Добірка наукової літератури з теми "Isoform 40p53"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Isoform 40p53".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Isoform 40p53"

1

Katoch, Aanchal, Sachin Kumar Tripathi, Apala Pal, and Saumitra Das. "Regulation of miR-186-YY1 axis by the p53 translational isoform ∆40p53: implications in cell proliferation." Cell Cycle 20, no. 5-6 (February 25, 2021): 561–74. http://dx.doi.org/10.1080/15384101.2021.1875670.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vieler, Maximilian, and Suparna Sanyal. "p53 Isoforms and Their Implications in Cancer." Cancers 10, no. 9 (August 25, 2018): 288. http://dx.doi.org/10.3390/cancers10090288.

Повний текст джерела
Анотація:
In this review we focus on the major isoforms of the tumor-suppressor protein p53, dysfunction of which often leads to cancer. Mutations of the TP53 gene, particularly in the DNA binding domain, have been regarded as the main cause for p53 inactivation. However, recent reports demonstrating abundance of p53 isoforms, especially the N-terminally truncated ones, in the cancerous tissues suggest their involvement in carcinogenesis. These isoforms are ∆40p53, ∆133p53, and ∆160p53 (the names indicate their respective N-terminal truncation). Due to the lack of structural and functional characterizations the modes of action of the p53 isoforms are still unclear. Owing to the deletions in the functional domains, these isoforms can either be defective in DNA binding or more susceptive to altered ‘responsive elements’ than p53. Furthermore, they may exert a ‘dominant negative effect’ or induce more aggressive cancer by the ‘gain of function’. One possible mechanism of p53 inactivation can be through tetramerization with the ∆133p53 and ∆160p53 isoforms—both lacking part of the DNA binding domain. A recent report and unpublished data from our laboratory also suggest that these isoforms may inactivate p53 by fast aggregation—possibly due to ectopic overexpression. We further discuss the evolutionary significance of the p53 isoforms.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lasham, Annette, Nicholas Knowlton, Sunali Y. Mehta, Antony W. Braithwaite, and Cristin G. Print. "Breast Cancer Patient Prognosis Is Determined by the Interplay between TP53 Mutation and Alternative Transcript Expression: Insights from TP53 Long Amplicon Digital PCR Assays." Cancers 13, no. 7 (March 26, 2021): 1531. http://dx.doi.org/10.3390/cancers13071531.

Повний текст джерела
Анотація:
The TP53 gene locus is capable of producing multiple RNA transcripts encoding the different p53 protein isoforms. We recently described multiplex long amplicon droplet digital PCR (ddPCR) assays to quantify seven of eight TP53 reference transcripts in human tumors. Here, we describe a new long amplicon ddPCR assay to quantify expression of the eighth TP53 reference transcript encoding ∆40p53α. We then applied these assays, alongside DNA sequencing of the TP53 gene locus, to tumors from a cohort of New Zealand (NZ) breast cancer patients. We found a high prevalence of mutations at TP53 splice sites in the NZ breast cancer cohort. Mutations at TP53 intron 4 splice sites were associated with overexpression of ∆133TP53 transcripts. Cox proportional hazards survival analysis showed that interplay between TP53 mutation status and expression of TP53 transcript variants was significantly associated with patient outcome, over and above standard clinical and pathological information. In particular, patients with no TP53 mutation and a low ratio of TP53 transcripts t2 to t1, which derive from alternative intron 1 acceptor splice sites, had a remarkably good outcome. We suggest that this type of analysis, integrating mutation and transcript expression, provides a step-change in our understanding of TP53 in cancer.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Steffens Reinhardt, Luiza, Kira Groen, Xiajie Zhang, Brianna C. Morten, Anna Wawruszak, and Kelly A. Avery-Kiejda. "p53 isoform expression promotes a stemness phenotype and inhibits doxorubicin sensitivity in breast cancer." Cell Death & Disease 14, no. 8 (August 8, 2023). http://dx.doi.org/10.1038/s41419-023-06031-4.

