Статті в журналах з теми "Known and Zero-Day Attacks Detection"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Known and Zero-Day Attacks Detection".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.
Nerella Sameera, M.Siva Jyothi, K.Lakshmaji, and V.S.R.Pavan Kumar. Neeli. "Clustering based Intrusion Detection System for effective Detection of known and Zero-day Attacks." Journal of Advanced Zoology 44, no. 4 (December 2, 2023): 969–75. http://dx.doi.org/10.17762/jaz.v44i4.2423.
Повний текст джерелаHindy, Hanan, Robert Atkinson, Christos Tachtatzis, Jean-Noël Colin, Ethan Bayne, and Xavier Bellekens. "Utilising Deep Learning Techniques for Effective Zero-Day Attack Detection." Electronics 9, no. 10 (October 14, 2020): 1684. http://dx.doi.org/10.3390/electronics9101684.
Повний текст джерелаOhtani, Takahiro, Ryo Yamamoto, and Satoshi Ohzahata. "IDAC: Federated Learning-Based Intrusion Detection Using Autonomously Extracted Anomalies in IoT." Sensors 24, no. 10 (May 18, 2024): 3218. http://dx.doi.org/10.3390/s24103218.
Повний текст джерелаHairab, Belal Ibrahim, Heba K. Aslan, Mahmoud Said Elsayed, Anca D. Jurcut, and Marianne A. Azer. "Anomaly Detection of Zero-Day Attacks Based on CNN and Regularization Techniques." Electronics 12, no. 3 (January 23, 2023): 573. http://dx.doi.org/10.3390/electronics12030573.
Повний текст джерелаAl-Rushdan, Huthifh, Mohammad Shurman, and Sharhabeel Alnabelsi. "On Detection and Prevention of Zero-Day Attack Using Cuckoo Sandbox in Software-Defined Networks." International Arab Journal of Information Technology 17, no. 4A (July 31, 2020): 662–70. http://dx.doi.org/10.34028/iajit/17/4a/11.
Повний текст джерелаAlam, Naushad, and Muqeem Ahmed. "Zero-day Network Intrusion Detection using Machine Learning Approach." International Journal on Recent and Innovation Trends in Computing and Communication 11, no. 8s (August 18, 2023): 194–201. http://dx.doi.org/10.17762/ijritcc.v11i8s.7190.
Повний текст джерелаBu, Seok-Jun, and Sung-Bae Cho. "Deep Character-Level Anomaly Detection Based on a Convolutional Autoencoder for Zero-Day Phishing URL Detection." Electronics 10, no. 12 (June 21, 2021): 1492. http://dx.doi.org/10.3390/electronics10121492.
Повний текст джерелаAli, Shamshair, Saif Ur Rehman, Azhar Imran, Ghazif Adeem, Zafar Iqbal, and Ki-Il Kim. "Comparative Evaluation of AI-Based Techniques for Zero-Day Attacks Detection." Electronics 11, no. 23 (November 28, 2022): 3934. http://dx.doi.org/10.3390/electronics11233934.
Повний текст джерелаRodríguez, Eva, Pol Valls, Beatriz Otero, Juan José Costa, Javier Verdú, Manuel Alejandro Pajuelo, and Ramon Canal. "Transfer-Learning-Based Intrusion Detection Framework in IoT Networks." Sensors 22, no. 15 (July 27, 2022): 5621. http://dx.doi.org/10.3390/s22155621.
Повний текст джерелаSheikh, Zakir Ahmad, Yashwant Singh, Pradeep Kumar Singh, and Paulo J. Sequeira Gonçalves. "Defending the Defender: Adversarial Learning Based Defending Strategy for Learning Based Security Methods in Cyber-Physical Systems (CPS)." Sensors 23, no. 12 (June 9, 2023): 5459. http://dx.doi.org/10.3390/s23125459.
Повний текст джерелаMala, V., and K. Meena. "Hybrid classification model to detect advanced intrusions using data mining techniques." International Journal of Engineering & Technology 7, no. 2.4 (March 10, 2018): 10. http://dx.doi.org/10.14419/ijet.v7i2.4.10031.
Повний текст джерелаDas, Saikat, Mohammad Ashrafuzzaman, Frederick T. Sheldon, and Sajjan Shiva. "Ensembling Supervised and Unsupervised Machine Learning Algorithms for Detecting Distributed Denial of Service Attacks." Algorithms 17, no. 3 (February 24, 2024): 99. http://dx.doi.org/10.3390/a17030099.
Повний текст джерелаNkongolo, Mike, Jacobus Philippus van Deventer, and Sydney Mambwe Kasongo. "UGRansome1819: A Novel Dataset for Anomaly Detection and Zero-Day Threats." Information 12, no. 10 (September 30, 2021): 405. http://dx.doi.org/10.3390/info12100405.
Повний текст джерелаPeppes, Nikolaos, Theodoros Alexakis, Evgenia Adamopoulou, and Konstantinos Demestichas. "The Effectiveness of Zero-Day Attacks Data Samples Generated via GANs on Deep Learning Classifiers." Sensors 23, no. 2 (January 12, 2023): 900. http://dx.doi.org/10.3390/s23020900.
Повний текст джерелаWang, Hui, Yifeng Wang, and Yuanbo Guo. "Unknown network attack detection method based on reinforcement zero-shot learning." Journal of Physics: Conference Series 2303, no. 1 (July 1, 2022): 012008. http://dx.doi.org/10.1088/1742-6596/2303/1/012008.
Повний текст джерелаSubbarayalu, Venkatraman, and Maria Anu Vensuslaus. "An Intrusion Detection System for Drone Swarming Utilizing Timed Probabilistic Automata." Drones 7, no. 4 (April 3, 2023): 248. http://dx.doi.org/10.3390/drones7040248.
Повний текст джерелаEmmah, Victor T., Chidiebere Ugwu, and Laeticia N. Onyejegbu. "An Enhanced Classification Model for Likelihood of Zero-Day Attack Detection and Estimation." European Journal of Electrical Engineering and Computer Science 5, no. 4 (August 19, 2021): 69–75. http://dx.doi.org/10.24018/ejece.2021.5.4.350.
Повний текст джерелаYao, Wenbin, Longcan Hu, Yingying Hou, and Xiaoyong Li. "A Lightweight Intelligent Network Intrusion Detection System Using One-Class Autoencoder and Ensemble Learning for IoT." Sensors 23, no. 8 (April 20, 2023): 4141. http://dx.doi.org/10.3390/s23084141.
Повний текст джерелаMehedy, Hasan MD. "Combating Evolving Threats: A Signature-Anomaly Based Hybrid Intrusion Detection System for Smart Homes with False Positive Mitigation." International Journal for Research in Applied Science and Engineering Technology 12, no. 5 (May 31, 2024): 403–11. http://dx.doi.org/10.22214/ijraset.2024.61393.
Повний текст джерелаNeuschmied, Helmut, Martin Winter, Branka Stojanović, Katharina Hofer-Schmitz, Josip Božić, and Ulrike Kleb. "APT-Attack Detection Based on Multi-Stage Autoencoders." Applied Sciences 12, no. 13 (July 5, 2022): 6816. http://dx.doi.org/10.3390/app12136816.
Повний текст джерелаVenu Gopal Bitra, Ajay Kumar, Seshagiri Rao, Prakash, and Md. Shakeel Ahmed. "Comparative analysis on intrusion detection system using machine learning approach." World Journal of Advanced Research and Reviews 21, no. 3 (March 30, 2024): 2555–62. http://dx.doi.org/10.30574/wjarr.2024.21.3.0983.
Повний текст джерелаKhraisat, Gondal, Vamplew, Kamruzzaman, and Alazab. "A novel Ensemble of Hybrid Intrusion Detection System for Detecting Internet of Things Attacks." Electronics 8, no. 11 (October 23, 2019): 1210. http://dx.doi.org/10.3390/electronics8111210.
Повний текст джерелаMerugu, Akshay, Hrishikesh Goud Chagapuram, and Rahul Bollepalli. "Spam Email Detection Using Convolutional Neural Networks: An Empirical Study." International Journal for Research in Applied Science and Engineering Technology 11, no. 10 (October 31, 2023): 981–91. http://dx.doi.org/10.22214/ijraset.2023.56143.
Повний текст джерелаBhaya, Wesam S., and Mustafa A. Ali. "Review on Malware and Malware Detection Using Data Mining Techniques." JOURNAL OF UNIVERSITY OF BABYLON for Pure and Applied Sciences 25, no. 5 (November 29, 2017): 1585–601. http://dx.doi.org/10.29196/jub.v25i5.104.
Повний текст джерелаGetman, Aleksandr Igorevich, Maxim Nikolaevich Goryunov, Andrey Georgievich Matskevich, and Dmitry Aleksandrovich Rybolovlev. "A Comparison of a Machine Learning-Based Intrusion Detection System and Signature-Based Systems." Proceedings of the Institute for System Programming of the RAS 34, no. 5 (2022): 111–26. http://dx.doi.org/10.15514/ispras-2022-34(5)-7.
Повний текст джерелаRahman, Rizwan Ur, and Deepak Singh Tomar. "Web Bot Detection System Based on Divisive Clustering and K-Nearest Neighbor Using Biostatistics Features Set." International Journal of Digital Crime and Forensics 13, no. 6 (November 1, 2021): 1–27. http://dx.doi.org/10.4018/ijdcf.20211101.oa6.
Повний текст джерелаDr.R.Venkatesh, Kavitha S, Dr Uma Maheswari N,. "Network Anomaly Detection for NSL-KDD Dataset Using Deep Learning." INFORMATION TECHNOLOGY IN INDUSTRY 9, no. 2 (March 31, 2021): 821–27. http://dx.doi.org/10.17762/itii.v9i2.419.
Повний текст джерелаP. Arul, Et al. "Predicting the Attacks in IoT Devices using DP Algorithm." International Journal on Recent and Innovation Trends in Computing and Communication 11, no. 11 (November 30, 2023): 164–68. http://dx.doi.org/10.17762/ijritcc.v11i11.9133.
Повний текст джерелаOthman, Trifa S., and Saman M. Abdullah. "An Intelligent Intrusion Detection System for Internet of Things Attack Detection and Identification Using Machine Learning." ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY 11, no. 1 (May 22, 2023): 126–37. http://dx.doi.org/10.14500/aro.11124.
Повний текст джерелаDange, Varsha, Soham Phadke, Tilak Solunke, Sidhesh Marne, Snehal Suryawanshi, and Om Surase. "Weighted Multiclass Intrusion Detection System." ITM Web of Conferences 57 (2023): 01009. http://dx.doi.org/10.1051/itmconf/20235701009.
Повний текст джерелаBOBROVNIKOVA, KIRA, MARIIA KAPUSTIAN, and DMYTRO DENYSIUK. "RESEARCH OF MACHINE LEARNING BASED METHODS FOR CYBERATTACKS DETECTION IN THE INTERNET OF THINGS INFRASTRUCTURE." Computer systems and information technologies, no. 3 (April 14, 2022): 110–15. http://dx.doi.org/10.31891/csit-2021-5-15.
Повний текст джерелаM.R., Amal, and Venkadesh P. "Review of Cyber Attack Detection: Honeypot System." Webology 19, no. 1 (January 20, 2022): 5497–514. http://dx.doi.org/10.14704/web/v19i1/web19370.
Повний текст джерелаKhraisat, Ansam, Iqbal Gondal, Peter Vamplew, Joarder Kamruzzaman, and Ammar Alazab. "Hybrid Intrusion Detection System Based on the Stacking Ensemble of C5 Decision Tree Classifier and One Class Support Vector Machine." Electronics 9, no. 1 (January 17, 2020): 173. http://dx.doi.org/10.3390/electronics9010173.
Повний текст джерелаСычугов, А. А., and М. М. Греков. "Application of generative adversarial networks in anomaly detection systems." МОДЕЛИРОВАНИЕ, ОПТИМИЗАЦИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ 9, no. 1(32) (January 31, 2021): 3–4. http://dx.doi.org/10.26102/2310-6018/2021.32.1.003.
Повний текст джерелаAl-Sabbagh, Kais Said, Hamid M. Ali, and Elaf Sabah Abbas. "Development an Anomaly Network Intrusion Detection System Using Neural Network." Journal of Engineering 18, no. 12 (December 1, 2012): 1325–34. http://dx.doi.org/10.31026/j.eng.2012.12.03.
Повний текст джерелаIliyasu, Auwal Sani, Usman Alhaji Abdurrahman, and Lirong Zheng. "Few-Shot Network Intrusion Detection Using Discriminative Representation Learning with Supervised Autoencoder." Applied Sciences 12, no. 5 (February 24, 2022): 2351. http://dx.doi.org/10.3390/app12052351.
Повний текст джерелаArshi, M., MD Nasreen, and Karanam Madhavi. "A Survey of DDOS Attacks Using Machine Learning Techniques." E3S Web of Conferences 184 (2020): 01052. http://dx.doi.org/10.1051/e3sconf/202018401052.
