Дисертації з теми "Isomorphisme de type"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-31 дисертацій для дослідження на тему "Isomorphisme de type".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Bonnet, Jean-Paul. "Un isomorphisme motivique entre deux variétés homogènes projectives sous l'action d'un groupe de type $G_2$." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2003. http://tel.archives-ouvertes.fr/tel-00004214.
Повний текст джерелаBonnet, Jean-Paul. "Un isomorphisme motivique entre deux variétés homogènes projectives sous l'action d'un groupe de type G2." Lille 1, 2003. https://ori-nuxeo.univ-lille1.fr/nuxeo/site/esupversions/6a534f30-9098-43a3-8423-d4413bfe78f0.
Повний текст джерелаStolze, Claude. "Types union, intersection, et dépendants dans le lambda-calcul explicitement typé." Thesis, Université Côte d'Azur (ComUE), 2019. http://www.theses.fr/2019AZUR4104.
Повний текст джерелаThe subject of this thesis is about lambda-calculus decorated with types, usually called "Church-style typed lambda-calculus". We study this lambda-calculus enhanced with Intersection types, as described by Barendregt, Dekkers and Statman in the book "Lambda-calculus with Types"; Union types, as introduced by Plotkin, MacQueen and Sethi; and Dependent types, as described by Plotkin, Harper and Honsell when they introduced the Edinburgh Logical Framework LF. Intersection and union types are a way to express ad hoc polymorphism and are an alternative to the parametric polymorphism of Girard. Dependent types were introduced as a way to formalize intuitionistic logic using the "proof-as-lambda-terms / formulas-as-types" Curry-Howard principle. The resulting type system can be enriched with a decidable subtyping relation. Combining these three type disciplines gives rise to a family of calculi that can be parametrized and classified: we call the resulting system the Delta-calculus. We then discuss the design decisions which have led us to the formulation of these calculi, study their metatheory, and provide various examples of applications; and we finally present a software implementation of the Delta-calculus, with a description of the type checker, the refinement algorithm, the subtyping algorithm, the evaluation algorithm and the command-line interface. This work can be understood as a little step toward an alternative type theory to defining polymorphic programming languages and interactive proof assistants
Chemouil, David. "Types inductifs, isomorphismes et récriture extensionnelle." Toulouse 3, 2004. http://www.theses.fr/2004TOU30187.
Повний текст джерелаThis PhD thesis copes with extensions of the simply-typed lambda-calculus by various rewrite relations preserving termination and confluence. Our first purpose is to ensure that some types become isomorphic. As far as inductive types are concerned, this problem is undecidable: therefore, we added some particular reductions solving it only in peculiar cases, namely the inductive encoding of the product and unit types and, more importantly, the notion of parameterised copy. Next, leaving isomorphims, we consider new reductions enabling to set up some algebraic structures on finite types: firstly, we deal with the definition of a category on a fragment of the calculus; and, secondly, with the representation of the symmetric group by factorisation of permutations as products of disjoint cycles. These results are obtained using techniques from abstract rewriting theory, some of which we have specifically developped for this thesis
Lasson, Marc. "Réalisabilité et paramétricité dans les systèmes de types purs." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2012. http://tel.archives-ouvertes.fr/tel-00770669.
Повний текст джерелаLataillade, Joachim Guilhem de. "Quantification du second ordre en sémentique des jeux : application aux isomorphismes de types." Paris 7, 2007. http://www.theses.fr/2007PA077228.
Повний текст джерелаGame semantics is a flexible and precise framework for interpreting programming languages. The present dissertation illustrates this fact in two ways : first by studying polymorphism and its logical counterpart : second-order quantification, and second by caracterising sorne syntactic properties via game models. Polymorphism is first considered in its most usual form, Church- style System F, We propose a new, complete, game model, inspired by previous works but in which we will be able to do effective calculations. The syntactic question of characterising type isomorphisms can then be solved inside this model, by proving the invariance through isomorphism of some structure called hyperforest. This semantic approach allows to retrieve a result by Roberto Di Cosmo, Another variant of second- order logic, namely Curry- style System F, is studied and modellsed, partially but with enough precision to give once again a characterisation of type isomorphisms through a geometric invariant. The corresponding equationnal system is an enrichment of that of Church-style isomorphisms by a news non-trivial, equation. An extension to classical logic of the results for Church-style System F is proposed, through theconstruction of a game model which results in a control hyperdoctrine, ie a categorical structuresuitable for second- order classical logic
Herrera, Diana. "Homormophic Images and their Isomorphism Types." CSUSB ScholarWorks, 2014. https://scholarworks.lib.csusb.edu/etd/37.
