Дисертації з теми "K-theory"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "K-theory".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Gritschacher, Simon. "Commutative K-theory." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:5d5b0e20-20ef-4eec-a032-8bcb5fe59884.
Повний текст джерелаLevikov, Filipp. "L-theory, K-theory and involutions." Thesis, University of Aberdeen, 2013. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=201918.
Повний текст джерелаTakeda, Yuichiro. "Localization theorem in equivariant algebraic K-theory." 京都大学 (Kyoto University), 1997. http://hdl.handle.net/2433/202419.
Повний текст джерелаStefański, Bogdan. "String theory, dirichlet branes and K-theory." Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621023.
Повний текст джерелаBraun, Volker Friedrich. "K-theory and exceptional holonomy in string theory." Doctoral thesis, [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=965401650.
Повний текст джерелаMitchener, Paul David. "K-theory of C*-categories." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365771.
Повний текст джерелаZakharevich, Inna (Inna Ilana). "Scissors congruence and K-theory." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/73376.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (p. 83-84).
In this thesis we develop a version of classical scissors congruence theory from the perspective of algebraic K-theory. Classically, two polytopes in a manifold X are defined to be scissors congruent if they can be decomposed into finite sets of pairwise-congruent polytopes. We generalize this notion to an abstract problem: given a set of objects and decomposition and congruence relations between them, when are two objects in the set scissors congruent? By packaging the scissors congruence information in a Waldhausen category we construct a spectrum whose homotopy groups include information about the scissors congruence problem. We then turn our attention to generalizing constructions from the classical case to these Waldhausen categories, and find constructions for cofibers, suspensions, and products of scissors congruence problems.
by Inna Zakharevich.
Ph.D.
Cain, Christopher. "K-theory of Fermat curves." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/262483.
Повний текст джерелаBunch, Eric. "K-Theory in categorical geometry." Diss., Kansas State University, 2015. http://hdl.handle.net/2097/20350.
Повний текст джерелаDepartment of Mathematics
Zongzhu Lin
In the endeavor to study noncommutative algebraic geometry, Alex Rosenberg defined in [13] the spectrum of an Abelian category. This spectrum generalizes the prime spectrum of a commutative ring in the sense that the spectrum of the Abelian category R − mod is homeomorphic to the prime spectrum of R. This spectrum can be seen as the beginning of “categorical geometry”, and was used in [15] to study noncommutative algebriac geometry. In this thesis, we are concerned with geometries extending beyond traditional algebraic geometry coming from the algebraic structure of rings. We consider monoids in a monoidal category as the appropriate generalization of rings–rings being monoids in the monoidal category of Abelian groups. Drawing inspiration from the definition of the spectrum of an Abelian category in [13], and the exploration of it in [15], we define the spectrum of a monoidal category, which we will call the monoidal spectrum. We prove a descent condition which is the mathematical formalization of the statment “R − mod is the category of quasi-coherent sheaves on the monoidal spectrum of R − mod”. In addition, we prove a functoriality condidition for the spectrum, and show that for a commutative Noetherian ring, the monoidal spectrum of R − mod is homeomorphic to the prime spectrum of the ring R. In [1], Paul Balmer defined the prime tensor ideal spectrum of a tensor triangulated cat- gory; this can be thought of as the beginning of “tensor triangulated categorical geometry”. This definition is very transparent and digestible, and is the inspiration for the definition in this thesis of the prime tensor ideal spectrum of an monoidal Abelian category. It it shown that for a polynomial identity ring R such that the catgory R − mod is monoidal Abelian, the prime tensor ideal spectrum is homeomorphic to the prime ideal spectrum.
Hedlund, William. "K-Theory and An-Spaces." Thesis, Uppsala universitet, Algebra och geometri, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-414082.
Повний текст джерелаHahn, Rebekah D. "K(1)-local Iwasawa theory /." Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/5736.
Повний текст джерелаMillar, Judith Ruth. "K-theory of Azumaya algebras." Thesis, Queen's University Belfast, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.534610.
Повний текст джерелаNiwa, Masahiko. "THEORY OF G-CATEGORIES TOWARD EQUIVARIANT ALGEBRAIC K-THEORY." 京都大学 (Kyoto University), 1991. http://hdl.handle.net/2433/168801.
Повний текст джерелаKyoto University (京都大学)
0048
新制・論文博士
理学博士
乙第7383号
論理博第1122号
新制||理||718(附属図書館)
UT51-91-C116
(主査)教授 戸田 宏, 教授 土方 弘明, 教授 丸山 正樹
学位規則第5条第2項該当
Schäfer-Nameki, Sakura. "D-branes in boundary field theory and K-theory." Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620017.
Повний текст джерелаPiazza, Paolo. "K-theory and index theory on manifolds with boundary." Thesis, Massachusetts Institute of Technology, 1991. http://hdl.handle.net/1721.1/31020.
Повний текст джерелаZhang, Zuhong. "Lower K-theory of unitary groups." Thesis, Queen's University Belfast, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486261.
Повний текст джерелаKerz, Moritz. "Milnor K-theory of local rings." kostenfrei, 2008. http://www.opus-bayern.de/uni-regensburg/volltexte/2008/991/.
Повний текст джерелаClausen, Dustin (Dustin Tate). "Arithmetic duality in algebraic K-theory." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/83692.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 37-38).
Let X be a regular arithmetic curve or point (meaning a regular separated scheme of finite type over Z which is connected and of Krull dimension = 1). We define a compactly-supported variant Kc(X) of the algebraic K-theory spectrum K(X), and establish the basic functoriality of Kc. Briefly, K, behaves as if it were dual to K. Then we give this duality some grounding: for every prime t invertible on X, we define a natural l-adic pairing between Kc(X) and K(X). This pairing is of an explicit homotopy-theoretic nature, and reflects a simple relation between spheres, tori, and real vector spaces. Surprisingly, it has the following two properties: first (a consequence of work of Rezk), when one tries to compute it the e-adic logarithm inevitably appears; and second, it can be used to give a new description of the global Artin map, one which makes the Artin reciprocity law manifest.
by Dustin Clausen.
Ph.D.
Harris, Thomas. "Binary complexes and algebraic K-theory." Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/383999/.
Повний текст джерелаMagill, Matthew. "Topological K-theory and Bott Periodicity." Thesis, Uppsala universitet, Algebra och geometri, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-322927.
Повний текст джерелаSia, Charmaine Jia Min. "Structures on Forms of K-Theory." Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467390.
Повний текст джерелаMathematics
Klippenstien, J. "Applications of the universal coefficient theorem for connective k-theory." Thesis, University of Warwick, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371053.
Повний текст джерелаHazrat, Roozbeh. "On K-theory of classical-like groups." [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=969899742.
Повний текст джерелаHekmati, Pedram. "Group Extensions, Gerbes and Twisted K-theory." Licentiate thesis, Stockholm : Teoretisk fysik, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4654.
Повний текст джерелаLopez, Jose Maria Cantarero. "Equivariant K-theory, groupoids and proper actions." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/14707.
Повний текст джерелаYang, Shuhang. "Large N gauge theory and k-strings." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/33648.
Повний текст джерелаKreisel, Michael. "Gabor frames for quasicrystals and K-theory." Thesis, University of Maryland, College Park, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3711683.
Повний текст джерелаWe study the connection between Gabor frames for quasicrystals, the topology of the hull of a quasicrystal, and the K-theory of an associated twisted groupoid algebra. In particular, we construct a finitely generated projective module over this algebra, and multiwindow Gabor frames can be used to construct an idempotent representing the module in K-theory. For lattice subsets in dimension two, this allows us to prove a twisted version of Bellissard's gap labeling theorem. By viewing Gabor frames in this operator algebraic framework, we are also able to show that for certain quasicrystals it is not possible to construct a tight multiwindow Gabor frame.
Lakos, Gyula 1973. "Smooth K-theory and locally convex algebras." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/29357.
Повний текст джерелаIncludes bibliographical references (p. 121-122).
In this thesis, we improve the loop linearization process from the classical article of Atiyah and Bott on Bott periodicity. The linearization process is made explicit in terms of formulae for smooth loops. Using this improvement allows us to extend K-theory (including periodicity) to a class of locally convex algebras vastly larger then the one of Banach algebras. We find various ways to represent periodicity by explicit formulae. For finite Laurent loops formulae yielding finite matrices to represent the associated Ko classes are obtained. The methods used also allow us to reinterpret some recent results of Melrose on smooth classifying spaces for K-theory. The relationship between the universal even and odd Chern characters and periodicity is investigated, giving correspondences between the various representatives in the form of family index theorems for loop groups. In the discussion Ko and the even Chern character are primarily formulated in the language of involutions. The paper also demonstrates the universality of the involution terminology with respect to vector bundles.
by Gyula Lakos.
Ph.D.
Dugger, Daniel (Daniel Keith) 1972. "A Postnikov tower for algebraic K-theory." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/85300.
Повний текст джерелаSong, Yongjin. "Hermitian algebraic K-theory and dihedral homology /." The Ohio State University, 1990. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487681788252481.
Повний текст джерелаSavinien, Jean P. X. "Cohomology and K-theory of aperiodic tilings." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24732.
Повний текст джерелаCommittee Chair: Prof. Jean Bellissard; Committee Member: Prof. Claude Schochet; Committee Member: Prof. Michael Loss; Committee Member: Prof. Stavros Garoufalidis; Committee Member: Prof. Thang Le.
Rodtes, Kijti. "The connective K theory of semidihedral groups." Thesis, University of Sheffield, 2010. http://etheses.whiterose.ac.uk/1103/.
Повний текст джерелаDell'Aiera, Clément. "Controlled K-theory for groupoids and applications." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0114/document.
Повний текст джерелаIn their paper entitled "On quantitative operator K-theory", H. Oyono-Oyono and G. Yu introduced a refinement of operator K-theory, called quantitative or controlled K-theory, adapted to the setting of filtered C_-algebras. In this thesis, we generalize filtration of C*-algebras. We show that this setting contains the theory developed by H. Oyono-Oyono and G. Yu, and is general enough to be applied to the setting of crossed products by étale groupoids and discrete quantum groups. We construct controlled assembly maps with values into this controlled K-groups, for Roe C*-algebras and crossed products by étale groupoids. We show that these controlled assembly maps factorize the usual Baum-Connes and coarse Baum-Connes assembly maps. We prove statements called quantitative statements, and we show that a controlled version of the Baum-Connes conjecture is satisfied for a large class of étale groupoids. The end of the thesis is devoted to several applications of these results. We show that the controlled coarse assembly map is equivalent to its analog with coefficients for the coarse groupoid introduced by G. Skandalis, J-L. Tu and G. Yu. We give a proof that coarse spaces which admit a _bred coarse embedding into Hilbert space satisfy the maximal controlled coarse Baum-Connes conjecture. Finally, we study étale groupoids whose proper actions are locally induced by compact open subgroupoids, e.g. ample groupoids introduced by J. Renault. We develop a restriction principle for these groupoids, and prove that under suitable assumptions, their crossed products satisfy the controlled Künneth formula
Dell'Aiera, Clément. "Controlled K-theory for groupoids and applications." Electronic Thesis or Diss., Université de Lorraine, 2017. http://www.theses.fr/2017LORR0114.
Повний текст джерелаIn their paper entitled "On quantitative operator K-theory", H. Oyono-Oyono and G. Yu introduced a refinement of operator K-theory, called quantitative or controlled K-theory, adapted to the setting of filtered C_-algebras. In this thesis, we generalize filtration of C*-algebras. We show that this setting contains the theory developed by H. Oyono-Oyono and G. Yu, and is general enough to be applied to the setting of crossed products by étale groupoids and discrete quantum groups. We construct controlled assembly maps with values into this controlled K-groups, for Roe C*-algebras and crossed products by étale groupoids. We show that these controlled assembly maps factorize the usual Baum-Connes and coarse Baum-Connes assembly maps. We prove statements called quantitative statements, and we show that a controlled version of the Baum-Connes conjecture is satisfied for a large class of étale groupoids. The end of the thesis is devoted to several applications of these results. We show that the controlled coarse assembly map is equivalent to its analog with coefficients for the coarse groupoid introduced by G. Skandalis, J-L. Tu and G. Yu. We give a proof that coarse spaces which admit a _bred coarse embedding into Hilbert space satisfy the maximal controlled coarse Baum-Connes conjecture. Finally, we study étale groupoids whose proper actions are locally induced by compact open subgroupoids, e.g. ample groupoids introduced by J. Renault. We develop a restriction principle for these groupoids, and prove that under suitable assumptions, their crossed products satisfy the controlled Künneth formula
Rallis, Nikolaos. "C-K Theory in Practice : C-K Theory in Practice: How can CK Theory serve as a model of reasoning for Startups’ Internationalization?" Thesis, Linköpings universitet, Företagsekonomi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-160692.
Повний текст джерелаJia, Bei. "D-branes and K-homology." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/32039.
Повний текст джерелаMaster of Science
Hüttemann, Thomas. "Algebraic K-theory of non-linear projectice spaces." [S.l. : s.n.], 1999. http://deposit.ddb.de/cgi-bin/dokserv?idn=957056230.
Повний текст джерелаSavin, Anton, and Boris Sternin. "Eta-invariant and Pontrjagin duality in K-theory." Universität Potsdam, 2000. http://opus.kobv.de/ubp/volltexte/2008/2574/.
Повний текст джерелаHignett, Anthony James. "Discrete module categories and operations in K-theory." Thesis, University of Sheffield, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.521994.
Повний текст джерелаValentino, Alessandro. "K-theory, D-branes and Ramond-Ramond fields." Thesis, Heriot-Watt University, 2008. http://hdl.handle.net/10399/2175.
Повний текст джерелаMarkett, Simon A. "The Grayson spectral sequence for hermitian K-theory." Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/74068/.
Повний текст джерелаThiang, Guo Chuan. "Topological phases of matter, symmetries, and K-theory." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:53b10289-8b59-46c2-a0e9-5a5fb77aa2a2.
Повний текст джерелаSchadeck, Laurent. "On the K-theory of tame Artim stacks." Doctoral thesis, Scuola Normale Superiore, 2019. http://hdl.handle.net/11384/85745.
Повний текст джерелаSperber, Ron. "A comparison of assembly maps in algebraic K-theory." Diss., Online access via UMI:, 2004. http://wwwlib.umi.com/dissertations/fullcit/3150488.
Повний текст джерелаPatronas, Dimitrios [Verfasser]. "The Artin Defect in Algebraic K-Theory / Dimitrios Patronas." Berlin : Freie Universität Berlin, 2014. http://d-nb.info/1058105280/34.
Повний текст джерелаKolin, David. "k-Space image correlation spectroscopy: theory, verification, and applications." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=21933.
Повний текст джерелаCette thèse est à propos de l'utilisation et du développement de nouvelles techniques de corrélation de fluorescence afin de mesurer les dynamiques, la densité, et l'état d'agrégation de protéines marquées par fluorescence dans des cellules vivantes. Une vaste recherche de la précision de la spectroscopie temporelle par corrélations d'images (STCI) est premièrement présentée. En utilisant des simulations informatiques à balayage de laser de séries d'images de microscopie, l'effet de l'échantillon spatiotemporelle, densité de particules, le bruit, la fréquence de prises d'échantillons, et le photoblanchiment des fluorophores lors de la mesure des coefficients de transport et la densité par STCI sont examinés. C'est démontré que le photoblanchiment des fluorophores perturbent de manière significative les mesures STCI. La théorie de la spectroscopie de corrélations d'images d'espace-k (CIEk) est développée en détail. CIEk implique la transformation Fourier de chaque image dans une série d'images, et ensuite de faire la corrélation de ces transformations, dans le temps. Cette technique mesure la densité, le coefficient de diffusion, et la vélocité de macromolécules marquées fluorescentes dans une membrane de cellules. Contrairement aux techniques de corrélation espace-r, nous démontrons que CIEk peut mesurer les dynamiques précises, même en présence de complexes photoblanchiments de fluorophores et/ou "clignotement." Nous utilisons des simulations comme une preuve de principes pour démontrer que les densités et les coefficients de transport peuvent être extraits en utilisant cette technique. Nous présentons des mesures d'étalonnage avec des microsphères fluorescentes imagées sur un microscope confocal, qui mesurent la diffusion de coefficients Stokes-Einstein, et les vitesses d'écroulement qui correspondent avec les mesures de suivi de particules uniques. L'application vaste de cette technique est démontrée avec d
Strong, Mary-Jane Anne. "Additive Unstable Operations in Complex K-Theory and Cobordism." Thesis, University of Westminster, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.500535.
Повний текст джерелаKuber, Amit Shekhar. "K-theory of theories of modules and algebraic varieties." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/ktheory-of-theories-of-modules-and-algebraic-varieties(5d4387d5-df36-455a-a09d-922d67b0827e).html.
Повний текст джерелаMelo, S. T., R. Nest, and Elmar Schrohe. "C*-structure and K-theory of Boutet de Monvel's algebra." Universität Potsdam, 2001. http://opus.kobv.de/ubp/volltexte/2008/2616/.
Повний текст джерелаNarreddy, Naga Sambu Reddy, and Tuğrul Durgun. "Clusters (k) Identification without Triangle Inequality : A newly modelled theory." Thesis, Uppsala universitet, Institutionen för informatik och media, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-183608.
Повний текст джерела