Зміст
Добірка наукової літератури з теми "L'imagerie par la diffraction cohérente"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "L'imagerie par la diffraction cohérente".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "L'imagerie par la diffraction cohérente"
Boutu, Willem, and Hamed Merdji. "Imagerie nanométrique femtoseconde par diffraction X cohérente." Photoniques, no. 59 (May 2012): 44–49. http://dx.doi.org/10.1051/photon/20125944.
Повний текст джерелаДисертації з теми "L'imagerie par la diffraction cohérente"
Samaan, Julien. "Étude et applications de l'imagerie sans lentille par diffraction cohérente." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS557/document.
Повний текст джерелаThis dissertation is dedicated to coherent diffractive imaging. Firstly, we present the conception and experimental implementation of a compact imaging system, working on this principle. It is made of an UV laser diode (λ = 400 nm), a CCD camera,and a platform to place the sample. The coherent beam coming from the diode illuminates the sample, and the diffraction pattern is recorded by the camera. Back-propagating the detected field should allow, in principle, to derive the sample’s profile. Nevertheless, the field’s phase, lost during the detection, forces us to use “phase retrieval” methods, this quantity being necessary to the inversion process. Several techniques have been used for that purpose. Fourier Transform Holography (FTH), for example, is a deterministic method thatconsists in using a circular reference, closely drilled nearby the sample. The phase is encoded in the diffraction pattern, in the form of interference fringes coming from the object and the reference. Then, a simple inverse Fourier Transform of the signal leads the profile of the sample. An iterative method has also been implemented, based on a set of constraints in the real and reciprocal spaces. In particular, the illuminated object must be “isolated”, i.e. smaller than the incident beam. Although this method is non-deterministic, we will see thatit is more robust and gives better resolutions than the holographic cases. This study is the starting point of three-dimensional imaging. We present a first deterministic method, based on FTH. For this purpose, a “holographic pupil” is used and serves as a support for a first 2D reconstruction of the field. The latter is then back-propagated towards the sample closely placed, in order to realize an entirely numerical focusing on it. The “isolation constraint” is then removed by the use of this pupil. However, with this method, the field of view is limitedby the pupil’s diameter. In order to observe larger samples, the “in-line holography” technique has been exploited as well. It consists in illuminating the object with a spherical wave and recording the interference fringes (or “hologram”). A back-propagation is made after the fact in order to do the focusing on the sample. The divergent nature of the beam allows for reaching several millimeters for the lateral field of view. The “twin image problem”, inherent to this configuration, is solved via an iterative algorithm coupled to the back-propagation process. Three-dimensional reconstructions have been made on varied samples, with these two methods — pupil reconstruction and in-line holography. In both cases, reconstruction interfaces have been implemented and work during the detection, in order to observe the object in real time. We then have a compact and complete lens-less imaging prototype. Finally, we present the application of a phase retrievaltechnique, named LIFT (LInearized Focal plane Technique), applied to a Shack-Hartmann wavefront sensor. Usually, such sensors have a spatial resolution that is limited by the micro-lenses size : only the local slopes, i.e. tip and tilt, are retrieved. The LIFT consists in determining the phase at the scale of each micro-lens, by exploiting the corresponding spot profile. Interaction matrices are calculated in order to linearize the relation between the real space (micro-lenses) and the reciprocal space (CCD chip), and an iterative loop allows for increasing this linearity domain. With this technique, a gain in spatial resolution by a factor 3 is expected
Liu, Xu. "Development of an extreme ultraviolet laser beamline for at wavelength metrology." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP045.
Повний текст джерелаThe partnership established between CEA/LIDYL and the SME Imagine Optic (IO) at the beginning of 2020 led to the creation of the joint laboratory NanoLite, dedicated to the development of optical systems specialized in metrology at short wavelengths. This laboratory focuses notably on the extreme ultraviolet (EUV, 10-100 nm) domain, crucial for various sectors such as synchrotron radiation facilities, microelectronics (lithography), and academic research (attosecond physics).The present CIFRE thesis focuses on the development of a compact and high-performance beamline in the EUV range, based on the generation of high-order harmonic (HHG). This nonlinear phenomenon enables the production of spatially coherent radiation in the EUV range from femtosecond laser pulses. The construction of this beamline relies on a new laser system with a repetition rate of 100 kHz, generating pulses of 50 fs. This thesis manuscript addresses the various technical aspects necessary, from optics to mechanics, vacuum to electronics, and software programming for data acquisition and processing.The developed beamline has been operational since October 2022. The implemented and tested industrial applications, such as the calibration of EUV HASO wavefront sensors, inspection of the surface quality of EUV optics, and wavefront measurement modalities by stitching, are described in this manuscript.Another possible approach for metrology, complementary to wavefront characterization, is offered by nanometric coherent diffraction imaging. Ptychography, a technique that allows the study of extended samples without sacrificing spatial resolution, enables the reconstruction of spatial characteristics (amplitude and phase) of the illumination beam. Various applications of ptychography are presented, including a study of the influence of the spectral width of the source and a new self-probed imaging configuration in which the sample and the radiation source are coincident. Finally, ptychography is applied for the characterization of the EUV focus of the beamline.All these achievements have validated the performance of the beamline and have revealed possible avenues for further optimization
Davidoiu, Valentina. "Approches non linéaire en imagerie de phase par rayons X dans le domaine de Fresnel." Phd thesis, INSA de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-00952854.
Повний текст джерелаGe, Xunyou. "Imagerie ultrarapide à l'échelle nanométrique par diffraction XUV cohérente." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00828058.
Повний текст джерелаGe, Xunyou. "Imagerie ultrarapide à l’échelle nanométrique par diffraction XUV cohérente." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112361/document.
Повний текст джерелаUltrafast imaging of isolated objects with nanometric spatial resolution is a great challenge in our time. The lensless imaging techniques have shown great potential to answer this challenge. In lensless imaging, one can reconstruct sample images from their diffraction patterns with computational algorithms, which replace the conventional lens systems. Using ultrafast and coherent light sources, such as free electron laser and high order harmonics, one can investigate dynamic phenomena at the femtosecond time scale. In this thesis work, I present the lenless imaging experiments using XUV radiation provided by a laser driven high order harmonic beamline. The manuscript is composed of an introduction, a chapter of theoretical background, three chapters of main research work and a general conclusion with perspectives. The first part of this work concerns the development of the harmonic beamline to optimize the illumination condition for lensless imaging. The second part concentrates on the imaging techniques: the Coherent Diffraction Imaging (CDI), the Fourier Transform Holography (FTH) and the Holography using extended references (HERALDO). The reconstructions have achieved 78 nm spatial resolution in case of CDI and 112 nm resolution in case of HERALDO, both in single-shot regime corresponding to a temporal resolution of 20 fs. The third part presents the first physical application on the harmonic beamline using the lensless imaging. Samples with magnetic nano-domains have been studied with sub-100 nm spatial resolution, which paves the way for ultrafast magnetic dynamic studies. At the end, single-shot 3D imaging and further beamline development have been discussed
Wang, Fan. "Imagerie nanométrique 2D et 3D ultrarapide par diffraction cohérente." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112226/document.
