deferred-antagonism method was used to determine the antimicrobial activity. The buccal epithelial cells were used for the cell object as a test system to determine the adhesive activity. RESULTS: In this experiment, 26 lactobacillus isolates were isolated from 68 samples of national lactic acid products produced in a traditional homemade way in different districts of the Karaganda region (Kazakhstan). As a result of the studies carried out on the cultural and morphological characteristics and identification by the mass spectrometer, the following lactobacilli were obtained: Lactobacillus acidophilus (two strains), Lactobacillus delbrueckii subsp. bulgaricum (two strains), Lactobacillus rhamnosus (seven strains), Lactobacillus plantarum (two strains), Lactobacillus paracasei (11 strains), and Lactobacillus fermentum (two strains). Twenty-six isolates of lactobacilli were tested for antimicrobial activity, 13 isolates of which showed an inhibitory effect, but the degree of antagonism varied among lactobacillus isolates. In general, the inhibitory activity of lactobacillus isolates was shown against the Gram-negative indicator microorganisms Salmonella typhimurium NCTC 12023, Escherichia coli NCTC 12923. The antibacterial activity was shown against the Staphylococcus aureus NCTC 12973 indicator microorganism in nine isolates of lactobacilli. Only six isolates of lactobacilli showed antifungal activity against the test strain of Candida albicans NCPF 3179. Out of 13 isolates of lactobacilli, nine isolates of medium and high activity competed for binding to buccal epithelial cells. CONCLUSION: The obtained isolates from traditional dairy products are considered to be promising candidates and competitive isolates with some probiotic potential. This study calls for further researches to be made in this area.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Guan, Le Luo, Karen E. Hagen, Gerald W. Tannock, Doug R. Korver, Gaylene M. Fasenko, and Gwen E. Allison. "Detection and Identification of Lactobacillus Species in Crops of Broilers of Different Ages by Using PCR-Denaturing Gradient Gel Electrophoresis and Amplified Ribosomal DNA Restriction Analysis." Applied and Environmental Microbiology 69, no. 11 (November 2003): 6750–57. http://dx.doi.org/10.1128/aem.69.11.6750-6757.2003.

Повний текст джерела
Анотація:
ABSTRACT The microflora of the crop was investigated throughout the broiler production period (0 to 42 days) using PCR combined with denaturing gradient gel electrophoresis (PCR-DGGE) and selective bacteriological culture of lactobacilli followed by amplified ribosomal DNA restriction analysis (ARDRA). The birds were raised under conditions similar to those used in commercial broiler production. Lactobacilli predominated and attained populations of 108 to 109 CFU per gram of crop contents. Many of the lactobacilli present in the crop (61.9% of isolates) belonged to species of the Lactobacillus acidophilus group and could not be differentiated by PCR-DGGE. A rapid and simple ARDRA method was developed to distinguish between the members of the L. acidophilus group. HaeIII-ARDRA was used for preliminary identification of isolates in the L. acidophilus group and to identify Lactobacillus reuteri and Lactobacillus salivarius. MseI-ARDRA generated unique patterns for all species of the L. acidophilus group, identifying Lactobacillus crispatus, Lactobacillus johnsonii, and Lactobacillus gallinarum among crop isolates. The results of our study provide comprehensive knowledge of the Lactobacillus microflora in the crops of birds of different ages using nucleic acid-based methods of detection and identification based on current taxonomic criteria.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Pramanick, Rinku, Shraddha Parab, Niranjan Mayadeo, Himangi Warke, and Clara Aranha. "Cross sectional analysis of vaginal Lactobacillus in asymptomatic women of reproductive age in Mumbai, India." Journal of Infection in Developing Countries 12, no. 12 (December 31, 2018): 1096–104. http://dx.doi.org/10.3855/jidc.10154.

Повний текст джерела
Анотація:
Introduction: Lactobacillus dominated vaginal microenvironment is associated with lower risk of genital infections. Numerous studies have reported geographic and ethnic variations in vaginal microbiome structure between healthy individuals from different race and ethnicity. India has a great diversity, so it is intriguing to find out if such divergences exist in vaginal lactobacilli. The present study aimed to investigate predominant Lactobacillus species in vaginas of healthy Indian women and screen isolates for lactic acid and H2O2 production. Methodology: 203 premenopausal women asymptomatic for any vaginal complaints were recruited. The lactobacilli isolates on MRS agar were identified by Multiplex-PCR and 16sRNA gene sequencing. RAPD was used to differentiate strains of same species. H2O2 and lactic acid was evaluated on TMB-HRP MRS agar and BCP-MRS agar respectively. Results: Lactobacilli were recovered from 107/109 (98.2%) women with normal microflora. L. iners 64.7% (68), L. crispatus 26.7% (28), L. reuteri 21.9% (23), L. jensenii 16.2% (17) and L. gasseri 15.2% (16) were the most frequently occurring vaginal lactobacilli in normal women. The vaginal microflora was dominated by either by a single (80%, n = 84) or a combination (20%, n = 21) of Lactobacillus species. Though most frequently identified, L. iners, coexisted only with other Lactobacillus species. All isolates were acid producers but H2O2 was produced by 94.2% isolates. Conclusions: Our study reports prevalent vaginal lactobacilli which could be explored as probiotics. Presence of heterogeneous Lactobacillus population highlights the cumulative effects of different lactobacilli maintaining vaginal health. Contrasting observations about L. iners reiterates its puzzling role in vaginal immunity, advocating further research.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

St. Amant, Diane C., Iris E. Valentin-Bon, and Ann E. Jerse. "Inhibition of Neisseria gonorrhoeae by Lactobacillus Species That Are Commonly Isolated from the Female Genital Tract." Infection and Immunity 70, no. 12 (December 2002): 7169–71. http://dx.doi.org/10.1128/iai.70.12.7169-7171.2002.

Повний текст джерела
Анотація:
ABSTRACT Epidemiological studies suggest H2O2-producing lactobacilli protect women against gonorrhea. Here we demonstrate that Lactobacillus crispatus and Lactobacillus jensenii, the most common lactobacilli in the female genital tract, inhibit gonococci in both acidic and neutral pH conditions. Inhibition was neutralized by bovine catalase, suggesting that H2O2 is the primary mediator of inhibition.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Calonghi, N., C. Parolin, G. Sartor, L. Verardi, B. Giordani, G. Frisco, A. Marangoni, and B. Vitali. "Interaction of vaginal Lactobacillus strains with HeLa cells plasma membrane." Beneficial Microbes 8, no. 4 (August 24, 2017): 625–33. http://dx.doi.org/10.3920/bm2016.0212.

Повний текст джерела
Анотація:
Vaginal lactobacilli offer protection against recurrent urinary and vaginal infections. The precise mechanisms underlying the interaction between lactobacilli and the host epithelium remain poorly understood at the molecular level. Deciphering such events can provide valuable information on the mode of action of commensal and probiotic bacteria in the vaginal environment. We investigated the effects exerted by five Lactobacillus strains of vaginal origin (Lactobacillus crispatus BC1 and BC2, Lactobacillus gasseri BC9 and BC11 and Lactobacillus vaginalis BC15) on the physical properties of the plasma membrane in a cervical cell line (HeLa). The interaction of the vaginal lactobacilli with the cervical cells determined two kinds of effects on plasma membrane: (1) modification of the membrane polar lipid organisation and the physical properties (L. crispatus BC1 and L. gasseri BC9); (2) modification of α5β1 integrin organisation (L. crispatus BC2, L. gasseri BC11 and L. vaginalis BC15). These two mechanisms can be at the basis of the protective role of lactobacilli against Candida albicans adhesion. Upon stimulation with all Lactobacillus strains, we observed a reduction of the basal oxidative stress in HeLa cells that could be related to modifications in physical properties and organisation of the plasma membrane. These results confirm the strictly strain-specific peculiarities of Lactobacillus and deepen the understanding of the mechanisms underlying the health-promoting role of this genus within the vaginal ecosystem.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Mounia, Homrani, Dalache Fatiha, Bouzouina Mohammed, Nemmiche Said, and Homrani AbdelKader. "Antibacterial activity of Lactobacilli detected in Algerian raw honeys against gram-negative bacteria." South Asian Journal of Experimental Biology 8, no. 3 (March 10, 2019): 83–90. http://dx.doi.org/10.38150/sajeb.8(3).p83-90.

