Статті в журналах з теми "L'Aquila seismic sequence"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: L'Aquila seismic sequence.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-16 статей у журналах для дослідження на тему "L'Aquila seismic sequence".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Cianchini, G., A. De Santis, D. R. Barraclough, L. X. Wu, and K. Qin. "Magnetic transfer function entropy and the 2009 <i>M</i><sub>w</sub> = 6.3 L'Aquila earthquake (Central Italy)." Nonlinear Processes in Geophysics 19, no. 4 (July 23, 2012): 401–9. http://dx.doi.org/10.5194/npg-19-401-2012.

Повний текст джерела
Анотація:
Abstract. With the aim of obtaining a deeper knowledge of the physical phenomena associated with the 2009 L'Aquila (Central Italy) seismic sequence, culminating with a Mw = 6.3 earthquake on 6 April 2009, and possibly of identifying some kind of earthquake-related magnetic or geoelectric anomaly, we analyse the geomagnetic field components measured at the magnetic observatory of L'Aquila and their variations in time. In particular, trends of magnetic transfer functions in the years 2006–2010 are inspected. They are calculated from the horizontal to vertical magnetic component ratio in the frequency domain, and are very sensitive to deep and lateral geoelectric characteristics of the measurement site. Entropy analysis, carried out from the transfer functions with the so called transfer function entropy, points out clear temporal burst regimes of a few distinct harmonics preceding the main shock of the seismic sequence. A possible explanation is that they could be related to deep fluid migrations and/or to variations in the micro-/meso-fracturing that affected significantly the conductivity (ordered/disordered) distribution in a large lithospheric volume under the seismogenic layer below L'Aquila area. This interpretation is also supported by the analysis of hypocentres depths before the main shock occurrence.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

De Santis, Angelo, Gianfranco Cianchini, Enkelejda Qamili, and Alberto Frepoli. "The 2009 L'Aquila (Central Italy) seismic sequence as a chaotic process." Tectonophysics 496, no. 1-4 (December 2010): 44–52. http://dx.doi.org/10.1016/j.tecto.2010.10.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Masci, Fabrizio, and Manuele Di Persio. "Retrospective investigation of geomagnetic field time-series during the 2009 L'Aquila seismic sequence." Tectonophysics 530-531 (March 2012): 310–17. http://dx.doi.org/10.1016/j.tecto.2012.01.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Calderoni, G., A. Rovelli, Y. Ben-Zion, and R. Di Giovambattista. "Along-strike rupture directivity of earthquakes of the 2009 L'Aquila, central Italy, seismic sequence." Geophysical Journal International 203, no. 1 (August 27, 2015): 399–415. http://dx.doi.org/10.1093/gji/ggv275.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Masci, F., P. Palangio, and M. Di Persio. "Magnetic anomalies possibly linked to local low seismicity." Natural Hazards and Earth System Sciences 9, no. 5 (September 18, 2009): 1567–72. http://dx.doi.org/10.5194/nhess-9-1567-2009.

Повний текст джерела
Анотація:
Abstract. During the last twenty years a time-synchronized network of magnetometers has operated in Central Italy along the Apennine chain to monitor the magnetic field anomalies eventually related to the tectonic activity. At present time the network consists of five stations. In the past only few anomalies in the local geomagnetic field, possibly associated to earthquakes, has been observed, not least because the network area has shown a low-moderate seismic activity with the epicentres of the few events with Ml≥5 located away from the network station. During 2007 two Ml≈4 earthquakes occurred in proximity of two stations of the network. Here we report the magnetic anomalies in the geomagnetic field that could be related with these tectonic events. To better investigate these two events a study of ULF (ultra-low-frequency) emissions has been carried out on the geomagnetic field components H, D, and Z measured in L'Aquila Observatory during the period from January 2006 to December 2008. We want to stress that this paper refers to the period before the 2009 L'Aquila seismic sequence which main shock (Ml=5.8) of 6 April heavily damaged the medieval centre of the city and surroundings. At present time the analysis of the 2009 data is in progress.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Brunsvik, Brennan, Gabriele Morra, Gabriele Cambiotti, Lauro Chiaraluce, Raffaele Di Stefano, Pasquale De Gori, and David A. Yuen. "Three-dimensional paganica fault morphology obtained from hypocenter clustering (L'Aquila 2009 seismic sequence, Central Italy)." Tectonophysics 804 (April 2021): 228756. http://dx.doi.org/10.1016/j.tecto.2021.228756.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Malagnini, Luca, Francesco Pio Lucente, Pasquale De Gori, Aybige Akinci, and Irene Munafo'. "Control of pore fluid pressure diffusion on fault failure mode: Insights from the 2009 L'Aquila seismic sequence." Journal of Geophysical Research: Solid Earth 117, B5 (May 2012): n/a. http://dx.doi.org/10.1029/2011jb008911.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ditommaso, R., M. Vona, M. R. Gallipoli, and M. Mucciarelli. "Evaluation and considerations about fundamental periods of damaged reinforced concrete buildings." Natural Hazards and Earth System Sciences 13, no. 7 (July 31, 2013): 1903–12. http://dx.doi.org/10.5194/nhess-13-1903-2013.