Повний текст джерела
Анотація:
AbstractIn breast cancer, dysregulated TP53 expression signatures are a better predictor of chemotherapy response and survival outcomes than TP53 mutations. Our previous studies have shown that high levels of Δ40p53 are associated with worse disease-free survival and disruption of p53-induced DNA damage response in breast cancers. Here, we further investigated the in vitro and in vivo implications of Δ40p53 expression in breast cancer. We have shown that genes associated with cell differentiation are downregulated while those associated with stem cell regulation are upregulated in invasive ductal carcinomas expressing high levels of Δ40p53. In contrast to p53, endogenous ∆40p53 co-localised with the stem cell markers Sox2, Oct4, and Nanog in MCF-7 and ZR75-1 cell lines. ∆40p53 and Sox2 co-localisation was also detected in breast cancer specimens. Further, in cells expressing a high ∆40p53:p53 ratio, increased expression of stem cell markers, greater mammosphere and colony formation capacities, and downregulation of miR-145 and miR-200 (p53-target microRNAs that repress stemness) were observed compared to the control subline. In vivo, a high ∆40p53:p53 ratio led to increased tumour growth, Ki67 and Sox2 expression, and blood microvessel areas in the vehicle-treated mice. High expression of ∆40p53 also reduced tumour sensitivity to doxorubicin compared to control tumours. Enhanced therapeutic efficacy of doxorubicin was observed when transiently targeting Δ40p53 or when treating cells with OTSSP167 with concomitant chemotherapy. Taken together, high Δ40p53 levels induce tumour growth and may promote chemoresistance by inducing a stemness phenotype in breast cancer; thus, targeting Δ40p53 in tumours that have a high Δ40p53:p53 ratio could enhance the efficacy of standard-of-care therapies such as doxorubicin.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Steffens Reinhardt, Luiza, Xiajie Zhang, Kira Groen, Brianna C. Morten, Geoffry N. De Iuliis, Antony W. Braithwaite, Jean-Christophe Bourdon, and Kelly A. Avery-Kiejda. "Alterations in the p53 isoform ratio govern breast cancer cell fate in response to DNA damage." Cell Death & Disease 13, no. 10 (October 28, 2022). http://dx.doi.org/10.1038/s41419-022-05349-9.

Повний текст джерела
Анотація:
AbstractOur previous studies have shown that p53 isoform expression is altered in breast cancer and related to prognosis. In particular, a high ∆40p53:p53α ratio is associated with worse disease-free survival. In this manuscript, the influence of altered Δ40p53 and p53α levels on the response to standard of care DNA-damaging agents used in breast cancer treatment was investigated in vitro. Our results revealed that a high Δ40p53:p53α ratio causes cells to respond differently to doxorubicin and cisplatin treatments. Δ40p53 overexpression significantly impairs the cells’ sensitivity to doxorubicin through reducing apoptosis and DNA damage, whereas Δ40p53 knockdown has the opposite effect. Further, a high Δ40p53:p53α ratio inhibited the differential expression of several genes following doxorubicin and promoted DNA repair, impairing the cells’ canonical response. Overall, our results suggest that the response of breast cancer cells to standard of care DNA-damaging therapies is dependent on the expression of p53 isoforms, which may contribute to outcomes in breast cancer.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Levandowski, Cecilia Blair, T. Jones, Margaret Gruca, Sivapriya Ramamoorthy, Robin Dowell, and Dylan J. Taatjes. "The Naturally Occurring ∆40p53 Isoform Inhibits eRNA Transcription and Enables Context-Specific Regulation During p53 Activation." SSRN Electronic Journal, 2020. http://dx.doi.org/10.2139/ssrn.3624472.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Isoform 40p53"

1

Katoch, Aanchal. "Regulation of Expression of p53 and its Isoform Δ40p53 : Consequences on Cellular Gene Expression". Thesis, 2018. http://etd.iisc.ac.in/handle/2005/4178.

Повний текст джерела
Анотація:
The TP53 tumour suppressor gene encodes for p53 protein which is the frequently altered gene in most of the cancers. p53 protein is activated in response to different stresses and plays major role in maintaining genome integrity by regulating cell cycle and cell survival. It is known that p53 has twelve isoforms generated using alternate splicing, alternate promoters and translation initiation sites. Out of these isoforms ∆40p53 (also known as ∆N-p53/p47) is the only translational isoform of p53, produced from the same mRNA by using an ‘internal ribosome entry site’ (IRES). From our laboratory, it has been shown earlier that p53 mRNA has two IRES elements, IRES1 and IRES2. IRES2 mediated translation of ∆40p53 is maximum during G1-S phase and that of full length p53 (p53FL) by IRES1 is maximum in G2-M phase. p53 gene expression levels are regulated at many levels, including transcription, splicing, mRNA transport, stability and protein translation. The focus of our laboratory is on the translational control of p53. Previous studies from our laboratory has demonstrated PTB (polypyrimidine binding protein), Annexin A2 (ANXA2), PTB-associated splicing factor (PSF) and Death-associated protein 5 (DAP5) to be the crucial ITAFs (IRES trans acting factors) for IRES mediated translation regulation of p53 and ∆40p53 under different stress conditions. PTB binds to the p53 mRNA IRESs and enhances the translation of p53 isoforms by translocating from nucleus to cytoplasm upon doxorubicin-induced DNA damage. ANXA2 and PSF proteins, the other p53 ITAFs, interact with p53 IRESs ex vivo in a stress-induced manner, showing greater association with the IRESs upon ER stress (thapsigargin treatment). DAP5 was demonstrated to bind to p53 IRESs and regulate the IRES2 mediated expression of Δ40p53.The tightly regulated p53 in turn regulates different target genes. p53 is also known to regulate miRNAs followed by their respective target genes and hence different cellular outcome. The present study focuses on translational regulation of p53 and its isoform ∆40p53 by binding of proteins and miRNAs at the untranslated regions (UTRs). Further, the effect of the differential expression of these two isoforms on cellular gene expression mediated by miRNA is also studied. Translation regulation of p53 involves interaction of proteins and microRNAs with the 5’and 3’ UTR of p53 mRNA. Earlier we have shown that PTB and ANXA2 interact with the 5’UTR of p53 mRNA to regulate its expression. Here we have studied the role of 3’UTR in regulating the expression of the two isoforms, that is, full-length p53 (p53FL) and ∆40p53. We have demonstrated that both PTB and ANXA2 bind to p53 3’UTR and delineated the specific binding regions within 3’UTR that contribute to these interactions. Knockdown of both PTB and ANXA2 led to significant decrease in translation of p53 isoforms., mediated by their interaction to the 5’UTR/3’UTR. Interestingly, we have observed that the addition of p53 3’UTR to the constructs led to a decrease in the expression of both reporter and p53 isoforms, indicating that microRNAs binding to 3’UTR might be playing a role in this regulation. Further, we have explored the role of possible interplay between protein and microRNAs in the 3’UTR mediated translational control of p53. Interestingly, PTB showed some overlapping binding regions in the p53 3′UTR with some miRNAs. In order to understand the interplay between PTB and miRNAs different approaches were taken. Firstly, after partial silencing of PTB, increase in the association of Ago-2 complex with p53 mRNA was observed. Secondly, this interplay was also observed under DNA damage (doxorubicin treatment), where PTB is known to be translocated to the cytoplasm from the nucleus. Under DNA damage there was decreased association of p53 mRNA with Ago-2 and vice versa association with PTB. So this increased binding of p53 mRNA with PTB under DNA damage suggests that there is interplay between miRNAs and PTB at the 3′UTR under normal and stress conditions like DNA damage. Interestingly, PTB showed some overlapping binding regions in the p53 3′UTR with miR-1285. In fact, knockdown of miR-1285 as well as expression of p53 3′UTR with mutated miR-1285 binding sites resulted in enhanced association of PTB with the 3′UTR and decreased association with Ago-2, which provides mechanistic insights of this interplay. Furthermore, to understand the physiological relevance, we curated single nucleotide variations (SNVs) in the p53 3′UTR, at the miRNA binding sites from literature. We investigated the effect of these SNVs on the 3′UTR mediated regulation of p53 expression by using reporter gene constructs containing wild type 3′UTR (Fluc-3′UTR WT) or 3′UTRs harbouring individual SNVs (Fluc-3′UTR SNV 93/287/737/806) in H1299 and A549 cells. SNV806 displayed highest reporter activity compared to the WT. Interestingly, in vitro experiments in the current study indicates that PTB binding to the 3′UTR with SNV 806 is higher compared to WT 3′UTR, thus suggesting a possibility of miR-1285 and PTB having common binding regions. Taken together, the results provide a plausible molecular basis of how the interplay between miRNAs and the PTB protein at the 3′UTR can play pivotal role in fine tuning the expression of the two p53 isoforms. Human cancer cells are often associated with a widespread decrease in miRNAs, which shows a crosstalk between p53 tumour suppressor pathway and miRNA regulation system. It is known that the p53 isoforms are differentially regulated and their differential expression leads to differential downstream target gene expressions, which can be a direct regulation or regulation mediated by miRNAs. The transcription of some pri-miRNAs is regulated by p53 through binding to consensus sites in their promoters. Also, p53 modulates miRNA processing through interaction with Drosha-p68 complex. miRNAs can target various transcripts, so they are involved in diverse processes such as cellular differentiation, metabolism and cell proliferation. Role of full length p53 in controlling expression of miRNAs is established but the role of ∆40p53 in regulating the p53 responsive miRNAs was not known. So here we have investigated the effect of differential expression of the two isoforms individually or both the isoforms together on the downstream miRNAs. Out of several differentially regulated miRNAs some miRNAs were found to be commonly regulated by both the isoforms individually and with their combination. However, out of these some were unique to the individual isoform. In order to understand the functions of ∆40p53 alone the miRNAs either uniquely regulated or the ones which showed the maximum fold change under ∆40p53 expression were short-listed for further investigation. Results from the microarray of the miRNA showed that there are different miRNAs whose expressions are regulated under ∆40p53 expression. The network analysis for ∆40p53 revealed its involvement in different cellular functions. ∆40p53 upregulated miRNAs which are involved in pathways viz. cell cycle regulation, apoptosis, cell proliferation, senescence etc. Interestingly ∆40p53 showed antagonistic regulation of miR-186-5p as compared to the dataset obtained with either p53 alone or the combination of both the isoforms. Also this miRNA is known to be involved in cell proliferation, senescence and cell cycle arrest pathways. Hence we pursued miR-186-5p for further characterization under ∆40p53 expression. In this study we focused on miR-186-5p mediated effect of ∆40p53 in cell proliferation. One of the established targets of miR-186-5p is YY1, which is also known to be involved in cell proliferation. Our results showed significant decrease in YY1 mRNA levels under the expression of ∆40p53. Further assays with anti-miR-186 established the interdependence of ∆40p53−miR-186-5p−YY1−cell proliferation. This unravels that ∆40p53 can also regulate cellular fate independent of p53FL. Furthermore, p53 and ∆40p53 are known to be deregulated in different stress conditions like DNA damage, endoplasmic reticulum stress, oncogene-induced senescence and cancer. We have explored the effect of nutrient-deprivation mediated translational regulation of p53 mRNA using glucose depletion as a model system. We found scaffold/matrix attachment region-binding protein 1 (SMAR1), a predominantly nuclear protein is abundant in the cytoplasm under glucose deprivation. SMAR1 knockdown decreased p53 IRES activity in normal conditions and under glucose deprivation. We also observed concomitant effect of SMAR1 knockdown on the p53 and Δ40p53 target genes involved in cell-cycle arrest, metabolism and apoptosis. In addition, rescue experiments ex vivo shows that the induction of p53 isoform levels on nutrient deprivation is reversible and also their targets show similar reversal in their mRNA levels. This study provides a physiological insight into the regulation of this critical tumour suppressor in nutrient starvation and also the downstream transcriptional targets. Interestingly, we also observed that SMAR1 can interact with 3’UTR with binding sites common to PTB, which results in interplay between the two proteins in vitro. Individual knockdown of these proteins decreased the p53 expression but silencing of both proteins together showed further decreases in the expression. These results suggest yet another interplay involving PTB with SMAR1 at the 3’UTR under different stress conditions. Taken together this study unfolds complex mechanisms by which p53 and Δ40p53 are regulated in different stress conditions; DNA damage and glucose starvation by proteins like PTB and SMAR1 respectively. This study also indicates that for the fine tuning of the regulation of p53 isoforms interplay between protein and miRNAs is required. Differential expression of miRNAs under p53 isoforms expression tells us the importance of these isoforms in regulation of miRNAs. It also contributes to the novel role of Δ40p53 in regulating miRNAs independent of p53 and hence consequent changes in cellular fate.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії