Добірка наукової літератури з теми "L-typa calcium channels"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "L-typa calcium channels".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "L-typa calcium channels"

1

Collier, M. L., G. Ji, Y. X. Wang, and M. I. Kotlikoff. "Calcium-Induced Calcium Release in Smooth Muscle." Journal of General Physiology 115, no. 5 (2000): 653–62. http://dx.doi.org/10.1085/jgp.115.5.653.

Повний текст джерела
Анотація:
Calcium-induced calcium release (CICR) has been observed in cardiac myocytes as elementary calcium release events (calcium sparks) associated with the opening of L-type Ca2+ channels. In heart cells, a tight coupling between the gating of single L-type Ca2+ channels and ryanodine receptors (RYRs) underlies calcium release. Here we demonstrate that L-type Ca2+ channels activate RYRs to produce CICR in smooth muscle cells in the form of Ca2+ sparks and propagated Ca2+ waves. However, unlike CICR in cardiac muscle, RYR channel opening is not tightly linked to the gating of L-type Ca2+ channels. L-type Ca2+ channels can open without triggering Ca2+ sparks and triggered Ca2+ sparks are often observed after channel closure. CICR is a function of the net flux of Ca2+ ions into the cytosol, rather than the single channel amplitude of L-type Ca2+ channels. Moreover, unlike CICR in striated muscle, calcium release is completely eliminated by cytosolic calcium buffering. Thus, L-type Ca2+ channels are loosely coupled to RYR through an increase in global [Ca2+] due to an increase in the effective distance between L-type Ca2+ channels and RYR, resulting in an uncoupling of the obligate relationship that exists in striated muscle between the action potential and calcium release.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

BIEDA, MARK C., and DAVID R. COPENHAGEN. "N-type and L-type calcium channels mediate glycinergic synaptic inputs to retinal ganglion cells of tiger salamanders." Visual Neuroscience 21, no. 4 (2004): 545–50. http://dx.doi.org/10.1017/s0952523804214055.

Повний текст джерела
Анотація:
Synaptically localized calcium channels shape the timecourse of synaptic release, are a prominent site for neuromodulation, and have been implicated in genetic disease. In retina, it is well established that L-type calcium channels play a major role in mediating release of glutamate from the photoreceptors and bipolar cells. However, little is known about which calcium channels are coupled to synaptic exocytosis of glycine, which is primarily released by amacrine cells. A recent report indicates that glycine release from spiking AII amacrine cells relies exclusively upon L-type calcium channels. To identify calcium channel types controlling neurotransmitter release from the population of glycinergic neurons that drive retinal ganglion cells, we recorded electrical and potassium evoked inhibitory synaptic currents (IPSCs) from these postsynaptic neurons in retinal slices from tiger salamanders. The L-channel antagonist nifedipine strongly inhibited release and FPL64176, an L-channel agonist, greatly enhanced it, indicating a significant role for L-channels. ω-Conotoxin MVIIC, an N/P/Q-channel antagonist, strongly inhibited release, indicating an important role for non-L channels. While the P/Q-channel blocker ω-Aga IVA produced only small effects, the N-channel blocker ω-conotoxin GVIA strongly inhibited release. Hence, N-type and L-type calcium channels appear to play major roles, overall, in mediating synaptic release of glycine onto retinal ganglion cells.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mangel, A. W., L. Scott, and R. A. Liddle. "Depolarization-stimulated cholecystokinin secretion is mediated by L-type calcium channels in STC-1 cells." American Journal of Physiology-Gastrointestinal and Liver Physiology 270, no. 2 (1996): G287—G290. http://dx.doi.org/10.1152/ajpgi.1996.270.2.g287.