Повний текст джерелаRamirez, Jessica Luna. "CONSTRUCTIONS AND ISOMORPHISM TYPES OF IMAGES." CSUSB ScholarWorks, 2015. https://scholarworks.lib.csusb.edu/etd/254.
Повний текст джерелаDi, Guardia Rémi. "Identity of Proofs and Formulas using Proof-Nets in Multiplicative-Additive Linear Logic." Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0050.
Повний текст джерелаThis study is concerned with the equality of proofs and formulas in linear logic, with in particular contributions for the multiplicative-additive fragment of this logic. In linear logic, and as in many other logics (such as intuitionistic logic), there are two transformations on proofs: cut-elimination and axiom-expansion. One often wishes to identify two proofs related by these transformations, as it is the case semantically (in a categorical model for instance). This situation is similar to the one in the λ-calculus where terms are identified up to β-reduction and η-expansion, operations that, through the prism of the Curry-Howard correspondence, are related respectively to cut-elimination and axiom-expansion. We show here that this identification corresponds exactly to identifying proofs up to rule commutation, a third well-known operation on proofs which is easier to manipulate. We prove so only in multiplicative-additive linear logic, even if we conjecture such a result holds in full linear logic.Not only proofs but also formulas can be identified up to cut-elimination and axiom-expansion. Two formulas are isomorphic if there are proofs between them whose compositions yield identities, still up to cut-elimination and axiom-expansion. These formulas are then really considered to be the same, and every use of one can be replaced with one use of the other. We give an equational theory characterizing exactly isomorphic formulas in multiplicative-additive linear logic. A generalization of an isomorphism is a retraction, which intuitively corresponds to a couple of formulas where the first can be replaced by the second -- but not necessarily the other way around, contrary to an isomorphism. Studying retractions is more complicated, and we characterize retractions to an atom in the multiplicative fragment of linear logic.When studying the two previous problems, the usual syntax of proofs from sequent calculus seems ill-suited because we consider proofs up to rule commutation. Part of linear logic can be expressed in a better adapted syntax in this case: proof-nets, which are graphs representing proofs quotiented by rule commutation. This syntax was an instrumental tool for the characterization of isomorphisms and retractions. Unfortunately, proof-nets are not (or badly) defined with units. Concerning our issues, this restriction leads to a study of the unit-free case by means of proof-nets with the crux of the demonstration, preceded by a work in sequent calculus to handle the units. Besides, this thesis also develops part of the theory of proof-nets by providing a simple proof of the sequentialization theorem, which relates the two syntaxes of proof-net and sequent calculus, substantiating that they describe the same underlying objects. This new demonstration is obtained as a corollary of a generalization of Yeo's theorem. This last result is fully expressed in the theory of edge-colored graphs, and allows to recover proofs of sequentialization for various definitions of proof-nets. Finally, we also formalized proof-nets for the multiplicative fragment of linear logic in the proof assistant Coq, with notably an implementation of our new sequentialization proof
Lengrand, Stéphane. "Normalisation & equivalence in proof theory & type theory /." St Andrews, 2007. http://hdl.handle.net/10023/319.
Повний текст джерелаHaraburda, David. "Arithmetic Computations and Memory Management Using a Binary Tree Encoding af Natural Numbers." Thesis, University of North Texas, 2011. https://digital.library.unt.edu/ark:/67531/metadc103323/.
Повний текст джерелаBalat, Vincent. "Une étude des sommes fortes : isomorphismes et formes normales." Phd thesis, Université Paris-Diderot - Paris VII, 2002. http://tel.archives-ouvertes.fr/tel-00007880.
Повний текст джерелаBaccari, Kevin J. "Homomorphic Images And Related Topics." CSUSB ScholarWorks, 2015. https://scholarworks.lib.csusb.edu/etd/224.
Повний текст джерелаFouda, Ndjodo Marcel. "Systèmes de réécriture et cohérence des isomorphismes de types dans les catégories localement closes." Aix-Marseille 2, 1992. http://www.theses.fr/1992AIX22082.
Повний текст джерелаWerner, Benjamin. "Une Théorie des Constructions Inductives." Phd thesis, Université Paris-Diderot - Paris VII, 1994. http://tel.archives-ouvertes.fr/tel-00196524.
Повний текст джерелаDans le Calcul des Constructions originel, les types de données (entiers, listes, sommes, etc) sont représentés dans le lambda-calcul à travers un codage imprédicatif. Cette solution est élégante mais conduit à un certain nombre de difficultés pratiques et théoriques. Pour y remédier, Thierry Coquand et Christine Paulin-Mohring on proposé d'étendre le formalisme par un mécanisme génerique de définitions inductives. C'est cette extension, utilisée dans le système Coq, qui est étudiée dans cette thèse. Le résultat essentiel est que le système vérifie bien la proprieté de normalisation forte. On en déduit les proprietés de cohérence logique, de confluence et de décidabilité du typage.
L'aspect le plus spectaculaire de l'extension par des types inductifs est la possibilité de définir de nouveaux types et de nouvelles propositions par récurrence structurelle (élimination forte). Cette caractéristique, qui donne toute sa signification à la notion de types dépendants, augmente énormément le pouvoir de la règle de conversion, et par là, la difficulté de la preuve de normalisation. L'interprétation de l'élimination forte dans une preuve de normalisation par réductibilité est la nouveauté essentielle de ce travail.
De plus, nous considérons ici un système avec eta-conversion. Une conséquence est que la propriété de confluence n'est plus combinatoire et doit être prouvée après la normalisation, ce qui augmente à nouveau la difficulté de la preuve de celle-ci. A ce titre, nous présentons également quelques résultats nouveaux sur des systèmes non-normalisants qui montrent que pour des lambda-calculs typés, la propriété de confluence est logique et non combinatoire.
Baccari, Charles. "Investigation of Finite Groups Through Progenitors." CSUSB ScholarWorks, 2017. https://scholarworks.lib.csusb.edu/etd/600.
Повний текст джерелаLengrand, Stéphane J. E. "Normalisation & equivalence in proof theory & type theory." Thesis, University of St Andrews, 2006. http://hdl.handle.net/10023/319.
Повний текст джерелаPoernomo, Iman Hafiz 1976. "Variations on a theme of Curry and Howard : the Curry-Howard isomorphism and the proofs-as-programs paradigm adapted to imperative and structured program synthesis." Monash University, School of Computer Science and Software Engineering, 2003. http://arrow.monash.edu.au/hdl/1959.1/9405.
Повний текст джерелаSattler, Christian. "On the complexities of polymorphic stream equation systems, isomorphism of finitary inductive types, and higher homotopies in univalent universes." Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/28111/.
Повний текст джерелаDiehl, Larry. "Fully Generic Programming Over Closed Universes of Inductive-Recursive Types." PDXScholar, 2017. https://pdxscholar.library.pdx.edu/open_access_etds/3647.
Повний текст джерелаAssaf, Ali. "A framework for defining computational higher-order logics." Palaiseau, Ecole polytechnique, 2015. https://theses.hal.science/tel-01235303v4/document.
Повний текст джерелаFernandez, Erica. "CONSTRUCTION OF HOMOMORPHIC IMAGES." CSUSB ScholarWorks, 2017. https://scholarworks.lib.csusb.edu/etd/599.
Повний текст джерелаLetouzey, Pierre. "Programmation fonctionnelle certifiée : L'extraction de programmes dans l'assistant Coq." Phd thesis, Université Paris Sud - Paris XI, 2004. http://tel.archives-ouvertes.fr/tel-00150912.
Повний текст джерелаcorrects par construction. Ces programmes sont obtenus en
extrayant l'information pertinente de preuves constructives réalisées
dans l'assistant de preuves Coq.
Une telle traduction, ou "extraction", des preuves constructives
en programmes fonctionnels n'est pas nouvelle, elle correspond
à un isomorphisme bien connu sous le nom de Curry-Howard. Et
l'assistant Coq comporte depuis longtemps un tel outil d'extraction.
Mais l'outil précédent présentait d'importantes limitations. Certaines
preuves Coq étaient ainsi hors de son champ d'application, alors que
d'autres engendraient des programmes incorrects.
Afin de résoudre ces limitations, nous avons effectué une refonte
complète de l'extraction dans Coq, tant du point de vue de la théorie
que de l'implantation. Au niveau théorique, cette refonte a entraîné
la réalisation de nouvelles preuves de correction de ce mécanisme
d'extraction, preuves à la fois complexes et originales. Concernant
l'implantation, nous nous sommes efforcés d'engendrer du code
extrait efficace et réaliste, pouvant en particulier être intégré dans des
développement logiciels de plus grande échelle, par le biais de
modules et d'interfaces.
Enfin, nous présentons également plusieurs études de cas illustrant
les possibilités de notre nouvelle extraction. Nous décrivons ainsi la
certification d'une bibliothèque modulaire d'ensembles finis, et
l'obtention de programmes d'arithmétique réelle exacte à partir d'une
formalisation d'analyse réelle constructive. Même si des progrès
restent encore à obtenir, surtout dans ce dernier cas, ces exemples
mettent en évidence le chemin déjà parcouru.
Björkvall, Emil, and Tim Engqvist. "Faktorer som påverkar beslutsfattande hos svenska riskkapitalbolag : En kvalitativ flerfallstudie om likheter och kontraster av investeringsutfall." Thesis, Luleå tekniska universitet, Institutionen för ekonomi, teknik, konst och samhälle, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-85098.
Повний текст джерелаSweden is dependent upon start-ups and entrepreneurs in order to successfully finance domestic prosperity. Venture capital (VC) companies often play a significant role for new companies when the business is to be developed or expanded. The VC companies support the new companies with a wide range of key features. Such as financing, operational work, strategy or contact networks. Previous studies show that VC-financed companies both grow faster and succeed more often than non VC-backed companies. At the same time, research shows that VC-companies are characterized by great risk-taking and audaciousness in their investments. However, there is less in-depth research on what explicit factors and circumstances result in the successful and unsuccessful investments. The purpose of the study is to create a better understanding of similarities and differences in different investment outcomes and highlight the patterns of their investments. Institutional theory, cognitive bias and modern portfolio theory are the theories used in this study. The survey was conducted through eight semi-structured qualitative interviews with different decision makers from VC-companies in Sweden. In order to gain a deeper understanding of their investment outcomes all company names were re-coded. The obtained results showed that cognitive biases was the primary theory of explanation. However, the institutional theory could also explain the different investment outcomes. The VC-companies were characterized by strong audaciousness with their failed investments and medium audaciousness with the successful. The requirement of success in the VC-industry explains why the companies have tendencies to be audacious in their decision making. A strong confidence is needed when investing in start-up companies since these companies imply a great risk. External societal pressure and internal guidelines strongly influence the investments of the VC. The study identified several industry patterns for both successful and unsuccessful investments. The patterns include syndication of capital and demand for serial entrepreneurs. The study also showed a pattern of venture capitalists explaining their unsuccessful investment due to issues with the entrepreneur or the market. The results suggest that one of the greatest difficulties for VC-companies is to assess the ability of the entrepreneur to develop the company.
Ahn, Ki Yung. "The Nax Language: Unifying Functional Programming and Logical Reasoning in a Language based on Mendler-style Recursion Schemes and Term-indexed Types." PDXScholar, 2014. https://pdxscholar.library.pdx.edu/open_access_etds/2088.
Повний текст джерелаGlondu, Stéphane. "Vers une certification de l'extraction de coq." Paris 7, 2012. http://www.theses.fr/2012PA077089.
Повний текст джерелаThe Coq proof assistant mechanically checks the consistency of the logical reasoning in a proof. It can also be used to develop certified programs. Indeed, Coq uses intemally a typed language derived from lambda-calculus, the calculus of inductive constructions (CIC). This language can be directl; used by a programmer, and a procedure, extraction, allows one to translate CIC programs into more widely used languages such as OCaml, Haskell or Scheme. Extraction is not a mere syntax change: the type System of CIC is very rich, but purely logical entities can appear inside programs, impacting their performance. Extraction erases these logical artefacts as well. In this thesis, we tackle certification of the extraction itself. We have proved its correction in the context of a full formalization of Coq in Coq. Even though this formalization is not exactly Coq, we worked on it with the concrete implementation of Coq in mind. We also propose a new way to certify extracted programs, in the concrete setting of the existing Coq System
Pédrot, Pierre-Marie. "Une dialectica matérialiste." Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCC240.
Повний текст джерелаIn this thesis, we show that the logical translation known as « dialectica » defined by Gödel in 1958 can be expressed in the Curry-Howard correspondance formalism, relating logical proofs to computer programs. In particular, it can be seen as a weak form of delimited control allowing to observe the use of free variables of a term through the stacks against which they are cut. We make this observation formal by simplifying Gödel's original translation, thanks to a linear reformulation due to De Paiva, and expressing it in the Krivine abstract machine. Such a simplification allows for an easy adaptation to the dependently-typed case. Quite a few variants are then defined and scrutinized. In addition, we give a presentation of the call-by-need reduction in a more canonical fashion, based on the use of a heterodox notion of contexts known as closure contexts
Marouf, Manal Abdulkarim Ms. "Simple Groups and Related Topics." CSUSB ScholarWorks, 2015. https://scholarworks.lib.csusb.edu/etd/239.
Повний текст джерелаVial, Pierre. "Opérateurs de typage non-idempotents, au delà du lambda-calcul." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC038/document.
Повний текст джерелаIn this dissertation, we extend the methods of non-idempotent intersection type theory, pioneered by Gardner and de Carvalho, to some calculi beyond the lambda-calculus.- We first present a characterization of head and strong normalization in the lambda-mu calculus (classical natural deduction) by introducing non-idempotent union types. As in the intuitionistic case, non-idempotency allows us to extract quantitative information from the typing derivations and we obtain proofs of termination that are far more elementary than those in the idempotent case. These results leads us to define a small-step variant of the lambda-mu calculus, in which strong normalization is also characterized by means of quantitative methods.- In the second part of the dissertation, we extend the characterization of weak normalization in the pure lambda-calculus to an infinitary lambda-calculus narrowly related to Böhm trees, which was introduced by Klop et al. This gives a positive answer to a question known as Klop's problem. In that purpose, it is necessary to simultaneously introduce a system (system S) featuring infinite types and resorting to an intersection operator that we call sequential, and a validity criterion in order to discard unsound proofs that coinductive grammars give rise to. This also allows us to give a solution to TLCA problem #20 (type-theoretic characterization of hereditary permutations). It is to be noted that those two problem do not have a solution in the finite case (Tatsuta, 2007).- Finally, we study the expressive power of coinductive type grammars, without any validity criterion. We must once more resort to system S and we show that every term is typable in a non-trivial way with infinite types and that one can extract semantical information from those typings e.g. the order (arity) of any lambda-term. This leads us to introduce a method that allows typing totally unproductive terms (the so-called mute terms), which is inspired from first order logic. This result establishes that, in the coinductive extension of the relational model, every term has a non-empty interpretation. Using a similar method, we also prove that system S surjectively collapses on the set of points of this model
Rebout, Maxime. "Une approche catégorique unifiée pour la réécriture de graphes attribués." Toulouse 3, 2008. http://thesesups.ups-tlse.fr/306/.
Повний текст джерелаDue to the new requirements of modern software, researchers in software engineering have created more efficient development methods based on the concept of modeling (for example, the MDA) to control every stage of development. From a theoretical point of view, these methods are based on graphs and graph transformations. The theoretical difficulty lies in adding on these graphs data on which it must be possible to do computations. Our work has focused on developing a mathematical framework to implement these changes. The theories of categories (through the double pushout) and inductive types (very expressive computation functions) allowed us to provide a unified solution to this problem in which a single operation can transform the structure and compute with the attributes. In addition, the usual properties of rewriting systems are checked
Schneider, Jakob. "On ultraproducts of compact quasisimple groups." 2019. https://tud.qucosa.de/id/qucosa%3A74228.
Повний текст джерелаIn dieser Doktorarbeit studiere ich metrische Aspekte von endlichen fast-einfachen Gruppen. Ihre vier Kapitel beschäftigen sich mit vier unterschiedlichen Themenfeldern. Im ersten Kapitel gebe ich eine vollständige Beschreibung des Normalteilerverbandes eines algebraischen Ultraproduktes von universellen endlichen quasieinfachen Gruppen. Im zweiten beschäftige ich mich mit Approximationsfragen für beliebige abstrakte und topologische Gruppen durch Familien von endlichen Gruppen, auf denen eine konjugationsinvariante Norm erklärt ist. Im dritten Kapitel beweise ich, dass die Abbildung auf einem metrischen Ultraprodukt von klassischen Gruppen vom Lie-Typ von unbeschränktem Rang, die von einem beliebigen nicht-trivialen Wort induziert wird, immer surjektiv ist. Dabei verwende ich sowohl kohomologische als auch algebraische Methoden. Im letzten Kapitel beweise ich, dass (einfache) metrische Ultraprodukte von klassischen endlichen Gruppen vom Lie-Typ von unbeschränktem Rang mit unterschiedlicher Körpergröße immer nicht-isomorph sind. Ist die Körpergröße gleich, so können zwei solche Gruppen nur dann isomorph sein, falls sie auch denselben Lie-Typ haben, oder eine vom orthogonalen Typ und die andere vom symplektischen ist.:Introduction 0 Notation, basic definitions, and facts 0.1 Group theory 0.2 Some ring and field theory 0.3 Ultraproducts and norms 1 The normal subgroup lattice of an algebraic ultraproduct 1.1 Introduction 1.2 Auxiliary geometric results 1.3 Relative bounded normal generation in universal finite quasisimple groups 1.4 The lattice of normal subgroups 2 Metric approximation of groups by finite groups 2.1 Introduction 2.2 Preliminaries 2.2.1 On C-approximable abstract groups 2.2.2 On C-approximable topological groups 2.3 On Sol-approximable groups 2.4 On Fin-approximable groups 2.5 On the approximability of Lie groups 3 Word maps are surjective on metric ultraproducts 3.1 Introduction 3.2 Symmetric groups 3.2.1 Power words 3.2.2 The cycle structure of elements from PSL_2(q) 3.2.3 Effective surjectivity of word maps over finite fields 3.2.4 Proof of Theorem 3.1 3.3 Unitary groups 3.3.1 Proof of Theorem 3.3 3.3.2 Further implications 3.3.3 Concluding remarks 3.4 Finite groups of Lie type 3.4.1 The linear case 3.4.2 The case of quasisimple groups of Lie type stabilizing a form 3.4.3 An alternative way of proving Theorem 3.1 using wreath products 4 Isomorphism questions for metric ultraproducts 4.1 Introduction 4.2 Description of conjugacy classes in S_U, GL_U(q), and PGL_U(q) 4.3 Characterization of torsion elements in S_U , GL_U(q), and PGL_U(q) 4.4 Faithful action of S_U and PGL_U(q) 4.5 Centralizers in S_U , GL_U(q), Sp_U(q), GO_U(q), and GU_U(q) 4.6 Centralizers in PGL_U(q), PSp_U(q), PGO_U(q), and PGU_U(q) 4.7 Double centralizers of torsion elements 4.7.1 The case S_U 4.7.2 The case PGL_U(q), PSp_U(q), PGO_U(q), and PGU_U(q) 4.8 Distinction of metric ultraproducts 4.8.1 Computation of e_G(o) when gcd{o,p}=gcd{o,|Z|}=1 4.8.2 Proof of Theorem 4.1 Index of Symbols Index Bibliography