Добірка наукової літератури з теми "Label selection"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Label selection".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Label selection"
Wu, Xingyu, Bingbing Jiang, Kui Yu, Huanhuan Chen, and Chunyan Miao. "Multi-Label Causal Feature Selection." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 6430–37. http://dx.doi.org/10.1609/aaai.v34i04.6114.
Повний текст джерелаZhang, Ping, Wanfu Gao, Juncheng Hu, and Yonghao Li. "Multi-Label Feature Selection Based on High-Order Label Correlation Assumption." Entropy 22, no. 7 (July 21, 2020): 797. http://dx.doi.org/10.3390/e22070797.
Повний текст джерелаRobitaille, Nicolas, and Simon Duchesne. "Label Fusion Strategy Selection." International Journal of Biomedical Imaging 2012 (2012): 1–13. http://dx.doi.org/10.1155/2012/431095.
Повний текст джерелаWang, Xiujuan, and Yuchen Zhou. "Multi-Label Feature Selection with Conditional Mutual Information." Computational Intelligence and Neuroscience 2022 (October 8, 2022): 1–13. http://dx.doi.org/10.1155/2022/9243893.
Повний текст джерелаZhu, Pengfei, Qian Xu, Qinghua Hu, Changqing Zhang, and Hong Zhao. "Multi-label feature selection with missing labels." Pattern Recognition 74 (February 2018): 488–502. http://dx.doi.org/10.1016/j.patcog.2017.09.036.
Повний текст джерелаLin, Yaojin, Qinghua Hu, Jia Zhang, and Xindong Wu. "Multi-label feature selection with streaming labels." Information Sciences 372 (December 2016): 256–75. http://dx.doi.org/10.1016/j.ins.2016.08.039.
Повний текст джерелаLee, Jaesung, and Dae-Won Kim. "Efficient Multi-Label Feature Selection Using Entropy-Based Label Selection." Entropy 18, no. 11 (November 15, 2016): 405. http://dx.doi.org/10.3390/e18110405.
Повний текст джерелаXu, Yuanyuan, Jun Wang, and Jinmao Wei. "To Avoid the Pitfall of Missing Labels in Feature Selection: A Generative Model Gives the Answer." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 6534–41. http://dx.doi.org/10.1609/aaai.v34i04.6127.
Повний текст джерелаZhang, Ping, Guixia Liu, Wanfu Gao, and Jiazhi Song. "Multi-label feature selection considering label supplementation." Pattern Recognition 120 (December 2021): 108137. http://dx.doi.org/10.1016/j.patcog.2021.108137.
Повний текст джерелаMa, Jianghong, and Tommy W. S. Chow. "Label-specific feature selection and two-level label recovery for multi-label classification with missing labels." Neural Networks 118 (October 2019): 110–26. http://dx.doi.org/10.1016/j.neunet.2019.04.011.
Повний текст джерелаДисертації з теми "Label selection"
Jungjit, Suwimol. "New multi-label correlation-based feature selection methods for multi-label classification and application in bioinformatics." Thesis, University of Kent, 2016. https://kar.kent.ac.uk/58873/.
Повний текст джерелаGustafsson, Robin. "Ordering Classifier Chains using filter model feature selection techniques." Thesis, Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14817.
Повний текст джерелаSandrock, Trudie. "Multi-label feature selection with application to musical instrument recognition." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019/11071.
Повний текст джерелаENGLISH ABSTRACT: An area of data mining and statistics that is currently receiving considerable attention is the field of multi-label learning. Problems in this field are concerned with scenarios where each data case can be associated with a set of labels instead of only one. In this thesis, we review the field of multi-label learning and discuss the lack of suitable benchmark data available for evaluating multi-label algorithms. We propose a technique for simulating multi-label data, which allows good control over different data characteristics and which could be useful for conducting comparative studies in the multi-label field. We also discuss the explosion in data in recent years, and highlight the need for some form of dimension reduction in order to alleviate some of the challenges presented by working with large datasets. Feature (or variable) selection is one way of achieving dimension reduction, and after a brief discussion of different feature selection techniques, we propose a new technique for feature selection in a multi-label context, based on the concept of independent probes. This technique is empirically evaluated by using simulated multi-label data and it is shown to achieve classification accuracy with a reduced set of features similar to that achieved with a full set of features. The proposed technique for feature selection is then also applied to the field of music information retrieval (MIR), specifically the problem of musical instrument recognition. An overview of the field of MIR is given, with particular emphasis on the instrument recognition problem. The particular goal of (polyphonic) musical instrument recognition is to automatically identify the instruments playing simultaneously in an audio clip, which is not a simple task. We specifically consider the case of duets – in other words, where two instruments are playing simultaneously – and approach the problem as a multi-label classification one. In our empirical study, we illustrate the complexity of musical instrument data and again show that our proposed feature selection technique is effective in identifying relevant features and thereby reducing the complexity of the dataset without negatively impacting on performance.
AFRIKAANSE OPSOMMING: ‘n Area van dataontginning en statistiek wat tans baie aandag ontvang, is die veld van multi-etiket leerteorie. Probleme in hierdie veld beskou scenarios waar elke datageval met ‘n stel etikette geassosieer kan word, instede van slegs een. In hierdie skripsie gee ons ‘n oorsig oor die veld van multi-etiket leerteorie en bespreek die gebrek aan geskikte standaard datastelle beskikbaar vir die evaluering van multi-etiket algoritmes. Ons stel ‘n tegniek vir die simulasie van multi-etiket data voor, wat goeie kontrole oor verskillende data eienskappe bied en wat nuttig kan wees om vergelykende studies in die multi-etiket veld uit te voer. Ons bespreek ook die onlangse ontploffing in data, en beklemtoon die behoefte aan ‘n vorm van dimensie reduksie om sommige van die uitdagings wat deur sulke groot datastelle gestel word die hoof te bied. Veranderlike seleksie is een manier van dimensie reduksie, en na ‘n vlugtige bespreking van verskillende veranderlike seleksie tegnieke, stel ons ‘n nuwe tegniek vir veranderlike seleksie in ‘n multi-etiket konteks voor, gebaseer op die konsep van onafhanklike soek-veranderlikes. Hierdie tegniek word empiries ge-evalueer deur die gebruik van gesimuleerde multi-etiket data en daar word gewys dat dieselfde klassifikasie akkuraatheid behaal kan word met ‘n verminderde stel veranderlikes as met die volle stel veranderlikes. Die voorgestelde tegniek vir veranderlike seleksie word ook toegepas in die veld van musiek dataontginning, spesifiek die probleem van die herkenning van musiekinstrumente. ‘n Oorsig van die musiek dataontginning veld word gegee, met spesifieke klem op die herkenning van musiekinstrumente. Die spesifieke doel van (polifoniese) musiekinstrument-herkenning is om instrumente te identifiseer wat saam in ‘n oudiosnit speel. Ons oorweeg spesifiek die geval van duette – met ander woorde, waar twee instrumente saam speel – en hanteer die probleem as ‘n multi-etiket klassifikasie een. In ons empiriese studie illustreer ons die kompleksiteit van musiekinstrumentdata en wys weereens dat ons voorgestelde veranderlike seleksie tegniek effektief daarin slaag om relevante veranderlikes te identifiseer en sodoende die kompleksiteit van die datastel te verminder sonder ‘n negatiewe impak op klassifikasie akkuraatheid.
Paredes, Zevallos Daniel Leoncio. "Multi-scale image inpainting with label selection based on local statistics." Master's thesis, Pontificia Universidad Católica del Perú, 2014. http://tesis.pucp.edu.pe/repositorio/handle/123456789/5578.
Повний текст джерелаTesis
Duncan, Alyssa Renee. ""Nutrition facts" label use in the selection of healthier foods by undergraduate students." FIU Digital Commons, 1996. http://digitalcommons.fiu.edu/etd/3239.
Повний текст джерелаGonzalez, Lopez Jorge. "Distributed multi-label learning on Apache Spark." VCU Scholars Compass, 2019. https://scholarscompass.vcu.edu/etd/5775.
Повний текст джерелаLu, Tien-hsin. "SqueezeFit Linear Program: Fast and Robust Label-aware Dimensionality Reduction." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587156777565173.
Повний текст джерелаGharroudi, Ouadie. "Ensemble multi-label learning in supervised and semi-supervised settings." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1333/document.