Повний текст джерела
Анотація:
To examine the role of calcium channels in depolarization-activated cholecystokinin (CCK) release, studies were performed in an intestinal CCK-secreting cell line, STC-1. Blockade of potassium channels with barium chloride (5 mM) increased the release of CCK by 374.6 +/- 46.6% of control levels. Barium-induced secretion was inhibited by the L-type calcium-channel blocker, nicardipine. Nicardipine (10(-9)-10(-5) M) produced a dose-dependent inhibition in barium-stimulated secretion with a half-maximal inhibition (IC50) value of 0.1 microM. A second L-type calcium-channel blocker, diltiazem (10(-9)-10(-4) M), also inhibited barium-induced CCK secretion with an IC50 value of 5.1 microM. By contrast, the T-type calcium-channel blocker, nickel chloride (10(-7)-10(-8) M), failed to significantly inhibit barium-induced CCK secretion. To further evaluate a role for L-type calcium channels in the secretion of CCK, the effects of the L-type calcium channel opener, BAY K 8644, were examined. BAY K 8644 (10(-8)-10(-4) M) produced a dose-dependent stimulation in CCK release with a mean effective concentration value of 0.2 microM. Recordings of single-channel currents from inside-out membrane patches showed activation of calcium channels by BAY K 8644 (1 microM), with a primary channel conductance of 26.0 +/- 1.2 pS. It is concluded that inhibition of potassium channel activity depolarizes the plasma membrane, thereby activating L-type, but not T-type, calcium channels. The corresponding influx of calcium serves to trigger secretion of CCK.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Isaev, Dmytro, Karisa Solt, Oksana Gurtovaya, John P. Reeves, and Roman Shirokov. "Modulation of the Voltage Sensor of L-type Ca2+ Channels by Intracellular Ca2+." Journal of General Physiology 123, no. 5 (2004): 555–71. http://dx.doi.org/10.1085/jgp.200308876.

Повний текст джерела
Анотація:
Both intracellular calcium and transmembrane voltage cause inactivation, or spontaneous closure, of L-type (CaV1.2) calcium channels. Here we show that long-lasting elevations of intracellular calcium to the concentrations that are expected to be near an open channel (≥100 μM) completely and reversibly blocked calcium current through L-type channels. Although charge movements associated with the opening (ON) motion of the channel's voltage sensor were not altered by high calcium, the closing (OFF) transition was impeded. In two-pulse experiments, the blockade of calcium current and the reduction of gating charge movements available for the second pulse developed in parallel during calcium load. The effect depended steeply on voltage and occurred only after a third of the total gating charge had moved. Based on that, we conclude that the calcium binding site is located either in the channel's central cavity behind the voltage-dependent gate, or it is formed de novo during depolarization through voltage-dependent rearrangements just preceding the opening of the gate. The reduction of the OFF charge was due to the negative shift in the voltage dependence of charge movement, as previously observed for voltage-dependent inactivation. Elevation of intracellular calcium concentration from ∼0.1 to 100–300 μM sped up the conversion of the gating charge into the negatively distributed mode 10–100-fold. Since the “IQ-AA” mutant with disabled calcium/calmodulin regulation of inactivation was affected by intracellular calcium similarly to the wild-type, calcium/calmodulin binding to the “IQ” motif apparently is not involved in the observed changes of voltage-dependent gating. Although calcium influx through the wild-type open channels does not cause a detectable negative shift in the voltage dependence of their charge movement, the shift was readily observable in the Δ1733 carboxyl terminus deletion mutant, which produces fewer nonconducting channels. We propose that the opening movement of the voltage sensor exposes a novel calcium binding site that mediates inactivation.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yang, Tingting, Min He, Hailiang Zhang, Paula Q. Barrett, and Changlong Hu. "L- and T-type calcium channels control aldosterone production from human adrenals." Journal of Endocrinology 244, no. 1 (2020): 237–47. http://dx.doi.org/10.1530/joe-19-0259.

Повний текст джерела
Анотація:
Aldosterone, which plays a key role in the regulation of blood pressure, is produced by zona glomerulosa (ZG) cells of the adrenal cortex. Exaggerated overproduction of aldosterone from ZG cells causes primary hyperaldosteronism. In ZG cells, calcium entry through voltage-gated calcium channels plays a central role in the regulation of aldosterone secretion. Previous studies in animal adrenals and human adrenal adrenocortical cell lines suggest that the T-type but not the L-type calcium channel activity drives aldosterone production. However, recent clinical studies show that somatic mutations in L-type calcium channels are the second most prevalent cause of aldosterone-producing adenoma. Our objective was to define the roles of T and L-type calcium channels in regulating aldosterone secretion from human adrenals. We find that human adrenal ZG cells mainly express T-type CaV3.2/3.3 and L-type CaV1.2/1.3 calcium channels. TTA-P2, a specific inhibitor of T-type calcium channel subtypes, reduced basal aldosterone secretion from acutely prepared slices of human adrenals. Surprisingly, nifedipine, the prototypic inhibitor of L-type calcium channels, also decreased basal aldosterone secretion, suggesting that L-type calcium channels are active under basal conditions. In addition, TTA-P2 or nifedipine also inhibited aldosterone secretion stimulated by angiotensin II- or elevations in extracellular K+. Remarkably, blockade of either L- or T-type calcium channels inhibits basal and stimulated aldosterone production to a similar extent. Low concentrations of TTA-P2 and nifedipine showed additive inhibitory effect on aldosterone secretion. We conclude that T- and L-type calcium channels play equally important roles in controlling aldosterone production from human adrenals.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Liu, Xiaoyu, Tingting Yang, Langxi Miao, Yan-Ai Mei, and Changlong Hu. "Leukotriene B4 Inhibits L-Type Calcium Channels via p38 Signaling Pathway in Vascular Smooth Muscle Cells." Cellular Physiology and Biochemistry 37, no. 5 (2015): 1903–13. http://dx.doi.org/10.1159/000438551.

