Добірка наукової літератури з теми "Kernel mean embedding"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Kernel mean embedding".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Kernel mean embedding"
Jorgensen, Palle E. T., Myung-Sin Song, and James Tian. "Conditional mean embedding and optimal feature selection via positive definite kernels." Opuscula Mathematica 44, no. 1 (2024): 79–103. http://dx.doi.org/10.7494/opmath.2024.44.1.79.
Повний текст джерелаMuandet, Krikamol, Kenji Fukumizu, Bharath Sriperumbudur, and Bernhard Schölkopf. "Kernel Mean Embedding of Distributions: A Review and Beyond." Foundations and Trends® in Machine Learning 10, no. 1-2 (2017): 1–141. http://dx.doi.org/10.1561/2200000060.
Повний текст джерелаVan Hauwermeiren, Daan, Michiel Stock, Thomas De Beer, and Ingmar Nopens. "Predicting Pharmaceutical Particle Size Distributions Using Kernel Mean Embedding." Pharmaceutics 12, no. 3 (March 16, 2020): 271. http://dx.doi.org/10.3390/pharmaceutics12030271.
Повний текст джерелаXu, Bi-Cun, Kai Ming Ting, and Yuan Jiang. "Isolation Graph Kernel." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 12 (May 18, 2021): 10487–95. http://dx.doi.org/10.1609/aaai.v35i12.17255.
Повний текст джерелаRustamov, Raif M., and James T. Klosowski. "Kernel mean embedding based hypothesis tests for comparing spatial point patterns." Spatial Statistics 38 (August 2020): 100459. http://dx.doi.org/10.1016/j.spasta.2020.100459.
Повний текст джерелаHou, Boya, Sina Sanjari, Nathan Dahlin, and Subhonmesh Bose. "Compressed Decentralized Learning of Conditional Mean Embedding Operators in Reproducing Kernel Hilbert Spaces." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 7 (June 26, 2023): 7902–9. http://dx.doi.org/10.1609/aaai.v37i7.25956.
Повний текст джерелаSegera, Davies, Mwangi Mbuthia, and Abraham Nyete. "Particle Swarm Optimized Hybrid Kernel-Based Multiclass Support Vector Machine for Microarray Cancer Data Analysis." BioMed Research International 2019 (December 16, 2019): 1–11. http://dx.doi.org/10.1155/2019/4085725.
Повний текст джерелаWang, Yufan, Zijing Wang, Kai Ming Ting, and Yuanyi Shang. "A Principled Distributional Approach to Trajectory Similarity Measurement and its Application to Anomaly Detection." Journal of Artificial Intelligence Research 79 (March 13, 2024): 865–93. http://dx.doi.org/10.1613/jair.1.15849.
Повний текст джерелаBrandman, David M., Michael C. Burkhart, Jessica Kelemen, Brian Franco, Matthew T. Harrison, and Leigh R. Hochberg. "Robust Closed-Loop Control of a Cursor in a Person with Tetraplegia using Gaussian Process Regression." Neural Computation 30, no. 11 (November 2018): 2986–3008. http://dx.doi.org/10.1162/neco_a_01129.
Повний текст джерелаAli, Sarwan, and Murray Patterson. "Improving ISOMAP Efficiency with RKS: A Comparative Study with t-Distributed Stochastic Neighbor Embedding on Protein Sequences." J 6, no. 4 (October 31, 2023): 579–91. http://dx.doi.org/10.3390/j6040038.
Повний текст джерелаДисертації з теми "Kernel mean embedding"
Hsu, Yuan-Shuo Kelvin. "Bayesian Perspectives on Conditional Kernel Mean Embeddings: Hyperparameter Learning and Probabilistic Inference." Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/24309.
Повний текст джерелаMuandet, Krikamol [Verfasser], and Bernhard [Akademischer Betreuer] Schölkopf. "From Points to Probability Measures : Statistical Learning on Distributions with Kernel Mean Embedding / Krikamol Muandet ; Betreuer: Bernhard Schölkopf." Tübingen : Universitätsbibliothek Tübingen, 2015. http://d-nb.info/1163664804/34.
Повний текст джерелаMuandet, Krikamol Verfasser], and Bernhard [Akademischer Betreuer] [Schölkopf. "From Points to Probability Measures : Statistical Learning on Distributions with Kernel Mean Embedding / Krikamol Muandet ; Betreuer: Bernhard Schölkopf." Tübingen : Universitätsbibliothek Tübingen, 2015. http://d-nb.info/1163664804/34.
Повний текст джерелаFermanian, Jean-Baptiste. "High dimensional multiple means estimation and testing with applications to machine learning." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM035.
Повний текст джерелаIn this thesis, we study the influence of high dimension in testing and estimation problems. We analyze the dimension dependence of the separation rate of a closeness test and of the quadratic risk of multiple vector estimation. We complement existing results by studying these dependencies in the case of non-isotropic distributions. For such distributions, the role of dimension is played by notions of effective dimension defined from the covariance of the distributions. This framework covers infinite-dimensional data such as kernel mean embedding, a machine learning tool we will be seeking to estimate. Using this analysis, we construct methods for simultaneously estimating mean vectors of different distributions from independent samples of each. These estimators perform better theoretically and practically than the empirical mean in unfavorable situations where the (effective) dimension is large. These methods make explicit or implicit use of the relative ease of testing compared with estimation. They are based on the construction of estimators of distances and moments of covariance, for which we provide non-asymptotic concentration bounds. Particular interest is given to the study of bounded data, for which a specific analysis is required. Our methods are accompanied by a minimax analysis justifying their optimality. In a final section, we propose an interpretation of the attention mechanism used in Transformer neural networks as a multiple vector estimation problem. In a simplified framework, this mechanism shares similar ideas with our approaches, and we highlight its denoising effect in high dimension
Chen, Tian Qi. "Deep kernel mean embeddings for generative modeling and feedforward style transfer." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/62668.