Повний текст джерела
Анотація:
This study reports the isola on of Lactobacilli from Four (n=04) typical Apis Mellifeca raw honey samples collected from different regions in Algeria and the evalua on of their an bacterial ac vi es against Gram-negative bacteria. The isolation of Lactobacilli was performed using different media. Isolates were identified firrstly by catalase test, Gram staining and cells morphology, and confirmed by MALDI-TOF-MS. An bacterial activities of Bacterial cultures of selected Lactobacilli and their cell free supernatants were tested by agar spot assays and agar well diffusion assay. A total of eighteen (n=18) bacteria isolated from honey samples were presump vely iden ed as Lac- tobacillus spp. based on their posi ve Gram reactions, absence of catalase and their rod shape. MALDI-TOF MS iden ca on confirmed that all isolates were classified as Lactobacillus genus, but the results for their species were inconclusive with uncertainty between, Lactobacillus pentosus, Lactobacillus plantarum and Lactobacillus paraplantarum. Isolates exhibited an microbial activity with inhibition zone diameters ranging from 11 ± 1.41 mm to 17.5 ± 0.71 mm. 6 on 11 Lactobacilli Supernatants demonstrated inhibitory ac vity against all target bacteria. This study reveals the existence of Lactobacilli in Algerian raw Honeys. These Lactobacilli possess an bacterial properties against Gram-negative bacteria, often responsible of human infections, and can be a favorable substitute to antibiotics.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Lapirattanakul, Jinthana, Ryota Nomura, Rena Okawa, Setsuyo Morimoto, Pornpen Tantivitayakul, Thaniya Maudcheingka, Kazuhiko Nakano, and Michiyo Matsumoto-Nakano. "Oral Lactobacilli Related to Caries Status of Children with Primary Dentition." Caries Research 54, no. 2 (2020): 194–204. http://dx.doi.org/10.1159/000506468.

Повний текст джерела
Анотація:
Oral lactobacilli are members of a group of bacteria implicated in caries progression, although information regarding their transmission, colonization, and caries-associated species is not well established. This study isolated oral lactobacilli from a group of children with primary dentition for determination of Lactobacillus prevalence, detection of Streptococcus mutans, a major pathogen of caries initiation, and dental caries status of the children. Species of Lactobacillus isolates were determined from examination of 16S rDNA sequences. Subsequently, the most prevalent species was evaluated for involvement in caries status, and binding ability to type I collagen of all Lactobacillus isolates was determined in association with caries status. Multilocus sequence typing (MLST) of eleven loci was carried out to study strains of the predominant Lactobacillus sp. The detection of oral lactobacilli together with S. mutans was significantly associated with the highest dental caries indices, but there was no involvement of collagen-binding properties of Lactobacillus isolates in caries status. Lactobacillus fermentum was the most prevalent, and its presence was related to high scores of caries indices. MLST analysis of L. fermentum population could not specify a particular clone associated with caries status, but revealed sharing of identical L. fermentum strains among children in the same classrooms. Taken together, the data contributed useful information on the role of oral lactobacilli, in particular L. fermentum in dental caries.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Horáčková, Š., P. Sedláčková, M. Sluková, and M. Plocková. "The influence of whey, whey component and malt on the growth and acids production of lactobacilli in milk." Czech Journal of Food Sciences 32, No. 6 (November 27, 2014): 526–31. http://dx.doi.org/10.17221/214/2014-cjfs.

Повний текст джерела
Анотація:
The effect of whey powder, whey protein concentrate, caseinomacropeptide, and malt addition into milk on the growth and acid production of lactobacilli (Lactobacillus casei Lafti L-26, Lactobacillus acidophilus CCDM 151, and Lactobacillus casei CCDM 198) was evaluated. The ability of these strains to use different types of saccharides from milk and plant sources was also tested. Glucose, galactose, fructose and maltose were utilised by all tested strains. The results showed that the addition of malt positively affected the growth of lactobacilli strains compared to the growth in milk enriched by whey ingredients. The addition of malt increased significantly the production of d(–)isomer of lactic acid by Lactobacillus acidophilus CCDM 151 and Lactobacillus casei CCDM 198 and the production of acetic acid by Lactobacillus casei CCDM 198.  
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Settanni, Luca, Sara Valmorri, Douwe van Sinderen, Giovanna Suzzi, Antonello Paparella, and Aldo Corsetti. "Combination of Multiplex PCR and PCR-Denaturing Gradient Gel Electrophoresis for Monitoring Common Sourdough-Associated Lactobacillus Species." Applied and Environmental Microbiology 72, no. 5 (May 2006): 3793–96. http://dx.doi.org/10.1128/aem.72.5.3793-3796.2006.

Повний текст джерела
Анотація:
ABSTRACT A combination of denaturing gradient gel electrophoresis (DGGE) and a previously described multiplex PCR approach was employed to detect sourdough lactobacilli. Primers specific for certain groups of Lactobacillus spp. were used to amplify fragments, which were analyzed by DGGE. DGGE profiles obtained from Lactobacillus type strains acted as standards to analyze lactobacilli from four regional Abruzzo (central Italy) sourdoughs.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Haarman, Monique, and Jan Knol. "Quantitative Real-Time PCR Analysis of Fecal Lactobacillus Species in Infants Receiving a Prebiotic Infant Formula." Applied and Environmental Microbiology 72, no. 4 (April 2006): 2359–65. http://dx.doi.org/10.1128/aem.72.4.2359-2365.2006.

Повний текст джерела
Анотація:
ABSTRACT The developing intestinal microbiota of breast-fed infants is considered to play an important role in the priming of the infants' mucosal and systemic immunity. Generally, Bifidobacterium and Lactobacillus predominate the microbiota of breast-fed infants. In intervention trials it has been shown that lactobacilli can exert beneficial effects on, for example, diarrhea and atopy. However, the Lactobacillus species distribution in breast-fed or formula-fed infants has not yet been determined in great detail. For accurate enumeration of different lactobacilli, duplex 5′ nuclease assays, targeted on rRNA intergenic spacer regions, were developed for Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus delbrueckii, Lactobacillus fermentum, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus reuteri, and Lactobacillus rhamnosus. The designed and validated assays were used to determine the amounts of different Lactobacillus species in fecal samples of infants receiving a standard formula (SF) or a standard formula supplemented with galacto- and fructo-oligosaccharides in a 9:1 ratio (OSF). A breast-fed group (BF) was studied in parallel as a reference. During the 6-week intervention period a significant increase was shown in total percentage of fecal lactobacilli in the BF group (0.8% ± 0.3% versus 4.1% ± 1.5%) and the OSF group (0.8% ± 0.3% versus 4.4% ± 1.4%). The Lactobacillus species distribution in the OSF group was comparable to breast-fed infants, with relatively high levels of L. acidophilus, L. paracasei, and L. casei. The SF-fed infants, on the other hand, contained more L. delbrueckii and less L. paracasei compared to breast-fed infants and OSF-fed infants. An infant milk formula containing a specific mixture of prebiotics is able to induce a microbiota that closely resembles the microbiota of BF infants.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Spurbeck, Rachel R., and Cindy Grove Arvidson. "Inhibition of Neisseria gonorrhoeae Epithelial Cell Interactions by Vaginal Lactobacillus Species." Infection and Immunity 76, no. 7 (April 14, 2008): 3124–30. http://dx.doi.org/10.1128/iai.00101-08.

Повний текст джерела
Анотація:
ABSTRACT High levels of Lactobacillus, the dominant genus of the healthy human vaginal microbiota, have been epidemiologically linked to a reduced risk of infection following exposure to the sexually transmitted pathogen Neisseria gonorrhoeae. In this work, a cell culture model of gonococcal infection was adapted to examine the effects of lactobacilli on gonococcal interactions with endometrial epithelial cells in vitro. Precolonization of epithelial cells with Lactobacillus jensenii, Lactobacillus gasseri ATCC 33323, or L. gasseri ATCC 9857 reduced gonococcal adherence by nearly 50%. Lactobacilli also inhibited gonococcal invasion of epithelial cells by more than 60%, which was independent of the effect on adherence. Furthermore, lactobacilli were able to displace adherent gonococci from epithelial cells, suggesting that these organisms have potential as a postexposure prophylactic. Thus, vaginal lactobacilli have the ability to inhibit gonococci at two key steps of an infection, which might have a significant effect in determining whether the gonococcus will be able to successfully establish an infection following exposure in vivo.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Fangous, M. S., Y. Alexandre, N. Hymery, S. Gouriou, D. Arzur, G. Le Blay, and R. Le Berre. "Lactobacilli intra-tracheal administration protects from Pseudomonas aeruginosa pulmonary infection in mice – a proof of concept." Beneficial Microbes 10, no. 8 (December 9, 2019): 893–900. http://dx.doi.org/10.3920/bm2019.0069.

Повний текст джерела
Анотація:
The spreading of antibiotic resistance is a major public health issue, which requires alternative treatments to antibiotics. Lactobacilli have shown abilities to prevent pneumonia in clinical studies when given by oral route, certainly through the gut-lung axis involvement. Rationally, respiratory administration of lactobacilli has been developed and studied in murine model, to prevent from respiratory pathogens. It allows a direct effect of probiotics into the respiratory system. To our knowledge, no study has ever focused on the effect of probiotic intra-respiratory administration to prevent from Pseudomonas aeruginosa (PA) pneumonia, a major respiratory pathogen associated with high morbidity rates. In this study, we evaluated the beneficial activity of three Lactobacillus strains (Lactobacillus fermentum K.C6.3.1E, Lactobacillus zeae Od.76, Lactobacillus paracasei ES.D.88) previously screened by ourselves and known to be particularly efficient in vitro in inhibiting PAO1 virulence factors. Cytotoxic assays in alveolar epithelial cell line A549 were performed, followed by the comparison of two lactobacilli prophylactic protocols (one or two administrations) by intra-tracheal administration in a C57BL/6 murine model of PA pneumonia. A549 cells viability was improved from 23 to 75% when lactobacilli were administered before PAO1 incubation, demonstrating a protective effect (P<0.001). A significant decrease of 2 log of PAO1 was observed 4 h after PAO1 instillation (3×106 cfu/mouse) in both groups receiving lactobacilli (9×106 cfu/mouse) compared to PAO1 group (P<0.05). One single prophylactic administration of lactobacilli significantly decreased the secretion by 50% in bronchoalveolar lavages of interleukin (IL)-6 and tumour necrosis factor-α compared to PAO1. No difference of secretion was observed for the IL-10 secretion, whatever the prophylactic study design. This is the first study highlighting that direct lung administration of Lactobacillus strains protect against PA pneumonia. Next step will be to decipher the mechanisms involved before developing this novel approach for human applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Matsuguchi, Tetsuya, Akimitsu Takagi, Takeshi Matsuzaki, Masato Nagaoka, Kimika Ishikawa, Teruo Yokokura, and Yasunobu Yoshikai. "Lipoteichoic Acids from Lactobacillus Strains Elicit Strong Tumor Necrosis Factor Alpha-Inducing Activities in Macrophages through Toll-Like Receptor 2." Clinical Diagnostic Laboratory Immunology 10, no. 2 (March 2003): 259–66. http://dx.doi.org/10.1128/cdli.10.2.259-266.2003.

Повний текст джерела
Анотація:
ABSTRACT Lactobacilli are nonpathogenic gram-positive inhabitants of microflora. At least some Lactobacillus strains have been postulated to have health beneficial effects, such as the stimulation of the immune system. Here we examined the stimulatory effects of lactobacilli on mouse immune cells. All six heat-killed Lactobacillus strains examined induced the secretion of tumor necrosis factor alpha (TNF-α) from mouse splenic mononuclear cells, albeit to various degrees. When fractionated subcellular fractions of Lactobacillus casei were tested for NF-κB activation and TNF-α production in RAW264.7, a mouse macrophage cell line, the activity was found to be as follows: protoplast > cell wall ≫ polysaccharide-peptidoglycan complex. Both crude extracts and purified lipoteichoic acids (LTAs) from two Lactobacillus strains, L. casei and L. fermentum, significantly induced TNF-α secretion from RAW264.7 cells and splenocytes of C57BL/6, C3H/HeN, and C3H/HeJ mice but not from splenocytes of C57BL/6 TLR2 −/− mice. Lactobacillus LTA induced activation of c-Jun N-terminal kinase activation in RAW264.7 cells. Furthermore, in HEK293T cells transected with a combination of CD14 and Toll-like receptor 2 (TLR2), NF-κB was activated in response to Lactobacillus LTA. Taken together, these data suggest that LTAs from lactobacilli elicit proinflammatory activities through TLR2.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Mokhtari, Sepideh, Saede Atarbashi-Moghadam, Elahe Motevaseli, Soudeh Ghafouri-Fard, and Ardeshir Hesampour. "Lactobacillus fermentum and Lactobacillus crispatus Do Not Have Cytotoxic Effects on HN5 Oral Squamous Cell Carcinoma Cell Line." International Journal of Dentistry 2021 (September 28, 2021): 1–6. http://dx.doi.org/10.1155/2021/3034068.

Повний текст джерела
Анотація:
Background. The oral environment has a very complex normal flora and a wide variety of bacteria including lactobacilli. Studies have shown oral microbial flora has important influence in the development of oral cancer. Squamous cell carcinomas account for more than 90% of cancers in oral cavity. Lactobacilli are known as one of the newest methods for the prevention and treatment of cancers. Previous studies on the effects of probiotics on oral cancer cells are very limited, and only two species of Lactobacillus which are not present in the normal oral microflora have been studied. Due to the unknown effects of lactobacilli on oral cancer, this study aimed to investigate the effect of two species of lactobacilli of oral cavity on oral cancer cells. Methods and Materials. The effects of the supernatant of two lactobacilli, namely, fermentum and crispatus were studied on HN5-cancer cells. The MTT method was used to study the effects of lactobacilli on inhibition of cancer cell growth. Results. The results showed that these lactobacilli do not prevent the progression of oral cancer cells. Moreover, the results showed that the acidic medium had the most effect on reducing the growth of oral cancer cells. Conclusion. Due to the different effects of lactobacilli on various cancer types, the effects of two Lactobacillus crispatus and Lactobacillus fermentum on other oral cancer cell lines may be different from what has been reported in this study.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Strashnova, I. V., G. V. Yamborko, and N. Yu Vasylieva. "ANTAGONISTIC ACTIVITY OF LACTOBACILLI PROBIOTIC STRAINS IN CO-CULTIVATION." Microbiology&Biotechnology, no. 1(54) (April 18, 2022): 45–57. http://dx.doi.org/10.18524/2307-4663.2022.1(54).254024.

Повний текст джерела
Анотація:
SummaryAim. To investigate the antagonistic properties of multistrain compositions and consortia created on the basis of probiotic strains of bacteria of the genus Lactobacillus. Methods. A biocompatibility was investigated by co-cultivation of lactobacilli strains on MRS-agar medium. To create the compositions used separately grown daily broth cultures in certain proportions, to create consortia - strains of lactobacilli in the appropriate proportions were cultivated together in MRS broth during 24 h. The antagonistic activity of the created combinations against 10 test cultures was determined by the well-diffusion method. Results. According to the results of biocompatibility studies, strains of Lactobacillus spp. 175, M2 and M3 were selected. These strains were basis for creation 7 compositions and 7 consortia with certain ratios of broth cultures of these strains. Lactobacilli in the compositions show slightly better antimicrobial properties compared to consortia. The composition of Lactobacillus sp. M2 + Lactobacillus sp. M3 + Lactobacillus sp. 175 in a ratio of 1: 2: 2 showed the best antagonistic activity against all test strains of microorganisms. Conclusions. Created on the basis of probiotic strains of Lactobacillus spp. 175, M2 and M3 compositions and consortia are strong antagonists of different test cultures. Manifestation of activity depends on the method of combining strains in combination, the best effect is achieved by growing each strain separately with subsequent mixing of broth cultures. The most antagonistically active is a composition based on broth cultures of Lactobacillus sp. M2 + Lactobacillus sp. M3 + Lactobacillus sp. 175 in a ratio of 1: 2: 2.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Henri-Dubernet, Ségolène, Nathalie Desmasures, and Micheline Guéguen. "Diversity and dynamics of lactobacilli populations during ripening of RDO Camembert cheese." Canadian Journal of Microbiology 54, no. 3 (March 2008): 218–28. http://dx.doi.org/10.1139/w07-137.