Повний текст джерела
Анотація:
Background/Aims: Arachidonic acid (AA) and its metabolites are important endogenous lipid messengers. In this study, we test the effect of Leukotriene B4 (LTB4), a 5-lipoxygenase metabolite of AA, on L-type calcium channels in A7r5 rat aortic vascular smooth muscle cells. Methods: L-type calcium channel currents were recorded by a patch-clamp technique. The mRNA expression of CaV1.2 was determined by Real-time RT-PCR. The protein expression of CaV1.2 and p38 activity was determined by Western blot analysis. Results: LTB4 inhibits L-type channel currents in A7r5 cells in a dose-and time- dependent manner. LTB4 reduced the mRNA/protein expression of CaV1.2 channels in A7r5 cells. BLT1 receptor antagonist LY29311 abrogated the inhibitory effect of LTB4, while BLT2 receptor antagonist LY255283 had no effect. 5Z-7-oxozeaenol and SB203580, which block TAK1 and p38 kinase respectively, abrogated the LTB4 inhibitory effect on L-type calcium channels. LTB4 increased p38 activity in A7r5 cells. Blockage of Src, PI3K, JNK and NF-κB kinase had no effects on LTB4 inhibition of L-type calcium channel currents in A7r5 cells. Conclusion: We conclude that LTB4 inhibits L-type calcium channels through BLT1-TAk1-p38 signaling pathway. The LTB4 inhibitory effect on L-type calcium channels may be involved in its pathological processes such as atherosclerosis.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yarotskyy, Viktor, Guofeng Gao, Blaise Z. Peterson, and Keith S. Elmslie. "Domain III regulates N-type (CaV2.2) calcium channel closing kinetics." Journal of Neurophysiology 107, no. 7 (2012): 1942–51. http://dx.doi.org/10.1152/jn.00993.2011.

Повний текст джерела
Анотація:
CaV2.2 (N-type) and CaV1.2 (L-type) calcium channels gate differently in response to membrane depolarization, which is critical to the unique physiological functions mediated by these channels. We wondered if the source for these differences could be identified. As a first step, we examined the effect of domain exchange between N-type and L-type channels on activation-deactivation kinetics, which were significantly different between these channels. Kinetic analysis of chimeric channels revealed N-channel-like deactivation for all chimeric channels containing N-channel domain III, while activation appeared to be a more distributed function across domains. This led us to hypothesize that domain III was an important regulator of N-channel closing. This idea was further examined with R-roscovitine, which is a trisubstituted purine that slows N-channel deactivation by exclusively binding to activated N-channels. L-channels lack this response to roscovitine, which allowed us to use N-L chimeras to test the role of domain III in roscovitine modulation of N-channel deactivation. In support of our hypothesis, all chimeric channels containing the N-channel domain III responded to roscovitine with slowed deactivation, while those chimeric channels with L-channel domain III did not. Thus a combination of kinetic and pharmacological evidence supports the hypothesis that domain III is an important regulator of N-channel closing. Our results support specialization of gating functions among calcium channel domains.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Durante, P., C. G. Cardenas, J. A. Whittaker, S. T. Kitai, and R. S. Scroggs. "Low-Threshold L-type Calcium Channels in Rat Dopamine Neurons." Journal of Neurophysiology 91, no. 3 (2004): 1450–54. http://dx.doi.org/10.1152/jn.01015.2003.

Повний текст джерела
Анотація:
Ca2+ channel subtypes expressed by dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) were studied using whole cell patch-clamp recordings and blockers selective for different channel types (L, N, and P/Q). Nimodipine (Nim, 2 μM), ω-conotoxin GVIA (Ctx, 1 μM), or ω-agatoxin IVA (Atx, 50 nM) blocked 27, 36, and 37% of peak whole cell Ca2+ channel current, respectively, indicating the presence of L-, N-, and P-type channels. Nim blocked approximately twice as much Ca2+ channel current near activation threshold compared with Ctx or Atx, suggesting that small depolarizations preferentially opened L-type versus N- or P-type Ca2+ channels. N- and L-channels in DA neurons opened over a significantly more negative voltage range than those in rat dorsal root ganglion cells, recorded from using identical conditions. These data provide an explanation as to why Ca2+-dependent spontaneous oscillatory potentials and rhythmic firing in DA neurons are blocked by L-channel but not N-channel antagonists and suggest that pharmacologically similar Ca2+ channels may exhibit different thresholds for activation in different types of neurons.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Büschges, A., M. A. Wikström, S. Grillner, and A. El Manira. "Roles of High-Voltage–Activated Calcium Channel Subtypes in a Vertebrate Spinal Locomotor Network." Journal of Neurophysiology 84, no. 6 (2000): 2758–66. http://dx.doi.org/10.1152/jn.2000.84.6.2758.

Повний текст джерела
Анотація:
Lamprey spinal cord neurons possess N-, L-, and P/Q-type high-voltage–activated (HVA) calcium channels. We have analyzed the role of the different HVA calcium channels subtypes in the overall functioning of the spinal locomotor network by monitoring the influence of their specific agonists and antagonists on synaptic transmission and on N-methyl-d-aspartate (NMDA)–elicited fictive locomotion. The N-type calcium channel blocker ω-conotoxin GVIA (ω-CgTx) depressed synaptic transmission from excitatory and inhibitory interneurons. Blocking L-type and P/Q-type calcium channels with nimodipine and ω-agatoxin, respectively, did not affect synaptic transmission. Application of ω-CgTx initially decreased the frequency of the locomotor rhythm, increased the burst duration, and subsequently increased the coefficient of variation and disrupted the motor pattern. These effects were accompanied by a depression of the synaptic drive between neurons in the locomotor network. Blockade of L-type channels by nimodipine also decreased the frequency and increased the duration of the locomotor bursts. Conversely, potentiation of L-type channels increased the frequency of the locomotor activity and decreased the duration of the ventral root bursts. In contrast to blockade of N-type channels, blockade or potentiation of L-type calcium channels had no effect on the stability of the locomotor pattern. The P/Q-type calcium channel blocker ω-agatoxin IVA had little effect on the locomotor frequency or burst duration. The results indicate that rhythm generation in the spinal locomotor network of the lamprey relies on calcium influx through L-type and N-type calcium channels.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Rosenberg, R. L., P. Hess, and R. W. Tsien. "Cardiac calcium channels in planar lipid bilayers. L-type channels and calcium-permeable channels open at negative membrane potentials." Journal of General Physiology 92, no. 1 (1988): 27–54. http://dx.doi.org/10.1085/jgp.92.1.27.

Повний текст джерела
Анотація:
Planar lipid bilayer recordings were used to study Ca channels from bovine cardiac sarcolemmal membranes. Ca channel activity was recorded in the absence of nucleotides or soluble enzymes, over a range of membrane potentials and ionic conditions that cannot be achieved in intact cells. The dihydropyridine-sensitive L-type Ca channel, studied in the presence of Bay K 8644, was identified by a detailed comparison of its properties in artificial membranes and in intact cells. L-type Ca channels in bilayers showed voltage dependence of channel activation and inactivation, open and closed times, and single-channel conductances in Ba2+ and Ca2+ very similar to those found in cell-attached patch recordings. Open channels were blocked by micromolar concentrations of external Cd2+. In this cell-free system, channel activity tended to decrease during the course of an experiment, reminiscent of Ca2+ channel "rundown" in whole-cell and excised-patch recordings. A purely voltage-dependent component of inactivation was observed in the absence of Ca2+ stores or changes in intracellular Ca2+. Millimolar internal Ca2+ reduced unitary Ba2+ influx but did not greatly increase the rate or extent of inactivation or the rate of channel rundown. In symmetrical Ba2+ solutions, unitary conductance saturated as the Ba2+ concentration was increased up to 500 mM. The bilayer recordings also revealed activity of a novel Ca2+-permeable channel, termed "B-type" because it may contribute a steady background current at negative membrane potentials, which is distinct from L-type or T-type Ca channels previously reported. Unlike L-type channels, B-type channels have a small unitary Ba2+ conductance (7 pS), but do not discriminate between Ba2+ and Ca2+, show no obvious sensitivity to Bay K 8644, and do not run down. Unlike either L- or T-type channels, B-type channels did not require a depolarization for activation and displayed mean open times of greater than 100 ms.
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!