Повний текст джерелаCoherent diffraction is an amazing art by its experimental simplicity: a coherent XUV source illuminates a single, isolated sample, and the diffraction pattern of the object is recorded by a CCD camera. An inversion of the diffraction pattern to an image in real space is possible through an approach based on iterative algorithms. The techniques for Fourier transform holography, for which reference is placed near the object to be imaged, allow the direct reconstruction of the image, even when the quality of the experimental data is worse. We have a laboratory sufficiently intense compact XUV source for this type of experience. The ultrashort XUV pulses (from femtosecond to attosecond) are produced by selecting high order harmonics of a femtosecond infrared laser which is focused into a cell of rare gas. We recently demonstrated the feasibility of using this source for coherent diffraction imaging with a spatial resolution of 78 nm. Furthermore, we demonstrated experimentally a holographic technique with extended reference and obtained a resolution of 110 nm in single shot (i.e. an integration time of 20 femtoseconds). A perception of an object in three dimensions gives us a better understanding thereof. A nanoscale 3D imaging techniques are from tomographic techniques of electron microscopy. However, many shots required (from different angles) make these techniques obsolete during the study time-resolved irreversible phenomena on non-reproducible samples. In this context, the aim of my thesis is to extend the 2D imaging techniques for 3D perception of nanoscale (physical, biological ) objects, while preserving the ultrafast appearance. The development of a new technology of 3D coherent imaging in single view, named ‘ankylography’, proposed by Professor Miao J. UCLA [Raines et al., Nature 2010] was made in progress. This technique allows reconstructing a 3D image of the sample after a single diffraction image. Its basic principle is to find the depth of a 3D object by the longitudinal constructive interference. However, this technique is more requested in both the quality of experimental data and the computer hardware and analysis. The other idea for 3D imaging is to imitate human vision using two coherent beams X arriving simultaneously on the sample but with a small angle. In this scheme, we use references near the target object (i.e. holography) to improve the signal to noise ratio in the diffraction pattern (hologram). Two holograms are then collected on the same detector. The inverse Fourier of each hologram forms two images from different views of the object. Parallax is thus produced. The stereo reconstruction of the object is performed by computer. Finally, the demonstration of applications will be considered after my thesis. This imaging of biological objects (such as nanoplanktons already collected and prepared CEA). And we are also interested in the study of 3D nanoscale objects (azo-polymers) movement on ultrashort time. Furthermore, another important application will be to study the ultra-fast phase transition such as nano-magnetic field where demagnetization phenomena induced by femtosecond pulse occurs
Mastropietro, Francesca. "Imagerie de nanofils uniques par diffraction cohérente des rayons X." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00716410.
Повний текст джерелаDjaker-Oudjhara, Nadia. "Microscopie par diffusion cohérente Raman CARS : application à l'imagerie des milieux biologiques." Aix-Marseille 3, 2006. http://www.theses.fr/2006AIX30038.
Повний текст джерелаCoherent anti-Stokes Raman scattering microscopy (CARS) is a new approach for chemical imaging of molecular systems, with high sensitivity, high spatial resolution, and three dimensional sectioning capability, without using fluorophores that are prone to photobleaching. This technique permits to map selectively molecular species, by using vibrational properties of their chemical bounds. CARS is described by a four wave-mixing process, where the signal intensity depends nonlinearly on the incident intensities, and generated in a direction determined by the phase-matching condition. The approach of this work was to realize a CARS microscope, allowing biological systems imaging without any labelling or staining. Studies were undertaken showing the potentialities of this tool, as well as its characterization in the spatial and spectral domain
Pinsolle, Edouard. "Etude des ondes de densité de charge par diffraction cohérente des rayons X." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00789152.
Повний текст джерелаBeutier, Guillaume. "Etude de nanostructures magnétiques par diffraction résonante et cohérente des rayons X mous." Grenoble INPG, 2005. http://www.theses.fr/2005INPG0154.
Повний текст джерелаSoft X-rays (~400-1500 eV) are among the best probes to study ferromagnetic nanostructures. Their wavelength (1-3 nm) is very weil suited to the characterisic lengthscales of these systems : magnetic storage is investigated in ferromagnetic thin films whose thickness and typical magnetic domain size are in the 10-100 nanometers range. Moreover, transition metals, which are commonly used in these materials, have their L3 edge in the soft x-ray energy range. This resonance enhances the x-rays sensitivity to local magnetic moments. Ln this thesis, we show that this sensitivity is useful to study the 3-dimensional configuration of magnetic moments. We study here the case of FePd thin films. By filtering the synchrotron beam with a 10-micrometer sized pinhole, a very coherent beam is selected. Its diffraction pattern, measured with a CCD camera used as a single photon detector, is a high resolution measurement of the Fourier Transform modulus of the object. We present here the coherent magnetic scattering from a FePd microstructure and from a grating of parallel nanolines with perpendicular magnetisation. The recontruction of the exacte magnetic configuration of the nanolines is discussed