Повний текст джерелаMulti-label learning is a specific supervised learning problem where each instance can be associated with multiple target labels simultaneously. Multi-label learning is ubiquitous in machine learning and arises naturally in many real-world applications such as document classification, automatic music tagging and image annotation. In this thesis, we formulate the multi-label learning as an ensemble learning problem in order to provide satisfactory solutions for both the multi-label classification and the feature selection tasks, while being consistent with respect to any type of objective loss function. We first discuss why the state-of-the art single multi-label algorithms using an effective committee of multi-label models suffer from certain practical drawbacks. We then propose a novel strategy to build and aggregate k-labelsets based committee in the context of ensemble multi-label classification. We then analyze the effect of the aggregation step within ensemble multi-label approaches in depth and investigate how this aggregation impacts the prediction performances with respect to the objective multi-label loss metric. We then address the specific problem of identifying relevant subsets of features - among potentially irrelevant and redundant features - in the multi-label context based on the ensemble paradigm. Three wrapper multi-label feature selection methods based on the Random Forest paradigm are proposed. These methods differ in the way they consider label dependence within the feature selection process. Finally, we extend the multi-label classification and feature selection problems to the semi-supervised setting and consider the situation where only few labelled instances are available. We propose a new semi-supervised multi-label feature selection approach based on the ensemble paradigm. The proposed model combines ideas from co-training and multi-label k-labelsets committee construction in tandem with an inner out-of-bag label feature importance evaluation. Satisfactorily tested on several benchmark data, the approaches developed in this thesis show promise for a variety of applications in supervised and semi-supervised multi-label learning
Narassiguin, Anil. "Apprentissage Ensembliste, Étude comparative et Améliorations via Sélection Dynamique." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1075/document.
Повний текст джерелаEnsemble methods has been a very popular research topic during the last decade. Their success arises largely from the fact that they offer an appealing solution to several interesting learning problems, such as improving prediction accuracy, feature selection, metric learning, scaling inductive algorithms to large databases, learning from multiple physically distributed data sets, learning from concept-drifting data streams etc. In this thesis, we first present an extensive empirical comparison between nineteen prototypical supervised ensemble learning algorithms, that have been proposed in the literature, on various benchmark data sets. We not only compare their performance in terms of standard performance metrics (Accuracy, AUC, RMS) but we also analyze their kappa-error diagrams, calibration and bias-variance properties. We then address the problem of improving the performances of ensemble learning approaches with dynamic ensemble selection (DES). Dynamic pruning is the problem of finding given an input x, a subset of models among the ensemble that achieves the best possible prediction accuracy. The idea behind DES approaches is that different models have different areas of expertise in the instance space. Most methods proposed for this purpose estimate the individual relevance of the base classifiers within a local region of competence usually given by the nearest neighbours in the euclidean space. We propose and discuss two novel DES approaches. The first, called ST-DES, is designed for decision tree based ensemble models. This method prunes the trees using an internal supervised tree-based metric; it is motivated by the fact that in high dimensional data sets, usual metrics like euclidean distance suffer from the curse of dimensionality. The second approach, called PCC-DES, formulates the DES problem as a multi-label learning task with a specific loss function. Labels correspond to the base classifiers and multi-label training examples are formed based on the ability of each classifier to correctly classify each original training example. This allows us to take advantage of recent advances in the area of multi-label learning. PCC-DES works on homogeneous and heterogeneous ensembles as well. Its advantage is to explicitly capture the dependencies between the classifiers predictions. These algorithms are tested on a variety of benchmark data sets and the results demonstrate their effectiveness against competitive state-of-the-art alternatives
Kraus, Vivien. "Apprentissage semi-supervisé pour la régression multi-labels : application à l’annotation automatique de pneumatiques." Thesis, Lyon, 2021. https://tel.archives-ouvertes.fr/tel-03789608.
Повний текст джерелаWith the advent and rapid growth of digital technologies, data has become a precious asset as well as plentiful. However, with such an abundance come issues about data quality and labelling. Because of growing numbers of available data volumes, while human expert labelling is still important, it is more and more necessary to reinforce semi-supervised learning with the exploitation of unlabeled data. This problem is all the more noticeable in the multi-label learning framework, and in particular for regression, where each statistical unit is guided by many different targets, taking the form of numerical scores. This thesis focuses on this fundamental framework. First, we begin by proposing a method for semi-supervised regression, that we challenge through a detailed experimental study. Thanks to this new method, we present a second contribution, more fitted to the multi-label framework. We also show its efficiency with a comparative study on literature data sets. Furthermore, the problem dimension is always a pain point of machine learning, and reducing it sparks the interest of many researchers. Feature selection is one of the major tasks addressing this problem, and we propose to study it here in a complex framework : for semi-supervised, multi-label regression. Finally, an experimental validation is proposed on a real problem about automatic annotation of tires, to tackle the needs expressed by the industrial partner of this thesis
Книги з теми "Label selection"
Hadamar von Laber und seine Liebesdichtung "Die Jagd". Regensburg: Schnell + Steiner, 2005.
Знайти повний текст джерелаNominations of Dr. Lael Brainard, Mary John Miller, and Charles Collyns: Hearing before the Committee on Finance, United States Senate, One Hundred Eleventh Congress, first session, on the nominations of Dr. Lael Brainard, to be Under Secretary of the Treasury for International Affairs; Mary John Miller, to be Assistant Secretary of the Treasury for Financial Markets; and Charles Collyns, to be Assistant Secretary of the Treasury for International Finance, November 20, 2009. Washington: U.S. G.P.O., 2009.
Знайти повний текст джерелаUnited States. Congress. Senate. Committee on Banking, Housing, and Urban Affairs. Nominations of: Stanley Fischer, Jerome H. Powell, Lael Brainard, Gustavo Velasquez Aguilar, and J. Mark McWatters: Hearing before the Committee on Banking, Housing, and Urban Affairs, United States Senate, One Hundred Thirteenth Congress, second session, on nominations of: Stanley Fischer, to be a member and vice chairman of the Board of Governors of the Federal Reserve System; Jerome H. Powell, to be a member of the Board of Governors of the Federal Reserve System; Lael Brainard, to be a member of the Board of Governors of the Federal Reserve System; Gustavo Velasquez Aguilar, to be an assistant secretary of the Department of Housing and Urban Development; J. Mark McWatters, to be a member of the National Credit Union Administration Board, March 13, 2014. Washington: U.S. Government Printing Office, 2014.
Знайти повний текст джерелаBucher, Gina. Female Chic : Thema Selection: The Story of a Zu?rich Fashion Label. Frey Edition im Verlag der Alltag, Patrick, 2016.
Знайти повний текст джерелаBurford, Mark. Conclusion. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190634902.003.0012.
Повний текст джерелаGuerdjikova, Anna I., Paul E. Keck, and Susan L. McElroy. The impact of psychiatric co-morbidity in the treatment of bipolar disorder: focus on co-occurring attention deficit hyperactivity disorder and eating disorders. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198748625.003.0018.
Повний текст джерелаKleppinger, Kathryn A. Branding the 'Beur' Author. Liverpool University Press, 2016. http://dx.doi.org/10.5949/liverpool/9781781381960.001.0001.
Повний текст джерелаUrrieta, Luis. Cultural Identity Theory and Education. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190676087.003.0001.
Повний текст джерелаЧастини книг з теми "Label selection"
Mansouri, Dou El Kefel, and Khalid Benabdeslem. "Towards Multi-label Feature Selection by Instance and Label Selections." In Advances in Knowledge Discovery and Data Mining, 233–44. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75765-6_19.
Повний текст джерелаYan, Yan, Shining Li, Zhe Yang, Xiao Zhang, Jing Li, Anyi Wang, and Jingyu Zhang. "Multi-label Learning with Label-Specific Feature Selection." In Neural Information Processing, 305–15. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70087-8_33.
Повний текст джерелаXu, Qian, Pengfei Zhu, Qinghua Hu, and Changqing Zhang. "Robust Multi-label Feature Selection with Missing Labels." In Communications in Computer and Information Science, 752–65. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-3002-4_61.
Повний текст джерелаJiao, Yang, Pengpeng Zhao, Jian Wu, Xuefeng Xian, Haihui Xu, and Zhiming Cui. "Active Multi-label Learning with Optimal Label Subset Selection." In Advanced Data Mining and Applications, 523–34. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-14717-8_41.
Повний текст джерелаPeng, Tao, Jun Li, and Jianhua Xu. "Label Selection Algorithm Based on Iteration Column Subset Selection for Multi-label Classification." In Lecture Notes in Computer Science, 287–301. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12423-5_22.
Повний текст джерелаJi, Tianqi, Jun Li, and Jianhua Xu. "Label Selection Algorithm Based on Boolean Interpolative Decomposition with Sequential Backward Selection for Multi-label Classification." In Document Analysis and Recognition – ICDAR 2021, 130–44. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86331-9_9.
Повний текст джерелаLi, Ling, Huawen Liu, Zongjie Ma, Yuchang Mo, Zhengjie Duan, Jiaqing Zhou, and Jianmin Zhao. "Multi-label Feature Selection via Information Gain." In Advanced Data Mining and Applications, 345–55. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-14717-8_27.
Повний текст джерелаDoquire, Gauthier, and Michel Verleysen. "Feature Selection for Multi-label Classification Problems." In Advances in Computational Intelligence, 9–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21501-8_2.
Повний текст джерелаPillai, Ignazio, Giorgio Fumera, and Fabio Roli. "Classifier Selection Approaches for Multi-label Problems." In Multiple Classifier Systems, 167–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21557-5_19.
Повний текст джерелаMontejo-Ráez, Arturo, and Luis Alfonso Ureña-López. "Selection Strategies for Multi-label Text Categorization." In Advances in Natural Language Processing, 585–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11816508_58.
Повний текст джерелаТези доповідей конференцій з теми "Label selection"
Yan, Yi-Fan, and Sheng-Jun Huang. "Cost-Effective Active Learning for Hierarchical Multi-Label Classification." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/411.
Повний текст джерелаRen, Tingting, Xiuyi Jia, Weiwei Li, Lei Chen, and Zechao Li. "Label distribution learning with label-specific features." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/460.
Повний текст джерелаZhang, Jia, Yidong Lin, Min Jiang, Shaozi Li, Yong Tang, and Kay Chen Tan. "Multi-label Feature Selection via Global Relevance and Redundancy Optimization." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/348.
Повний текст джерелаSpolaor, Newton, Maria Carolina Monard, Grigorios Tsoumakas, and Huei Lee. "Label Construction for Multi-label Feature Selection." In 2014 Brazilian Conference on Intelligent Systems (BRACIS). IEEE, 2014. http://dx.doi.org/10.1109/bracis.2014.52.
Повний текст джерелаLi, Weiwei, Jin Chen, Yuqing Lu, and Zhiqiu Huang. "Filling Missing Labels in Label Distribution Learning by Exploiting Label-Specific Feature Selection." In 2022 International Joint Conference on Neural Networks (IJCNN). IEEE, 2022. http://dx.doi.org/10.1109/ijcnn55064.2022.9892220.
Повний текст джерелаYin, Zhijian, Xingxing Li, and Hualin Zhan. "Multi-label Feature Selection based on Label-specific Features." In 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC). IEEE, 2019. http://dx.doi.org/10.1109/sdpc.2019.00137.
Повний текст джерелаLangerak, T. R., U. A. van der Heide, I. M. Lips, A. N. T. J. Kotte, M. van Vulpen, and J. P. W. Pluim. "Label fusion using performance estimation with iterative label selection." In 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI). IEEE, 2009. http://dx.doi.org/10.1109/isbi.2009.5193270.
Повний текст джерелаGu, Quanquan, Zhenhui Li, and Jiawei Han. "Correlated multi-label feature selection." In the 20th ACM international conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2063576.2063734.
Повний текст джерелаWang, Jing, Peipei Li, and Kui Yu. "Partial Multi-Label Feature Selection." In 2022 International Joint Conference on Neural Networks (IJCNN). IEEE, 2022. http://dx.doi.org/10.1109/ijcnn55064.2022.9892133.
Повний текст джерелаLyu, Gengyu, Yanan Wu, and Songhe Feng. "Deep Graph Matching for Partial Label Learning." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/459.
Повний текст джерелаЗвіти організацій з теми "Label selection"
Atlas, A., J. Drake, S. Giacalone, and S. Previdi. Performance-Based Path Selection for Explicitly Routed Label Switched Paths (LSPs) Using TE Metric Extensions. RFC Editor, May 2016. http://dx.doi.org/10.17487/rfc7823.
Повний текст джерелаGehlen, J. R. Function Selection with the Tablet: The Effect of Labels for Visual Cuing. Fort Belvoir, VA: Defense Technical Information Center, February 1988. http://dx.doi.org/10.21236/ada198229.
Повний текст джерелаWong, Stephen T., Xiaoyun Xu, Zhengfan Liu, Xu Chen, Zachary Satira, and Xi Wang. A Label-Free and Chemical-Selective Microendoscope to Enhance Prostate Cancer Surgical Outcomes. Fort Belvoir, VA: Defense Technical Information Center, October 2013. http://dx.doi.org/10.21236/ada600022.
Повний текст джерелаLi, Y., D. Eastlake, W. Hao, H. Chen, and S. Chatterjee. Transparent Interconnection of Lots of Links (TRILL): Using Data Labels for Tree Selection for Multi-Destination Data. RFC Editor, August 2016. http://dx.doi.org/10.17487/rfc7968.
Повний текст джерелаSullivan, A. Selecting Labels for Use with Conventional DNS and Other Resolution Systems in DNS-Based Service Discovery. RFC Editor, September 2017. http://dx.doi.org/10.17487/rfc8222.
Повний текст джерелаFluhr, Robert, and Maor Bar-Peled. Novel Lectin Controls Wound-responses in Arabidopsis. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7697123.bard.
Повний текст джерелаMultiple Engine Faults Detection Using Variational Mode Decomposition and GA-K-means. SAE International, March 2022. http://dx.doi.org/10.4271/2022-01-0616.
Повний текст джерела