Повний текст джерела
Анотація:
The diversity and dynamics of Lactobacillus populations in traditional raw milk Camembert cheese were monitored throughout the manufacturing process in 3 dairies. Culture-dependent analysis was carried out on isolates grown on acidified de Man – Rogosa – Sharpe agar and Lactobacillus anaerobic de Man Rogosa Sharpe agar supplemented with vancomycin and bromocresol green media. The isolates were identified by polymerase chain reaction – temperature gradient gel electrophoresis (PCR–TGGE) and (or) species-specific PCR and (or) sequencing, and Lactobacillus paracasei and Lactobacillus plantarum isolates were characterized by pulsed field gel electrophoresis (PFGE). Milk and cheese were subjected to culture-independent analysis by PCR–TGGE. Presumed lactobacilli were detected by plate counts throughout the ripening process. However, molecular analysis of total DNA and DNA of isolates failed to detect Lactobacillus spp. in certain cases. The dominant species in the 3 dairies was L. paracasei. PFGE analysis revealed 21 different profiles among 39 L. paracasei isolates. Lactobacillus plantarum was the second most isolated species, but it occurred nearly exclusively in one dairy. The other species isolated were Lactobacillus parabuchneri , Lactobacillus fermentum , Lactobacillus acidophilus , Lactobacillus helveticus , a Lactobacillus psittaci/delbrueckii subsp. bulgaricus/gallinarum/crispatus group, Lactobacillus rhamnosus , Lactobacillus delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, Lactobacillus brevis , Lactobacillus kefiri , and Lactobacillus perolens. Lactobacilli diversity at the strain level was high. Dynamics varied among dairies, and each cheese exhibited a specific picture of species and strains.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Bhattacharyya, Barun K., S. Chowdhury, S. Das, P. K. Saha, S. Mukherjee, A. Manna, and D. Bhattacharjee. "Selective Enumeration of Lactobacillus acidophilus for Probiotic Formulations." International Journal of Pharmaceutical Sciences and Nanotechnology 7, no. 4 (November 30, 2014): 2646–50. http://dx.doi.org/10.37285/ijpsn.2014.7.4.6.

Повний текст джерела
Анотація:
Probiotic microorganisms have been utilized for many years in food processing, preservations and for nutraceutical health benefits. There are a large number of pharmaceutical formulations containing probiotic microorganisms available in the market worldwide. Majority of these organisms are the members specifically from genera Lactobacillus, Lactococcus and Bifidobacterium. A number of media have been proposed for selective or differential enumeration of lactobacilli and bifidobacteria in mixed populations. The development of selective medium using different types of ingredients and antibiotic are well practiced. In the present study we have developed a selective medium for the enumeration of Lactobacillus acidophilus by utilizing the antibiotic ofloxacin resistance of the organism in Lactobacilli MRS-agar. Samples were analyzed by determining viable counts in reference Lactobacilli MRS agar and selective Lactobacilli MRS-ofloxacin agar media. The results were statistically analyzed to evaluate the precision, accuracy, reproducibility and selectivity of the method developed. Thus MRS containing ofloxacin medium can be used for selective enumeration of Lactobacillus acidophilus strains available in commercial formulations containing Bifidobacterium species.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Azeem, Nimra, Muhammad Nawaz, Aftab Ahmad Anjum, Shagufta Saeed, Saba Sana, Amina Mustafa, and Muhammad Rizwan Yousuf. "Activity and Anti-Aflatoxigenic Effect of Indigenously Characterized Probiotic Lactobacilli against Aspergillus flavus—A Common Poultry Feed Contaminant." Animals 9, no. 4 (April 15, 2019): 166. http://dx.doi.org/10.3390/ani9040166.

Повний текст джерела
Анотація:
Aflatoxin contamination in human food and animal feed is a threat to public safety. Aflatoxin B1 (AFB1) can be especially damaging to poultry production and consequently economic development of Pakistan. The present study assessed the in vitro binding of AFB1 by indigenously characterized probiotic lactobacilli. Six isolates (Lactobacillus gallinarum PDP 10, Lactobacillus reuetri FYP 38, Lactobacillus fermentum PDP 24, Lactobacillus gallinarum PL 53, Lactobacillus paracasei PL 120, and Lactobacillus gallinarum PL 149) were tested for activity against toxigenic Aspergillus flavus W-7.1 (AFB1 producer) by well diffusion assay. Only three isolates (PL 53, PL 120, and PL 149) had activity against A. flavus W-7.1. The ameliorative effect of these probiotic isolates on AFB1 production was determined by co-culturing fungus with lactobacilli for 12 days, followed by aflatoxin quantification by high-performance liquid chromatography. In vitro AFB1 binding capacities of lactobacilli were determined by their incubation with a standard amount of AFB1 in phosphate buffer saline at 37 °C for 2 h. AFB1 binding capacities of isolates ranged from 28–65%. Four isolates (PDP 10, PDP 24, PL 120, and PL 149) also ceased aflatoxin production completely, whereas PL 53 showed 55% reduction in AFB1 production as compared to control. The present study demonstrated Lactobacillus gallinarum PL 149 to be an effective candidate AFB1 binding agent against Aspergillus flavus. These findings further support the binding ability of lactic acid bacteria for dietary contaminants.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Borovkova, Ekaterina A., Elena V. Alieva, and Tatyana V. Frolova. "Biological Properties and Probiotic Potential of Intestinal Lactobacilli." Acta Biomedica Scientifica 4, no. 1 (April 4, 2019): 124–32. http://dx.doi.org/10.29413/abs.2019-4.1.19.

Повний текст джерела
Анотація:
Data on inefficiency in some cases or temporary positive effect of commercial probiotics led to the development of the concept of autoprobiotic therapy. According to this, the correction of disturbed microbiocenoses is carried out using autostrains of indigenous normal flora (bifidobacteria, lactobacilli and enterococci). However, publications about effectiveness of autoprobiotic therapy are few and contradictory.The aim of the study was to investigate the biological properties and probiotic potential of intestinal lactobacilli, as well as the effectiveness of autoprobiotic therapy, based on Lactobacillus spp.Methods. Biological properties (antibiotic resistance, hemolytic, adhesive and antagonistic activity) were studied in 159 strains of intestinal lactobacilli. Autoprobiotic therapy with sour-milk ferments based on lactobacilli autostrains was carried out in 78 patients of the of the North Caucasus Federal District (NCFD) hospitals to correct the microbiocenosis of the large intestine due to antibiotic therapy.Results. The indigene strains of the intestinal lactobacilli of patients of NCFD hospitals are characterized by a wide spectrum of antibiotic sensitivity, lack of hemolysin production, medium adhesiveness and a high degree of antagonistic activity. Autoprobiotic therapy using Lactobacillus spp. significantly increases the amount of lactobacilli of the large intestine of patients in hospitals of the North Caucasian Federal District.Conclusion. A high probiotic potential of the indigenous intestinal lactobacilli is identified, which makes it possible to use them as effective autoprobiotics. The effectiveness of autoprobiotics with fermented milk starters with Lactobacillus spp. has been proven to restore the normal amount of intestinal lactobacilli patients after the use of broad-spectrum antibiotics.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Guizani, N., and K. Al-Ramadani. "Microflora and Physical-Chemical Characteristics of Omani Laban." Journal of Agricultural and Marine Sciences [JAMS] 4, no. 2 (June 1, 1999): 61. http://dx.doi.org/10.24200/jams.vol4iss2pp61-64.

Повний текст джерела
Анотація:
Fifteen samples of Laban made at home in three Omani regions were subjected to physical-chemical and microbiological analysis. Laban had an average titratable acidity, pH, fat, protein and total solids of 1.12%, 3.98, 1.I2%, 2. 11% and 6.29%, respectively. The microbial flora of traditional Omani laban was found to be predominantly mesophilic lactococci. and homofemenentative lactobacili. The mean Lactococci and lactobacilli counts were 1.3 x 10 8 and 2.4 x 10 6/ml respectively. The main microbial types involved in the manufacture of Omani laban were Lactoeoccus lactis ssp lactis. Lacrococcus locus ssp locus biov. Diacetylactis, Lactococcus lactis ssp, Cremoris. and Lactobacillus plantarum. Leuconostoc species were present in low proportion compared to other lactic acid bacteria. All Laban samples contained high yeast numbers and were highly contaminated with coliforms, and fecal coliforms.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Zheng, Jinshui, Stijn Wittouck, Elisa Salvetti, Charles M. A. P. Franz, Hugh M. B. Harris, Paola Mattarelli, Paul W. O’Toole, et al. "A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae." International Journal of Systematic and Evolutionary Microbiology 70, no. 4 (April 1, 2020): 2782–858. http://dx.doi.org/10.1099/ijsem.0.004107.

Повний текст джерела
Анотація:
The genus Lactobacillus comprises 261 species (at March 2020) that are extremely diverse at phenotypic, ecological and genotypic levels. This study evaluated the taxonomy of Lactobacillaceae and Leuconostocaceae on the basis of whole genome sequences. Parameters that were evaluated included core genome phylogeny, (conserved) pairwise average amino acid identity, clade-specific signature genes, physiological criteria and the ecology of the organisms. Based on this polyphasic approach, we propose reclassification of the genus Lactobacillus into 25 genera including the emended genus Lactobacillus , which includes host-adapted organisms that have been referred to as the Lactobacillus delbrueckii group, Paralactobacillus and 23 novel genera for which the names Holzapfelia, Amylolactobacillus, Bombilactobacillus, Companilactobacillus, Lapidilactobacillus, Agrilactobacillus, Schleiferilactobacillus, Loigolactobacilus, Lacticaseibacillus, Latilactobacillus, Dellaglioa, Liquorilactobacillus, Ligilactobacillus, Lactiplantibacillus, Furfurilactobacillus, Paucilactobacillus, Limosilactobacillus, Fructilactobacillus, Acetilactobacillus, Apilactobacillus, Levilactobacillus, Secundilactobacillus and Lentilactobacillus are proposed. We also propose to emend the description of the family Lactobacillaceae to include all genera that were previously included in families Lactobacillaceae and Leuconostocaceae . The generic term ‘lactobacilli’ will remain useful to designate all organisms that were classified as Lactobacillaceae until 2020. This reclassification reflects the phylogenetic position of the micro-organisms, and groups lactobacilli into robust clades with shared ecological and metabolic properties, as exemplified for the emended genus Lactobacillus encompassing species adapted to vertebrates (such as Lactobacillus delbrueckii , Lactobacillus iners , Lactobacillus crispatus , Lactobacillus jensensii, Lactobacillus johnsonii and Lactobacillus acidophilus ) or invertebrates (such as Lactobacillus apis and Lactobacillus bombicola ).
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Stojanov, Spase, Julijana Kristl, Špela Zupančič, and Aleš Berlec. "Influence of Excipient Composition on Survival of Vaginal Lactobacilli in Electrospun Nanofibers." Pharmaceutics 14, no. 6 (May 28, 2022): 1155. http://dx.doi.org/10.3390/pharmaceutics14061155.

Повний текст джерела
Анотація:
The lack of appropriate delivery systems hinders the use of probiotics in the treatment of vaginal infections. Therefore, the development of a new delivery system for the local administration of vaginal probiotics is necessary. In this study, we selected three vaginal lactobacilli, i.e., Lactobacillus crispatus, Lactobacillus gasseri, and Lactobacillus jensenii, and incorporated them into nanofibers using electrospinning. Polyethylene oxide (PEO) was used as a carrier polymer to produce nanofibers. It was supplemented with alginate and sucrose selected from a group of carbohydrates for their growth-promoting effect on lactobacilli. The interaction between excipients and lactobacilli was evaluated thermally and spectroscopically. Bacterial survival in polymer solutions and in nanofibers immediately after electrospinning and after storage varied among species and was dependent on the formulation. Sucrose improved the survival in polymer solutions and preserved the viability of L. crispatus and L. jensenii immediately after electrospinning, and L. gasseri and L. jensenii during storage. Blending PEO with alginate did not improve species viability. However, the three lactobacilli in the nanofibers retained some viability after 56 days, indicating that composite multifunctional nanofibers can maintain the viability of vaginal lactobacilli and can be used as a potential solid delivery system for vaginal administration of probiotics.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Trivedi, Disha, Prasant Kumar Jena, and Sriram Seshadri. "Colicin E2 Expression in Lactobacillus brevis DT24, A Vaginal Probiotic Isolate, against Uropathogenic Escherichia coli." ISRN Urology 2014 (February 4, 2014): 1–7. http://dx.doi.org/10.1155/2014/869610.

Повний текст джерела
Анотація:
Novel therapeutic approaches are needed to combat the urinary tract infection in women. During menstruation elevated protein concentration and increase in oxygen and carbon dioxide concentrations with decrease in vaginal Lactobacilli all together contribute to urinary tract infections. Lactobacillus species are a predominant member of the vaginal microflora and are critical in the prevention of a number of urogenital diseases. In order to increase antimicrobial potential of vaginal Lactobacilli, bacteriocin colicin E2 which has specific activity against uropathogenic Escherichia coli has been overexpressed in vaginal probiotic Lactobacillus brevis DT24. Recombinant Lactobacillus brevis DT24 expressing colicin E2 showed much higher inhibitory activity against uropathogenic Escherichia coli than wild type L. brevis DT24 in vitro. Efficacy of probiotic Lactobacillus brevis DT24 expressing colicin E2 protein is required for further in vivo evaluation.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Smidt, I., R. Kiiker, H. Oopkaup, E. Lapp, T. Rööp, K. Truusalu, J. Štšepetova, J. Truu, and R. Mändar. "Comparison of detection methods for vaginal lactobacilli." Beneficial Microbes 6, no. 5 (October 15, 2015): 747–51. http://dx.doi.org/10.3920/bm2014.0154.

Повний текст джерела
Анотація:
Vaginal lactobacilli offer protection against microbiota imbalance and genitourinary tract infections. We compared vaginal lactobacilli in 50 Estonian women of child-bearing age applying culture-based methods, quantitative PCR and next-generation sequencing (NGS). The culture-based methods found three different lactobacilli: Lactobacillus crispatus, Lactobacillus jensenii and Lactobacillus gasseri. Using NGS revealed the presence of L. crispatus in 76%, Lactobacillus iners in 52%, L. jensenii in 47% and L. gasseri in 33% of the samples. According to qPCR, L. iners was present in 67% and L. crispatus in 64% of the samples. The proportions of L. crispatus revealed by qPCR and NGS were in good correlation (R=0.79, P<0.001), while that of L. iners correlated poorly (R=0.13, P>0.05). Good concordance for L. crispatus was also found between the results of the culture-based method and qPCR. Finally, good overlap between the results of the culture-based method and NGS was revealed: in case of a positive NGS result for L. crispatus, the same species was isolated in 95% of samples. The corresponding percentages were 82% for L. jensenii and 86% for L. gasseri. Our data indicate fairly general concordance of the three methods for detecting vaginal lactobacilli, except for L. iners. This points out the importance of standardisation of techniques, and the respective studies should involve cultures applying a medium suitable for the fastidious L. iners.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Robledo-Cardona, Simón, Sabina Ramírez-Hincapié, and Javier Correa-Álvarez. "Implementation of a Non-Invasive Bioprospecting Protocol for Isolation of Lactobacillus from Feces of Hens Under Foraging Conditions." Ingeniería y Ciencia 14, no. 28 (December 23, 2018): 93–111. http://dx.doi.org/10.17230/ingciencia.14.28.4.