Повний текст джерела
Анотація:
Abstract. The aim of this paper is an empirical estimation of the fundamental period of reinforced concrete buildings and its variation due to structural and non-structural damage. The 2009 L'Aquila earthquake has highlighted the mismatch between experimental data and code provisions value not only for undamaged buildings but also for the damaged ones. The 6 April 2009 L'Aquila earthquake provided the first opportunity in Italy to estimate the fundamental period of reinforced concrete (RC) buildings after a strong seismic sequence. A total of 68 buildings with different characteristics, such as age, height and damage level, have been investigated by performing ambient vibration measurements that provided their fundamental translational period. Four different damage levels were considered according with the definitions by EMS 98 (European Macroseismic Scale), trying to regroup the estimated fundamental periods versus building heights according to damage. The fundamental period of RC buildings estimated for low damage level is equal to the previous relationship obtained in Italy and Europe for undamaged buildings, well below code provisions. When damage levels are higher, the fundamental periods increase, but again with values much lower than those provided by codes. Finally, the authors suggest a possible update of the code formula for the simplified estimation of the fundamental period of vibration for existing RC buildings, taking into account also the inelastic behaviour.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

De Guidi, Giorgio, Alessia Vecchio, Fabio Brighenti, Riccardo Caputo, Francesco Carnemolla, Adriano Di Pietro, Marco Lupo, et al. "Brief communication: Co-seismic displacement on 26 and 30 October 2016 (<i>M</i><sub>w</sub> = 5.9 and 6.5) – earthquakes in central Italy from the analysis of a local GNSS network." Natural Hazards and Earth System Sciences 17, no. 11 (November 9, 2017): 1885–92. http://dx.doi.org/10.5194/nhess-17-1885-2017.

Повний текст джерела
Анотація:
Abstract. On 24 August 2016 a strong earthquake (Mw = 6.0) affected central Italy and an intense seismic sequence started. Field observations, DInSAR (Differential INterferometry Synthetic-Aperture Radar) analyses and preliminary focal mechanisms, as well as the distribution of aftershocks, suggested the reactivation of the northern sector of the Laga fault, the southern part of which was already rebooted during the 2009 L'Aquila sequence, and of the southern segment of the Mt Vettore fault system (MVFS). Based on this preliminary information and following the stress-triggering concept (Stein, 1999; Steacy et al., 2005), we tentatively identified a potential fault zone that is very vulnerable to future seismic events just north of the earlier epicentral area. Accordingly, we planned a local geodetic network consisting of five new GNSS (Global Navigation Satellite System) stations located a few kilometres away from both sides of the MVFS. This network was devoted to working out, at least partially but in some detail, the possible northward propagation of the crustal network ruptures. The building of the stations and a first set of measurements were carried out during a first campaign (30 September and 2 October 2016). On 26 October 2016, immediately north of the epicentral area of the 24 August event, another earthquake (Mw = 5.9) occurred, followed 4 days later (30 October) by the main shock (Mw = 6.5) of the whole 2016 summer–autumn seismic sequence. Our local geodetic network was fully affected by the new events and therefore we performed a second campaign soon after (11–13 November 2016). In this brief note, we provide the results of our geodetic measurements that registered the co-seismic and immediately post-seismic deformation of the two major October shocks, documenting in some detail the surface deformation close to the fault trace. We also compare our results with the available surface deformation field of the broader area, obtained on the basis of the DInSAR technique, and show an overall good fit.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Picozzi, M., S. Parolai, M. Mucciarelli, C. Milkereit, D. Bindi, R. Ditommaso, M. Vona, M. R. Gallipoli, and J. Zschau. "Interferometric Analysis of Strong Ground Motion for Structural Health Monitoring: The Example of the L'Aquila, Italy, Seismic Sequence of 2009." Bulletin of the Seismological Society of America 101, no. 2 (March 22, 2011): 635–51. http://dx.doi.org/10.1785/0120100070.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Cigolini, C., M. Laiolo, and D. Coppola. "The LVD signals during the early-mid stages of the L'Aquila seismic sequence and the radon signature of some aftershocks of moderate magnitude." Journal of Environmental Radioactivity 139 (January 2015): 56–65. http://dx.doi.org/10.1016/j.jenvrad.2014.09.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Caserta, A., D. M. Boore, A. Rovelli, A. Govoni, F. Marra, G. Della Monica, and E. Boschi. "Ground Motions Recorded in Rome during the April 2009 L'Aquila Seismic Sequence: Site Response and Comparison with Ground-Motion Predictions Based on a Global Dataset." Bulletin of the Seismological Society of America 103, no. 3 (June 1, 2013): 1860–74. http://dx.doi.org/10.1785/0120120153.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Di Lorenzo, C., P. Palangio, G. Santarato, A. Meloni, U. Villante, and L. Santarelli. "Non-inductive components of electromagnetic signals associated with L'Aquila earthquake sequences estimated by means of inter-station impulse response functions." Natural Hazards and Earth System Sciences 11, no. 4 (April 6, 2011): 1047–55. http://dx.doi.org/10.5194/nhess-11-1047-2011.

Повний текст джерела
Анотація:
Abstract. On 6 April 2009 at 01:32:39 UT a strong earthquake occurred west of L'Aquila at the very shallow depth of 9 km. The main shock local magnitude was Ml = 5.8 (Mw = 6.3). Several powerful aftershocks occurred the following days. The epicentre of the main shock occurred 6 km away from the Geomagnetic Observatory of L'Aquila, on a fault 15 km long having a NW-SE strike, about 140°, and a SW dip of about 42°. For this reason, L'Aquila seismic events offered very favourable conditions to detect possible electromagnetic emissions related to the earthquake. The data used in this work come from the permanent geomagnetic Observatories of L'Aquila and Duronia. Here the results concerning the analysis of the residual magnetic field estimated by means of the inter-station impulse response functions in the frequency band from 0.3 Hz to 3 Hz are shown.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Masci, F., and G. De Luca. "Comment on "Non-inductive components of electromagnetic signals associated with L'Aquila earthquake sequences estimated by means of inter-station impulse response functions" by Di Lorenzo et al. (2011)." Natural Hazards and Earth System Sciences Discussions 1, no. 1 (February 8, 2013): 193–206. http://dx.doi.org/10.5194/nhessd-1-193-2013.

Повний текст джерела
Анотація:
Abstract. Di Lorenzo et al. (2011) document the observation of magnetic signals in the frequency range [0.3–3] Hz from few minutes before to about one hour after the 6 April 2009 L'Aquila earthquake. This coincidence induced the authors to think that the observed magnetic disturbances were related to the main phase of the seismic event. Here, we will discuss some unclear points of Di Lorenzo et al. (2011) which cast serious doubts on the seismogenic origin of the magnetic disturbances observed by the authors.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

"Shear wave splitting of the 2009 L'Aquila seismic sequence: fluid saturated microcracks and crustal fractures in the Abruzzi region (Central Apennines, Italy)." Geophysical Journal International, January 28, 2016. http://dx.doi.org/10.1093/gji/ggv536.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Morasca, Paola, Dino Bindi, Kevin Mayeda, Jorge Roman-Nieves, Justin Barno, William R. Walter, and Daniele Spallarossa. "Source scaling comparison and validation in central Italy: data intensive direct S-waves versus the sparse data coda envelope methodology." Geophysical Journal International, July 23, 2022. http://dx.doi.org/10.1093/gji/ggac268.

Повний текст джерела
Анотація:
Summary Robustness of source parameter estimates is a fundamental issue in understanding the relationships between small and large events, however it is difficult to assess how much of the variability of the source parameters can be attributed to the physical source characteristics or to the uncertainties of the methods and data used to estimate the values. In this study we apply the coda method by Mayeda et al. (2003) using the Coda Calibration Tool (CCT), a freely available Java-based code (https://github.com/LLNL/coda-calibration-tool) to obtain a regional calibration for Central Italy for estimating stable source parameters. We demonstrate the power of the coda technique in this region and show that it provides the same robustness in source parameter estimation as a data-driven methodology (GIT, Generalized Inversion Technique), but with much fewer calibration events and stations. The Central Italy region is ideal for both GIT and coda approaches as it is characterized by high-quality data including recent well-recorded seismic sequences such as L'Aquila (2009) and Amatrice-Norcia-Visso (2016–2017). This allows us to apply data-driven methods such as GIT, and coda-based methods that require few, but high-quality data. The dataset for GIT analysis includes ∼5000 earthquakes and more than 600 stations, while for coda analysis we used a small subset of 39 events spanning 3.5 &lt; Mw &lt; 6.33 and 14 well-distributed broadband stations. For the common calibration events, as well as an additional 247 events (∼1.7 &lt; Mw&lt;∼ 5.0) not used in either calibration, we find excellent agreement between GIT-derived and CCT-derived source spectra. This confirms the ability of the coda approach to obtain stable source parameters even with few calibration events and stations. Even reducing the coda calibration dataset by 75 per cent we found no appreciable degradation in performance. This validation of the coda calibration approach over a broad range of event size demonstrates that this procedure, once extended to other regions, represents a powerful tool for future routine applications to homogeneously evaluate robust source parameters on a national scale. Furthermore, the coda calibration procedure can homogenize the Mw estimates for small and large events without the necessity of introducing any conversion scale between narrowband measures such as local magnitude (ML) and Mw which has been shown to introduce significant bias (e.g. Shelly et al., 2022).
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії