Добірка наукової літератури з теми "Janus fiber"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Janus fiber".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Janus fiber"
Yu, Xiaotian, Xian Zhang, Yajie Xing, Hongjing Zhang, Wuwei Jiang, Ke Zhou, and Yongqiang Li. "Development of Janus Cellulose Acetate Fiber (CA) Membranes for Highly Efficient Oil–Water Separation." Materials 14, no. 20 (October 9, 2021): 5916. http://dx.doi.org/10.3390/ma14205916.
Повний текст джерелаGeng, Yuting, Pan Zhang, Qiutong Wang, Yangxiu Liu, and Kai Pan. "Novel PAN/PVP Janus ultrafine fiber membrane and its application for biphasic drug release." Journal of Materials Chemistry B 5, no. 27 (2017): 5390–96. http://dx.doi.org/10.1039/c7tb00929a.
Повний текст джерелаBudi, M. A. K., E. B. Glass, N. G. Rudawski, and J. S. Andrew. "Exchange bias in bismuth ferrite/cobalt ferrite Janus nanofibers." Journal of Materials Chemistry C 5, no. 33 (2017): 8586–92. http://dx.doi.org/10.1039/c7tc00975e.
Повний текст джерелаKim, In Ho, Tae Hong Im, Han Eol Lee, Ji‐Soo Jang, Hee Seung Wang, Gil Yong Lee, Il‐Doo Kim, Keon Jae Lee, and Sang Ouk Kim. "Janus Graphene Liquid Crystalline Fiber with Tunable Properties Enabled by Ultrafast Flash Reduction." Small 15, no. 48 (July 2019): 1901529. http://dx.doi.org/10.1002/smll.201901529.
Повний текст джерелаZhou, Qingxin, Hao Li, Dingding Li, Beibei Wang, Hui Wang, Jinbo Bai, Shenghua Ma, and Gang Wang. "A graphene assembled porous fiber-based Janus membrane for highly effective solar steam generation." Journal of Colloid and Interface Science 592 (June 2021): 77–86. http://dx.doi.org/10.1016/j.jcis.2021.02.045.
Повний текст джерелаYan, Weian, Dongyang Miao, Aijaz Ahmed Babar, Jing Zhao, Yongtang Jia, Bin Ding, and Xianfeng Wang. "Multi-scaled interconnected inter- and intra-fiber porous janus membranes for enhanced directional moisture transport." Journal of Colloid and Interface Science 565 (April 2020): 426–35. http://dx.doi.org/10.1016/j.jcis.2020.01.063.
Повний текст джерелаLi, Hao-Nan, Jing Yang, and Zhi-Kang Xu. "Hollow fiber membranes with Janus surfaces for continuous deemulsification and separation of oil-in-water emulsions." Journal of Membrane Science 602 (May 2020): 117964. http://dx.doi.org/10.1016/j.memsci.2020.117964.
Повний текст джерелаGumennik, Alexander, Etgar C. Levy, Benjamin Grena, Chong Hou, Michael Rein, Ayman F. Abouraddy, John D. Joannopoulos, and Yoel Fink. "Confined in-fiber solidification and structural control of silicon and silicon−germanium microparticles." Proceedings of the National Academy of Sciences 114, no. 28 (June 22, 2017): 7240–45. http://dx.doi.org/10.1073/pnas.1707778114.
Повний текст джерелаZou, Lusi, Pri Gusnawan, Guoyin Zhang, and Jianjia Yu. "Novel Janus composite hollow fiber membrane-based direct contact membrane distillation (DCMD) process for produced water desalination." Journal of Membrane Science 597 (March 2020): 117756. http://dx.doi.org/10.1016/j.memsci.2019.117756.
Повний текст джерелаHu, Ye-Qi, Hao-Nan Li, and Zhi-Kang Xu. "Janus hollow fiber membranes with functionalized outer surfaces for continuous demulsification and separation of oil-in-water emulsions." Journal of Membrane Science 648 (April 2022): 120388. http://dx.doi.org/10.1016/j.memsci.2022.120388.
Повний текст джерелаДисертації з теми "Janus fiber"
Yan, Xiang. "Design of biphasic polymeric fiber from melt-spinning charged with nanoparticles : effects of the formulation and the fillers localization, to obtain a functionalized fiber at surface level." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I084.
Повний текст джерелаThe work aims to make the functional porous polypropylene (PP) fibers as well as PP microfibers, by the melt spinning of PP-poly(vinyl alcohol) (PVA) blends followed with the selective phase extraction of PVA. The objective is to first find out the optimal ratio of PP and PVA for fabrication of multifilament yarns by melt spinning, and to localize the filler at the biphasic interface. The fillers include not only the homogenously modified silica nanoparticles, but also the kaolinite Janus particles. The concomitant morphology evolution of the extrudates and fibers were observed. The work mainly discusses about the fabrication of porous fibers, but also makes an exploratory experiment to reverse the ratio to fabricate the microfibers. It was found that the ratio of two polymers as 70 wt.%/30 wt.% is an ideal formula for fabricating the porous fibers. Both of the two fillers are successfully tailored at the biphasic interface. The localization of silica nanoparticles within the biphasic can be fixed by the thermodynamic control, and one of the sorts has been dominantly localized at the biphasic interface. In addition, the Janus particles provide an alternative way to have the interface localization, which even helps the mechanical enhancement. The feasibility of microfiber production with the embedment of the fillers was also demonstrated
Razzaq, Wasif. "Microfluidic spinning of polymer microfibers : effect of operating parameters on morphology and properties towards the development of novel and smart materials." Thesis, Strasbourg, 2022. http://www.theses.fr/2022STRAE004.
Повний текст джерелаMicrofluidic spinning is an emerging technology to produce micro/nanofibers which have a significant potential in advanced applications such as tissue engineering, wearable electronics, drug delivery, and water harvesting. In microfluidic spinning, fibers with controlled diameters and morphologies could be easily produced by precisely manipulating the fluids flow and the geometry of the microfluidic device. The purpose of this doctoral project was to develop expertise and skills in the field of microfluidic spinning to produce polymer fibers using UV photopolymerization of the monomers using a capillary-based microfluidic device with the following objectives : (1) the development of an empirical relationship to predict the fiber diameter considering the different operating and materials parameters, (2) the production of Janus/Hecate fibers from monomers with different chemical and physical properties with controllability of morphological and mechanical properties that were explored to remove simultaneously cationic and anionic dyes and to prepare thermoresponsive Janus fiber actuators, and (3) the development of an in-process rapid surface modification approach to modify the surface of fibers
Ho, Chi-Chih, and 何啟誌. "A Novel Fabrication of Janus Particles from the Surfaces of Electrospun Polymer Fibers." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/28226362020696693596.
Повний текст джерела國立成功大學
材料科學及工程學系碩博士班
95
A novel synthetic approach was successfully demonstrated as the efficient fabrication for Janus nanoparticles. Instead of using two-dimensional plane surfaces, one-dimensional polymer fibers provided even more interfacial area to confine or to encapsulate zero-dimensional colloids. A polymer-based electrospinning technique capable of making polymeric fiber mats was employed to produce substrates with high surface-to-volume ratio. A polymer blending system, the mixture of poly(methyl methacrylate) (PMMA) and poly(4-vinyl pyridine) (P4VP), was adapted to generate the electrospun fibers with desired surface properties. Silica colloids were assembled onto the electrospun polymer substrates due to the interaction between silanol groups from silica colloid surface and pyridine groups from P4VP. The thermally-induced embedment under the precise temperature manipulation was conducted to protect one of the two hemispheres. Exposed hemispheric surface modification of embedded silica colloids was then carried out by the silanization reaction with 3-aminopropyl trimethoxysilane via a chemical vapor deposition. Uniform functionalization on Janus particles were further confirmed by the attachment of gold nanoparticles onto the amino-enriched hemispheric surfaces. Fabrication and characterization of Janus particles were discussed. In this research, not only the fabrication of Janus particles from template-assisted method was demonstrated, but also the phase separation of fibers from emulsion electrospinning was discussed. Successful mass production of uniform Janus particles in this research work opens the great potentials of using these unique materials in the dual-functional devices, supra-structure materials, electronic papers, anisotropic image probes, and more.
Книги з теми "Janus fiber"
Publishers, Museum Museum. Notebook: Janus-Faced Helmet Mask, Ejagham People, 20th Century, Wood, Skin, Pigment, Iron, Cloth, Fiber, African Art. Independently Published, 2020.
Знайти повний текст джерелаЧастини книг з теми "Janus fiber"
Keshavarz Bahaghighat, Khadijeh, and Mohammad Hossein Navid Famili. "Janus Fiber Fabrication Using Electrospinning Process." In Eco-friendly and Smart Polymer Systems, 502–4. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45085-4_122.
Повний текст джерела