Повний текст джерела
Анотація:
In animal production, probiotics seek to replace the use of antibiotics, while diminishing mortality and morbidity rates to raise productivity. Probiotics constitute a natural alternative that, in contrast with antibiotics, neither produces pathogen resistance, nor leaves chemical residues in the final product. Several bacteria, including some belonging to the genus Lactobacillus have been described as probiotics with high potential. A non-invasive bioprospecting protocol aimed for the isolation and characterization of lactobacilli from chicken feces was established. Fecal samples were collected from the ground. These were diluted and cultured in LAB selective medium. Colonies were identified by three methods: Gram stain, MALDI-TOF MS and sequencing of 16S rRNA gene. An initial probiotic potential of lactobacilli isolates was determined via antagonism tests using five enteropathogen reference strains: Staphylococcus aureus, Enterococcus faecium, Candida albicans, Pseudomonas spp. and Salmonella spp. 24 isolates belonging to four Lactobacillus species were identified by MALDITOF MS. BLAST of 16S rRNA gene of eight randomly selected isolates, confirmed MALDI-TOF MS identification. Five of these eight isolates inhibited the growth of at least one of the pathogenic strains used, three isolates of Lactobacillus plantarum and two of Lactobacillus salivarius. Our protocol achieved 21 lactobacilli per 100 isolates performance, greatly surpassing the normal percentage of lactobacilli in chicken gut microbiome, that so, its implementation would facilitate the isolation and identification of new probiotic strains from feces.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Chen, Qian, Dongwen Ren, Luokun Liu, Jingge Xu, Yuzheng Wu, Haiyang Yu, Mengyang Liu, Yi Zhang, and Tao Wang. "Ginsenoside Compound K Ameliorates Development of Diabetic Kidney Disease through Inhibiting TLR4 Activation Induced by Microbially Produced Imidazole Propionate." International Journal of Molecular Sciences 23, no. 21 (October 25, 2022): 12863. http://dx.doi.org/10.3390/ijms232112863.

Повний текст джерела
Анотація:
Diabetic kidney disease (DKD) is a common and devastating complication in diabetic patients, which is recognized as a large and growing problem leading to end-stage kidney disease. As dietary-mediated therapies are gradually becoming more acceptable to patients with DKD, we planned to find active compounds on preventing DKD progression from dietary material. The present paper reports the renoprotective properties and underlying mechanisms of ginsenoside compound K (CK), a major metabolite in serum after oral administration of ginseng. CK supplementation for 16 weeks could improve urine microalbumin, the ratio of urinary albumin/creatinine and renal morphological abnormal changes in db/db mice. In addition, CK supplementation reshaped the gut microbiota by decreasing the contents of Bacteroides and Paraprevotella and increasing the contents of Lactobacillu and Akkermansia at the genus level, as well as reduced histidine-derived microbial metabolite imidazole propionate (IMP) in the serum. We first found that IMP played a significant role in the progression of DKD through activating toll-like receptor 4 (TLR4). We also confirmed CK supplementation can down-regulate IMP-induced protein expression of the TLR4 signaling pathway in vivo and in vitro. This study suggests that dietary CK could offer a better health benefit in the early intervention of DKD. From a nutrition perspective, CK or dietary material containing CK can possibly be developed as new adjuvant therapy products for DKD.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Vitali, Beatrice, Ciro Pugliese, Elena Biagi, Marco Candela, Silvia Turroni, Gert Bellen, Gilbert G. G. Donders, and Patrizia Brigidi. "Dynamics of Vaginal Bacterial Communities in Women Developing Bacterial Vaginosis, Candidiasis, or No Infection, Analyzed by PCR-Denaturing Gradient Gel Electrophoresis and Real-Time PCR." Applied and Environmental Microbiology 73, no. 18 (July 20, 2007): 5731–41. http://dx.doi.org/10.1128/aem.01251-07.

Повний текст джерела
Анотація:
ABSTRACT The microbial flora of the vagina plays a major role in preventing genital infections, including bacterial vaginosis (BV) and candidiasis (CA). An integrated approach based on PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR was used to study the structure and dynamics of bacterial communities in vaginal fluids of healthy women and patients developing BV and CA. Universal eubacterial primers and Lactobacillus genus-specific primers, both targeted at 16S rRNA genes, were used in DGGE and real-time PCR analysis, respectively. The DGGE profiles revealed that the vaginal flora was dominated by Lactobacillus species under healthy conditions, whereas several potentially pathogenic bacteria were present in the flora of women with BV. Lactobacilli were the predominant bacterial population in the vagina for patients affected by CA, but changes in the composition of Lactobacillus species were observed. Real-time PCR analysis allowed the quantitative estimation of variations in lactobacilli associated with BV and CA diseases. A statistically significant decrease in the relative abundance of lactobacilli was found in vaginal fluids of patients with BV compared to the relative abundance of lactobacilli in the vaginal fluids of healthy women and patients with CA.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

KIECKA, ANETA, BARBARA MACURA, and MARIAN SZCZEPANIK. "Can Lactobacillus spp. Be a Factor Reducing the Risk of Miscarriage?" Polish Journal of Microbiology 70, no. 4 (December 1, 2021): 431–46. http://dx.doi.org/10.33073/pjm-2021-043.

Повний текст джерела
Анотація:
Abstract Pregnancy loss is a common obstetric problem. Significant causes of miscarriage include genetic and epigenetic disorders of the embryo, immunological and endocrine factors, uterine malformations, improper embryo selection, and lifestyle. Perhaps a hitherto underappreciated cause of miscarriage may be an abnormal microbiota composition of the female reproductive system. Lactobacillus spp. is the most common bacteria within the reproductive tract. However, the protective role of Lactobacilli in the vagina has been well described in the literature, while it is still unknown what function Lactobacilli may have in the uterus. Moreover, new research shows that Lactobacillus spp. can have a role in miscarriage. However, both molecular and immunological mechanisms of host-Lactobacillus spp. interactions are not fully understood. Understanding these relationships will help address the importance and extent of the protective role of Lactobacillus spp. in miscarriage.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Farahmand, Nasim, Labia I. I. Ouoba, Shahram Naghizadeh Raeisi, Jane Sutherland, and Hamid B. Ghoddusi. "Probiotic Lactobacilli in Fermented Dairy Products: Selective Detection, Enumeration and Identification Scheme." Microorganisms 9, no. 8 (July 27, 2021): 1600. http://dx.doi.org/10.3390/microorganisms9081600.

Повний текст джерела
Анотація:
A selection of 36 commercial probiotic fermented dairy products from UK and Europe markets were evaluated for the numbers, types, and viability of Lactobacillus strains against the stated information on their packages. A comparative study was carried out on selectivity of MRS-Clindamycin, MRS-Sorbitol, and MRS-IM Maltose, to select the right medium for enumeration of probiotic Lactobacillus. Based on selectivity of medium for recovery of the targeted lactobacilli, and also simplicity of preparation, MRS-Clindamycin was chosen as the best medium for enumeration of probiotic Lactobacillus in fermented milks. The results of enumeration of lactobacilli showed that 22 out of a total 36 tested products contained more than 106 colony-forming units/g at the end of their shelf life, which comply with the recommended minimum therapeutic level for probiotics. Rep-PCR using primer GTG-5 was applied for initial discrimination of isolated strains, and isolates, which presented different band profile, were placed in different groups. The isolated Lactobacillus spp. were identified mainly as Lactobacillus acidophilus, Lactobacillus casei, and Lactobacillus paracasei by analysis of partial sequences of the 16S ribosomal RNA and rpoA genes.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Rocha-Ramírez, Luz María, Ulises Hernández-Chiñas, Silvia Selene Moreno-Guerrero, Arturo Ramírez-Pacheco, and Carlos A. Eslava. "Probiotic Properties and Immunomodulatory Activity of Lactobacillus Strains Isolated from Dairy Products." Microorganisms 9, no. 4 (April 13, 2021): 825. http://dx.doi.org/10.3390/microorganisms9040825.