Повний текст джерелаScience, Faculty of
Computer Science, Department of
Graduate
Книги з теми "Kernel mean embedding"
Muandet, Krikamol, Kenji Fukumizu, Bharath Kumar Sriperumbudur VanGeepuram, and Bernhard Schölkopf. Kernel Mean Embedding of Distributions: A Review and Beyond. Now Publishers, 2017.
Знайти повний текст джерелаSriperumbudur, Bharath K. Kernel Mean Embedding of Distributions: A Review and Beyond. 2017.
Знайти повний текст джерелаЧастини книг з теми "Kernel mean embedding"
Fukumizu, Kenji. "Nonparametric Bayesian Inference with Kernel Mean Embedding." In Modern Methodology and Applications in Spatial-Temporal Modeling, 1–24. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55339-7_1.
Повний текст джерелаWickstrøm, Kristoffer, J. Emmanuel Johnson, Sigurd Løkse, Gustau Camps-Valls, Karl Øyvind Mikalsen, Michael Kampffmeyer, and Robert Jenssen. "The Kernelized Taylor Diagram." In Communications in Computer and Information Science, 125–31. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17030-0_10.
Повний текст джерелаHsu, Kelvin, Richard Nock, and Fabio Ramos. "Hyperparameter Learning for Conditional Kernel Mean Embeddings with Rademacher Complexity Bounds." In Machine Learning and Knowledge Discovery in Databases, 227–42. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10928-8_14.
Повний текст джерелаXie, Yi, Zhi-Hao Tan, Yuan Jiang, and Zhi-Hua Zhou. "Identifying Helpful Learnwares Without Examining the Whole Market." In Frontiers in Artificial Intelligence and Applications. IOS Press, 2023. http://dx.doi.org/10.3233/faia230585.
Повний текст джерелаТези доповідей конференцій з теми "Kernel mean embedding"
Luo, Mingjie, Jie Zhou, and Qingke Zou. "Multisensor Estimation Fusion Based on Kernel Mean Embedding." In 2024 27th International Conference on Information Fusion (FUSION), 1–7. IEEE, 2024. http://dx.doi.org/10.23919/fusion59988.2024.10706487.
Повний текст джерелаGUAN, ZENGDA, and JUAN ZHANG. "Quantitative Associative Classification Based on Kernel Mean Embedding." In CSAI 2020: 2020 4th International Conference on Computer Science and Artificial Intelligence. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3445815.3445827.
Повний текст джерелаTang, Shuhao, Hao Tian, Xiaofeng Cao, and Wei Ye. "Deep Hierarchical Graph Alignment Kernels." In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/549.
Повний текст джерелаDing, Xiao, Bibo Cai, Ting Liu, and Qiankun Shi. "Domain Adaptation via Tree Kernel Based Maximum Mean Discrepancy for User Consumption Intention Identification." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/560.
Повний текст джерелаZhu, Jia-Jie, Wittawat Jitkrittum, Moritz Diehl, and Bernhard Scholkopf. "Worst-Case Risk Quantification under Distributional Ambiguity using Kernel Mean Embedding in Moment Problem." In 2020 59th IEEE Conference on Decision and Control (CDC). IEEE, 2020. http://dx.doi.org/10.1109/cdc42340.2020.9303938.
Повний текст джерелаRomao, Licio, Ashish R. Hota, and Alessandro Abate. "Distributionally Robust Optimal and Safe Control of Stochastic Systems via Kernel Conditional Mean Embedding." In 2023 62nd IEEE Conference on Decision and Control (CDC). IEEE, 2023. http://dx.doi.org/10.1109/cdc49753.2023.10383997.
Повний текст джерелаLiu, Qiao, and Hui Xue. "Adversarial Spectral Kernel Matching for Unsupervised Time Series Domain Adaptation." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/378.
Повний текст джерелаTan, Peng, Zhi-Hao Tan, Yuan Jiang, and Zhi-Hua Zhou. "Handling Learnwares Developed from Heterogeneous Feature Spaces without Auxiliary Data." In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/471.
Повний текст джерелаShan, Siyuan, Vishal Athreya Baskaran, Haidong Yi, Jolene Ranek, Natalie Stanley, and Junier B. Oliva. "Transparent single-cell set classification with kernel mean embeddings." In BCB '22: 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3535508.3545538.
Повний текст джерелаElgohary, Ahmed, Ahmed K. Farahat, Mohamed S. Kamel, and Fakhri Karray. "Embed and Conquer: Scalable Embeddings for Kernel k-Means on MapReduce." In Proceedings of the 2014 SIAM International Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2014. http://dx.doi.org/10.1137/1.9781611973440.49.
Повний текст джерела