Повний текст джерелаKumar Lingamallu, Raghu, Pradeep Balasubramani, S. Arvind, P. Srinivasa Rao, Veeraswamy Ammisetty, Koppuravuri Gurnadha Gupta, M. N. Sharath, Y. J. Nagendra Kumar, and Vaibhav Mittal. "Securing IoT networks: A fog-based framework for malicious device detection." MATEC Web of Conferences 392 (2024): 01103. http://dx.doi.org/10.1051/matecconf/202439201103.
Повний текст джерелаKikelomo, Akinwole Agnes, Yekini Nureni Asafe, and Ogundele Israel Oludayo. "Malware Detection System Using Mathematics of Random Forest Classifier." International Journal of Advances in Scientific Research and Engineering 09, no. 03 (2023): 45–53. http://dx.doi.org/10.31695/ijasre.2023.9.3.6.
Повний текст джерелаZoppi, Tommaso, Mohamad Gharib, Muhammad Atif, and Andrea Bondavalli. "Meta-Learning to Improve Unsupervised Intrusion Detection in Cyber-Physical Systems." ACM Transactions on Cyber-Physical Systems 5, no. 4 (October 31, 2021): 1–27. http://dx.doi.org/10.1145/3467470.
Повний текст джерелаLi, Shiyun, and Omar Dib. "Enhancing Online Security: A Novel Machine Learning Framework for Robust Detection of Known and Unknown Malicious URLs." Journal of Theoretical and Applied Electronic Commerce Research 19, no. 4 (October 26, 2024): 2919–60. http://dx.doi.org/10.3390/jtaer19040141.
Повний текст джерелаSamantray, Om Prakash, and Satya Narayan Tripathy. "An Opcode-Based Malware Detection Model Using Supervised Learning Algorithms." International Journal of Information Security and Privacy 15, no. 4 (October 2021): 18–30. http://dx.doi.org/10.4018/ijisp.2021100102.
Повний текст джерелаSerinelli, Benedetto Marco, Anastasija Collen, and Niels Alexander Nijdam. "On the analysis of open source datasets: validating IDS implementation for well-known and zero day attack detection." Procedia Computer Science 191 (2021): 192–99. http://dx.doi.org/10.1016/j.procs.2021.07.024.
Повний текст джерелаRangaraju, Sakthiswaran. "AI SENTRY: REINVENTING CYBERSECURITY THROUGH INTELLIGENT THREAT DETECTION." EPH - International Journal of Science And Engineering 9, no. 3 (December 1, 2023): 30–35. http://dx.doi.org/10.53555/ephijse.v9i3.211.
Повний текст джерелаAlsulami, Basmah, Abdulmohsen Almalawi, and Adil Fahad. "Toward an Efficient Automatic Self-Augmentation Labeling Tool for Intrusion Detection Based on a Semi-Supervised Approach." Applied Sciences 12, no. 14 (July 17, 2022): 7189. http://dx.doi.org/10.3390/app12147189.
Повний текст джерелаH., Manjunath, and Saravana Kumar. "Network Intrusion Detection System using Convolution Recurrent Neural Networks and NSL-KDD Dataset." Fusion: Practice and Applications 13, no. 1 (2023): 117–25. http://dx.doi.org/10.54216/fpa.130109.
Повний текст джерелаBalaji K. M. and Subbulakshmi T. "Malware Analysis Using Classification and Clustering Algorithms." International Journal of e-Collaboration 18, no. 1 (January 2022): 1–26. http://dx.doi.org/10.4018/ijec.290290.
Повний текст джерелаDung, Nguyễn Thị, Nguyễn Văn Quân та Nguyễn Việt Hùng. "Ứng dụng mô hình học sâu trong phát hiện tấn công trinh sát mạng". Journal of Science and Technology on Information security 2, № 16 (13 лютого 2023): 60–72. http://dx.doi.org/10.54654/isj.v1i16.922.
Повний текст джерелаU., Kumaran, Thangam S., T. V. Nidhin Prabhakar, Jana Selvaganesan, and Vishwas H.N. "Adversarial Defense: A GAN-IF Based Cyber-security Model for Intrusion Detection in Software Piracy." Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications 14, no. 4 (December 23, 2023): 96–114. http://dx.doi.org/10.58346/jowua.2023.i4.008.
Повний текст джерелаJagan, Shanmugam, Ashish Ashish, Miroslav Mahdal, Kenneth Ruth Isabels, Jyoti Dhanke, Parita Jain, and Muniyandy Elangovan. "A Meta-Classification Model for Optimized ZBot Malware Prediction Using Learning Algorithms." Mathematics 11, no. 13 (June 24, 2023): 2840. http://dx.doi.org/10.3390/math11132840.
Повний текст джерела