Повний текст джерела
Анотація:
Lactobacilli species are an effective biotherapeutic alternative against bacterial infections and intestinal inflammatory disorders. However, it is important to evaluate their beneficial properties, before considering them as probiotics for medical use. In this study we evaluated some probiotic properties of Lactobacillus rhamnosus GG, Lactobacillus rhamnosus KLSD, Lactobacillus helveticus IMAU70129, and Lactobacillus casei IMAU60214 previously isolated from dairy products and as control Lactobacillus casei Shirota. Experimental evaluations revealed that all strains expressed hydrophobicity (25–40%), auto-aggregation (55–60%), NaCl tolerance (1–4%), adhesion to Caco-2 cells (25–33%), partial inhibition on adherence of Escherichia coli ATCC 35218, Salmonella Typhimurium ATCC 14028, and Staphylococcus aureus ATCC 23219. Cell-free supernatants (CFS) of Lactobacilli also inhibit growth of these pathogens. In immunomodulatory properties a reduction of interleukin-8 (IL-8) and nitric oxide (NO) release was observed in assays with Caco-2 cells stimulated with interleukin-1β (1 ng/mL), or lipopolysaccharide (0.1 µg/mL). On the other hand, the damage induced to Caco-2 cells with sodium dodecyl sulfate (SDS) was attenuated when the cultured cells were pretreated with L. rhamnosus KLDS, L. helveticus IMAU70129 and L. casei IMAU60214. These Lactobacilli possess probiotic properties determined by both an antagonistic activity on pathogenic bacteria and reduction in the inflammatory response of cells treated with SDS, a pro-inflammatory stimulant.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Takahashi, Hidenori, Yasuhiro Nakano, Takashi Matsuoka, Nobue Kumaki, Yukio Asami, and Yasuhiro Koga. "Role of Indigenous Lactobacilli in Gastrin-Mediated Acid Production in the Mouse Stomach." Applied and Environmental Microbiology 77, no. 19 (July 29, 2011): 6964–71. http://dx.doi.org/10.1128/aem.05230-11.

Повний текст джерела
Анотація:
ABSTRACTIt is known that the stomach is colonized by indigenous lactobacilli in mice. The aim of this study was to examine the role of such lactobacilli in the development of the stomach. For a DNA microarray analysis, germ-free BALB/c mice were orally inoculated with 109CFU lactobacilli, and their stomachs were excised after 10 days to extract RNA. As a result, lactobacillus-associated gnotobiotic mice showed dramatically decreased expression of the gastrin gene in comparison to germ-free mice. The mean of the log2fold change in the gastrin gene was −4.3. Immunohistochemistry also demonstrated the number of gastrin-positive (gastrin+) cells to be significantly lower in the lactobacillus-associated gnotobiotic mice than in the germ-free mice. However, there was no significant difference in the number of somatostatin+cells in these groups of mice. Consequently, gastric acid secretion also decreased in the mice colonized by lactobacilli. In addition, an increase in the expression of the genes related to muscle system development, such as nebulin and troponin genes, was observed in lactobacillus-associated mice. Moreover, infection of germ-free mice withHelicobacter pylorialso showed the down- and upregulation of gastrin and muscle genes, respectively, in the stomach. These results thus suggested that indigenous lactobacilli in the stomach significantly affect the regulation of gastrin-mediated gastric acid secretion without affecting somatostatin secretion in mice, whileH. pylorialso exerts such an effect on the stomach.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Jain, Neha, Archana Mehata, and Vandana Bharti. "SCREENING, CHARACTERIZATION, AND IN VITRO EVALUATION OF PROBIOTIC PROPERTIES OF LACTOBACILLUS STRAINS." Asian Journal of Pharmaceutical and Clinical Research 10, no. 8 (August 1, 2017): 288. http://dx.doi.org/10.22159/ajpcr.2017.v10i8.14233.

Повний текст джерела
Анотація:
Objective: The aim of the present investigation was to isolate and identify Lactobacillus strains from dairy and cattle dung samples. Potent isolates were selected for screening by antimicrobial activity; selected lactobacilli were further tested for probiotic properties and adhesive attributes.Methods: Lactobacilli were isolated aseptically on specific de man, rogosa and sharpe medium from dairy and cattle dung samples. Isolates were identified by Gram-staining, motility, catalase, endospore, and carbohydrate fermentation tests. Further, the isolates were screened for antimicrobial activity by disk diffusion assay, and potent lactobacilli were observed for probiotic properties: Acid and bile salt tolerance, gelatinase activity, and autolytic activity. For analyzing the adhesive attributes, isolates were observed for autoaggregation, coaggregation and microbial adhesion to solvents assay.Results: About 12 Lactobacillus strains among 98 isolates exhibited maximum antimicrobial activity were further selected for identifying their probiotic and adhesive attributes. Among 12 selected isolates, cell-free supernatant (CFS) of buffalo milk BM10 and goat milk GM10 showed excellent antimicrobial activity, 20.34±0.02 mm against Staphylococcus aureus and 18.65±0.11 mm against Escherichia coli. Isolates showed survival at pH 2 and 3 and can tolerate 0.2-0.3% bile salt concentrations. The GM5 showed maximum autoaggregation (67.04±0.61%) and minimum coaggregation (11.51±0.50%) showed by GM3. The BM10 exhibited maximum adherent value 64.84±1.41% for n-hexadecane.Conclusion: The two lactobacilli, BM10 and GM10 identified as Lactobacillus fermentum and Lactobacillus pentosus on the basis of phenotypic and sugar utilization tests. The CFS of both lactobacilli can be used as antimicrobial agent. Both isolates showed significant results of probiotic and adhesive attributes, therefore, can be evaluated for clinical and therapeutic applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

das Neves Selis, Nathan, Hellen Braga Martins de Oliveira, Yan Bento dos Anjos, Hiago Ferreira Leão, Beatriz Almeida Sampaio, Thiago Macêdo Lopes Correia, Mariane Mares Reis, et al. "Gardnerella vaginalis and Neisseria gonorrhoeae Are Effectively Inhibited by Lactobacilli with Probiotic Properties Isolated from Brazilian Cupuaçu (Theobroma grandiflorum) Fruit." BioMed Research International 2021 (April 29, 2021): 1–15. http://dx.doi.org/10.1155/2021/6626249.

Повний текст джерела
Анотація:
In recent years, certain Lactobacillus sp. have emerged in health care as an alternative therapy for various diseases. Based on this, this study is aimed at evaluating in vitro the potential probiotics of five lactobacilli strains isolated from pulp of cupuaçu fruit fermentation against Gardnerella vaginalis and Neisseria gonorrhoeae. Our lactobacilli strains were classified as safe for use in humans, and they were tolerant to heat and pH. Our strains were biofilm producers, while hydrophobicity and autoaggregation varied from 13% to 86% and 13% to 25%, respectively. The coaggregation of lactobacilli used in this study with G. vaginalis and N. gonorrhoeae ranged from 15% to 36% and 32% to 52%, respectively. Antimicrobial activity was present in all tested Lactobacillus strains against both pathogens, and the growth of pathogens in coculture was reduced by the presence of our lactobacilli. Also, all tested lactobacilli reduced the pH of the culture, even in incubation with pathogens after 24 hours. The cell-free culture supernatants (CFCS) of all five lactobacilli demonstrated activity against the two pathogens with a halo presence and CFCS characterization assay together with gas chromatography revealed that lactic acid was the most abundant organic acid in the samples (50% to 62%). Our results demonstrated that the organic acid production profile is strain-specific. This study revealed that cupuaçu is a promising source of microorganisms with probiotic properties against genital pathogens. We demonstrated by in vitro tests that our Lactobacillus strains have probiotic properties. However, the absence of in vivo tests is a limitation of our work due to the need to evaluate the interaction of our lactobacilli with pathogens in the vaginal mucosa. We believe that these findings may be useful in developing a product containing our lactobacilli and their supernatants in order to support with vaginal health.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

DRAKE, MARYANNE, CHRISTOPHER L. SMALL, KEMET D. SPENCE, and BARRY G. SWANSON. "Rapid Detection and Identification of Lactobacillus spp. in Dairy Products by Using the Polymerase Chain Reaction." Journal of Food Protection 59, no. 10 (October 1, 1996): 1031–36. http://dx.doi.org/10.4315/0362-028x-59.10.1031.

Повний текст джерела
Анотація:
Species-specific primers for use in the polymerase chain reaction (PCR) were designed to differentially amplify DNA from the common dairy lactobacillus species Lactobacillus casei, Lactobacillus delbrueckii, Lactobacillus helveticus, and Lactobacillus acidophilus. A method for rapid extraction of bacterial DNA from dairy products was developed. The sensitivity of bacterial DNA extraction from food and subsequent amplification by PCR was 100 cells total. Lactobacillus DNA was extracted and identified from commercial yoghurts, acidophilus milk, and cheeses. The methodology allows the presumptive identification of dairy lactobacilli in less than 6 hours.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Foley, Matthew H., Sarah O’Flaherty, Garrison Allen, Alissa J. Rivera, Allison K. Stewart, Rodolphe Barrangou, and Casey M. Theriot. "Lactobacillus bile salt hydrolase substrate specificity governs bacterial fitness and host colonization." Proceedings of the National Academy of Sciences 118, no. 6 (February 1, 2021): e2017709118. http://dx.doi.org/10.1073/pnas.2017709118.

Повний текст джерела
Анотація:
Primary bile acids (BAs) are a collection of host-synthesized metabolites that shape physiology and metabolism. BAs transit the gastrointestinal tract and are subjected to a variety of chemical transformations encoded by indigenous bacteria. The resulting microbiota-derived BA pool is a mediator of host–microbiota interactions. Bacterial bile salt hydrolases (BSHs) cleave the conjugated glycine or taurine from BAs, an essential upstream step for the production of deconjugated and secondary BAs. Probiotic lactobacilli harbor a considerable number and diversity of BSHs; however, their contribution to Lactobacillus fitness and colonization remains poorly understood. Here, we define and compare the functions of multiple BSHs encoded by Lactobacillus acidophilus and Lactobacillus gasseri. Our genetic and biochemical characterization of lactobacilli BSHs lend to a model of Lactobacillus adaptation to the gut. These findings deviate from previous notions that BSHs generally promote colonization and detoxify bile. Rather, we show that BSH enzymatic preferences and the intrinsic chemical features of various BAs determine the toxicity of these molecules during Lactobacillus growth. BSHs were able to alter the Lactobacillus transcriptome in a BA-dependent manner. Finally, BSHs were able to dictate differences in bacterial competition in vitro and in vivo, defining their impact on BSH-encoding bacteria within the greater gastrointestinal tract ecosystem. This work emphasizes the importance of considering the enzymatic preferences of BSHs alongside the conjugated/deconjugated BA–bacterial interaction. These results deepen our understanding of the BA–microbiome axis and provide a framework to engineer lactobacilli with improved bile resistance and use probiotics as BA-altering therapeutics.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Peña, Jeremy A., Arlin B. Rogers, Zhongming Ge, Vivian Ng, Sandra Y. Li, James G. Fox, and James Versalovic. "Probiotic Lactobacillus spp. Diminish Helicobacter hepaticus-Induced Inflammatory Bowel Disease in Interleukin-10-Deficient Mice." Infection and Immunity 73, no. 2 (February 2005): 912–20. http://dx.doi.org/10.1128/iai.73.2.912-920.2005.

Повний текст джерела
Анотація:
ABSTRACT Clinical and experimental evidence has demonstrated the potential role of probiotics in the prevention or treatment of inflammatory bowel disease. Probiotic clones with direct immunomodulatory activity may have anti-inflammatory effects in the intestine. We investigated the roles of tumor necrosis factor alpha (TNF-α)-inhibitory Lactobacillus clones with a pathogen-induced murine colitis model. Murine-derived probiotic lactobacilli were selected in vitro for their ability to inhibit TNF-α secretion by Helicobacter hepaticus-stimulated macrophages. Interleukin-10 (IL-10)-deficient mice were treated with probiotic Lactobacillus reuteri in combination with Lactobacillus paracasei and then challenged with H. hepaticus. Ten weeks postinoculation, the severity of typhlocolitis was assessed by histologic examination of the cecocolic region. Intestinal proinflammatory cytokine responses were evaluated by real-time quantitative reverse transcriptase PCR and immunoassays, and the quantities of intestinal H. hepaticus were evaluated by real-time PCR. Intestinal colonization by TNF-α-inhibitory lactobacilli reduced intestinal inflammation in H. hepaticus-challenged IL-10-deficient mice despite similar quantities of H. hepaticus in cocolonized animals. Proinflammatory colonic cytokine (TNF-α and IL-12) levels were lowered in Lactobacillus-treated animals. In this H. hepaticus-challenged IL-10-deficient murine colitis model, lactobacilli demonstrated probiotic effects by direct modulation of mucosal inflammatory responses.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Zárate, Gabriela, María Silvina Juárez Tomás, and María Elena Nader-Macias. "Effect of some pharmaceutical excipients on the survival of probiotic vaginal lactobacilli." Canadian Journal of Microbiology 51, no. 6 (June 1, 2005): 483–89. http://dx.doi.org/10.1139/w05-031.

Повний текст джерела
Анотація:
Lactobacilli are the predominant microorganisms of the vaginal bacterial microbiota, and they play a major role in the maintenance of a healthy urogenital tract. In consequence, the interest in their potential use as probiotics has significantly increased during the last decade. In the present study we assessed the influence of different excipients on the survival of 4 probiotic vaginal lactobacilli incorporated into glycerinated gelatin ovules and stored at 5 °C for 60 d. Results showed that viability after storage was a strain-dependent characteristic, but inclusion of ascorbic acid significantly increased survival in 3 of the 4 strains tested. The best survival was observed for Lactobacillus salivarius CRL 1328 in ovules containing skimmed milk. No significant differences in viability were observed between control ovules (glycerogelatin base without excipients) and those containing lactose or Tween 80 for any of the strains tested. Lactobacillus acidophilus CRL 1259 and Lactobacillus crispatus CRL 1266 were, respectively, the most resistant and sensitive strains to the storage with the different substances. In conclusion, these results provide a basis for selecting excipients to improve the survival of lactobacilli in a probiotic product, in an attempt to ensure the delivery of an adequate number of viable cells to the urogenital tract.Key words: vaginal lactobacilli, pharmaceutical excipients, probiotics, viability.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Reid, Gregor, Foaud Soboh, Andrew W. Bruce, and Marc Mittelman. "Effect of nutrient composition on the in vitro growth of urogenital lactobacilli and uropathogens." Canadian Journal of Microbiology 44, no. 9 (September 1, 1998): 866–71. http://dx.doi.org/10.1139/w98-068.

Повний текст джерела
Анотація:
Previous clinical studies have shown that nutrients and probiotic agents can alter the composition of the vaginal flora. The present in vitro study has shown that uropathogens have a growth advantage over lactobacilli, but potentially there are natural substances that could be applied vaginally to stimulate lactobacilli growth to the detriment of the pathogens. When chemically defined medium representative of vaginal fluid at pH 5.5 was supplemented with skim milk, it acted as a better substrate for Lactobacillus rhamnosus GR-1 than for uropathogenic bacteria and Candida albicans. Lactobacillus MRS medium, even at pH 4.5, supports the growth of pathogens, but when supplemented with ascorbic acid or EDTA, Lactobacillus growth was significantly higher. When L. rhamnosus GR-1 was coincubated in a combined nutrient composition of vitamins and lactose, it survived better than Escherichia coli and Enterococcus faecalis. These in vitro results provide a basis for testing nutritional supplements to alter the urogenital flora in an attempt to enhance restoration and maintenance of a normal disease-free state.Key words: nutrients, lactobacilli, uropathogens, growth.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії