Добірка наукової літератури з теми "Isobutane Oxidation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Isobutane Oxidation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Isobutane Oxidation"

1

Mitran, Gheorghita, Ioan-Cezar Marcu, Tatiana Yuzhakova, and Ioan Sandulescu. "Selective oxidation of isobutane on V-Mo-O mixed oxide catalysts." Journal of the Serbian Chemical Society 73, no. 1 (2008): 55–64. http://dx.doi.org/10.2298/jsc0801055m.

Повний текст джерела
Анотація:
Four V-Mo-O mixed metal oxides were prepared, characterized and tested for the selective oxidation of isobutane in the temperature range 350-550?C, at atmospheric pressure. Isobutane was mainly oxidized to isobutene and carbon oxides. The systems with low vanadium contents showed low activities but high isobutene selectivities, while the systems with high vanadium contents showed high activities with high carbon oxides selectivities. The effects of temperature, contact time and the molar ratio iso-butane to oxygen on the conversion of isobutane and the selectivity of the oxidation were studied.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vogin, Bernard, François Baronnet, and Gérard Scacchi. "Étude chimique et cinétique de l'oxydation homogène en phase gazeuse d'alcanes légers. I. Isobutane." Canadian Journal of Chemistry 67, no. 5 (May 1, 1989): 759–72. http://dx.doi.org/10.1139/v89-115.

Повний текст джерела
Анотація:
A literature survey on the homogeneous gas-phase oxidation of light alkanes shows that despite a rather high number of papers there are still, even in the case of isobutane, an important number of unresolved questions, which makes the writing of a reaction scheme rather difficult. To obtain more reliable experimental data, we have studied the homogeneous gas-phase oxidation of isobutane in a conventional static system, at 310 and 340 °C and subatmospheric pressure. This investigation is chiefly aimed at identifying and measuring the major primary products of the reaction. A chain radical scheme based on the primary products and on estimation of the rate constants of the elementary steps by the methods of Thermochemical Kinetics is put forward to interpret our experimental results. Two major reaction routes appear, one corresponding to the formation of isobutene and the other to the formation of isobutene oxide. The conclusions of the present investigation and suggestions for further developments are also mentioned. Keywords: oxidation, chemical kinetics, reaction mechanism, isobutane.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Guan, Jingqi, Haiyan Xu, Shubo Jing, Shujie Wu, Yuanyuan Ma, Yanqiu Shao, and Qiubin Kan. "Selective oxidation of isobutane and isobutene over vanadium phosphorus oxides." Catalysis Communications 10, no. 3 (December 2008): 276–80. http://dx.doi.org/10.1016/j.catcom.2008.09.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Takita, Yusaku, Qing Xia, Kayo Kikutani, Kazuya Soda, Hideaki Takami, Hiroyasu Nishiguchi, and Katsutoshi Nagaoka. "Anaerobic oxidation of isobutane." Journal of Molecular Catalysis A: Chemical 248, no. 1-2 (April 2006): 61–69. http://dx.doi.org/10.1016/j.molcata.2005.12.012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hikazudani, Susumu, Kayo Kikutani, Katsutoshi Nagaoka, Takanori Inoue, and Yusaku Takita. "Anaerobic oxidation of isobutane." Applied Catalysis A: General 345, no. 1 (July 2008): 65–72. http://dx.doi.org/10.1016/j.apcata.2008.04.022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bergfeldt, Trevor M., William L. Waltz, Xiangrong Xu, Petr Sedlák, Uwe Dreyer, Hermann Möckel, Jochen Lilie, and John W. Stephenson. "Photobehavior of aqueous uranyl ion and photo-oxygenation of isobutane using light from the visible region." Canadian Journal of Chemistry 81, no. 3 (March 1, 2003): 219–29. http://dx.doi.org/10.1139/v03-026.

Повний текст джерела
Анотація:
The photochemical and photophysical behavior of the aqueous uranyl ion [UO2(H2O)5]2+ has been studied under the influence of visible light and with added perchloric acid over the range of 0.01–4 M. In the presence of 2-methylpropane (isobutane), photo-oxygenation of isobutane occurs to yield, as the major product, 2-methyl-2-propanol (tert-butyl alcohol) along with lesser amounts of 2-methyl-2-propene (isobutene) and other C1–C8 products. The quantum yield for formation of tert-butyl alcohol is independent of light intensity at the irradiation wavelength of 415 nm and of uranyl concentration, but it increases from 0.016 ± 0.001 at 0.01 M HClO4 (pH 2) to 0.13 ± 0.01 at 4 M HClO4. The emission spectrum from the electronically excited uranyl ion and the associated quantum yields have been measured in the presence and absence of isobutane, as a function of added perchloric acid. While in both cases the shape of the spectrum remains invariant, the quantum yields increase with increasing perchloric acid concentration. The strong dependence on added perchloric acid is interpreted within the context of the presence and interconversion of two electronically excited species, an acid form, *[UO2(H2O)5]2+, and a base form, *[UO2(H2O)n(OH)]+. It is proposed that both forms react with isobutane to give a tert-butyl radical, and that oxidation of coordinated aqua ligands occur, the latter generating a hydroxyl radical whose reaction with isobutane rapidly leads also to a tert-butyl radical. The reaction of this alkyl radical with ground-state [UO2(H2O)5]2+ then gives rise to the stable tert-butyl alcohol product and reduced forms of uranyl ion. Based upon the values of the quantum yields and of excited-state lifetime measurements reported in the literature, a comprehensive mechanism has been developed in a quantitative manner to provide calculated values of the rate constants for the individual mechanistic steps. The calculated rate constants provide a basis to calculate the values of quantum yields for emission and chemical reaction, as well as for lifetimes, that agree very satisfactorily with the experimental values over a 400-fold concentration change in added perchloric acid.Key words: photo-oxidation, photo-oxygenation, uranyl ion, isobutane, tert-butyl alcohol, lifetime, quantum yield, acid–base dissociation.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Vogin, B., F. Baronnet, and G. Scacchi. "Étude chimique et cinétique de l'oxydation homogène en phase gazeuse d'alcanes légers. II. Propane et mécanisme généralisé." Canadian Journal of Chemistry 69, no. 1 (January 1, 1991): 43–61. http://dx.doi.org/10.1139/v91-008.

Повний текст джерела
Анотація:
An experimental study of the homogeneous gas phase oxidation of propane at 350 °C and subatmospheric pressure has been performed in order to identify and to measure the major primary products of the reaction. The experimental results have been interpreted by a chain radical mechanism, deduced from these results and from estimates of the rate constants for the elementary steps obtained by the methods of Thermochemical Kinetics. The proposed elementary steps are discussed and compared with the experimental observations. The results that we have obtained and their interpretation are compared with a similar detailed investigation performed on the oxidation of isobutane. As in the case of isobutane, two parallel reaction pathways appear, a dominant one leading to the conjugated alkene (propylene) and another one leading to the epoxide of this olefin (here propylene oxide). The oxidation of isobutane and that of propane appear to be quite similar, which corroborates the results that we have obtained. Key words: oxidation, kinetics, reaction mechanism, propane, thermochemical kinetics.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

SATO, Minoru, Hiroaki SHIGEOKA, and Yoshio NISHIMOTO. "Catalytic Oxidation of Flammable Refrigerant Isobutane." Proceedings of the JSME annual meeting 2004.5 (2004): 193–94. http://dx.doi.org/10.1299/jsmemecjo.2004.5.0_193.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

SATO, Minoru, Hiroaki SHIGEOKA, and Yoshio NISHIMOTO. "Catalytic Oxidation of Hydrocarbon Refrigerant Isobutane." Transactions of the Japan Society of Mechanical Engineers Series B 72, no. 724 (2006): 2992–98. http://dx.doi.org/10.1299/kikaib.72.2992.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zhang, Li, Sébastien Paul, Franck Dumeignil, and Benjamin Katryniok. "Selective Oxidation of Isobutane to Methacrylic Acid and Methacrolein: A Critical Review." Catalysts 11, no. 7 (June 25, 2021): 769. http://dx.doi.org/10.3390/catal11070769.

Повний текст джерела
Анотація:
Selective oxidation of isobutane to methacrolein (MAC) and methacrylic acid (MAA) has received great interest both in the chemical industry and in academic research. The advantages of this reaction originate not only from the low cost of the starting material and reduced process complexity, but also from limiting the use of toxic reactants and the production of wastes. Successive studies and reports have shown that heteropolycompounds (HPCs) with Keggin structure (under the form of partially neutralized acids with increased stability) can selectively convert isobutane to MAA and MAC due to their strong and tunable acidity and redox properties. This review hence aims to discuss the Keggin-type HPCs that have been used in recent years to catalyze the oxidation of isobutane to MAA and MAC, and to review alternative metal oxides with proper redox properties for the same reaction. In addition, the influence of the main reaction conditions will be discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Isobutane Oxidation"

1

Jing, Fangli. "Innovative Keggin-type polyoxometalate-based catalysts for selective oxidation of isobutane into methacrylic acid." Thesis, Lille 1, 2012. http://www.theses.fr/2012LIL10019/document.

Повний текст джерела
Анотація:
L'oxydation sélective de l'isobutane fournit un voie simple pour produire de l'acide méthacrylique. Les catalyseurs à base de Keggin type polyoxométalates (NH4)3HPMo11VO40 (APMV) sont utilisés pour catalyser la réaction en raison de leur acidité contrôlable et propriété rédox. Mais la faible surface limite les performances catalytiques. Dans ce travail, nous avons essayé de préparer le catalyseur avec surface haute et d'étudier les effets des propriétés physochemical sur la performance catalytique.APMV ont d'abord été pris en charge sur SiO2 commerciale, SBA-15 et ZrO2/SBA-15 et Cs3PMo12O40 (CPM). La surface de catalyseurs a augmenté après l'appui, mais la stabilité thermique ont été fortement compter sur l'appui. Acidité joué un rôle important dans l'activation des liaisons C-H. L'échantillon APMV/CPM a montré la plus forte force acide et a donné la meilleure conversion de l'isobutane (15,3%). Le contenu de APMV sur le CPM a ensuite été optimisé. La dégradation partielle de catalyseur a encore été observée. Le V a été expulsé de l'unité Keggin dans des conditions réactionnelles et réduit par l'isobutane. Les espèces Cs ont été enrichies à la surface. Le 40APMV/CPM contenait le montant maximum de sites acides et a donné les meilleures performances catalytiques. Il a également affiché une bonne stabilité en 132 h test. Les sels Csx(NH4)3-xHPMo11VO40 ont été préparé pour étudier les effets des espèces Cs surface. La porosité montré différence évidente que le contenu changé Cs, ainsi que l'acidité et de propriété rédox. Élément Cs est favorable pour empêcher l'expulsion de V de structure primaire. Enfin, les expériences d'optimisation du nombre Cs 1,7 à 2,5 a été suggéré
Selective oxidation of isobutane supplies a simply and friendly to environment way to produce methacrylic acid. The Keggin-type polyoxometalates-based catalysts (NH4)3HPMo11VO40 (APMV) are used to catalyze the reaction as their controllable acidity and redox properties. But the low surface area restricts the catalytic performances. In this work, we tried to prepare the catalyst with high surface and study the effects of physochemical properties on catalytic performance.APMV were firstly supported on commercial SiO2, SBA-15 and ZrO2/SBA-15 and Cs3PMo12O40 (CPM). The surface area of catalysts increased after supporting, while the thermal stability were strongly depended on the support. Acidity played a significant role in activating the C-H bonds. The sample APMV/CPM showed the strongest acidic strength and further gave the best conversion of isobutane (15.3%) and maximum yield (8.0%) of the desired products. The content of APMV on CPM was then optimized. The partial degradation of catalyst was still observed. The V was expelled from Keggin unit under reaction conditions by surface analysis and reduced by isobutane. The Cs species were enriched on the surface. The sample 40APMV/CPM contained the maximum amount of acidic sites and gave the best catalytic performances. It also displayed good stability in 132 h run. The mixed salts Csx(NH4)3-xHPMo11VO40 were prepared to study the effects of surface Cs species. The porosity showed obvious difference as Cs content changed, as well as the acidity and redox properties. Cs element is favor to prevent V expelling from primary structure. Finally the optimization experiments in the range of Cs number from 1.7 to 2.5 was suggested
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Weber, Daniel [Verfasser], and B. [Akademischer Betreuer] Kraushaar-Czarnetzki. "Oxidation von Isobutan und Isobuten zu Methacrolein an einem neuen Mo-basierten Mischoxid-Katalysator / Daniel Weber ; Betreuer: B. Kraushaar-Czarnetzki." Karlsruhe : KIT Scientific Publishing, 2019. http://d-nb.info/1186144769/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mazumder, Baishakhi. "Oxidative dehydrodimerisation and aromatisation of isobutene on Bi₂O₃-SnO₂." Thesis, University of Liverpool, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.250237.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lilic, Aleksandra. "Study of catalysts for isobutene and alcohols transformation in view of biomass valorization." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1084/document.

Повний текст джерела
Анотація:
Ce travail de thèse se focalise sur l'impact des propriétés acido-basiques des catalyseurs (quantité et force des sites) dans la production d’acroléine par couplage oxydant d’alcools en phase gazeuse. L'influence du rapport entre site acides et sites basiques des catalyseurs a été étudiée dans la condensation aldolique de l'acétaldéhyde et du formaldéhyde en acroléine, réalisée en conditions oxydantes. Les données et corrélations obtenues ont donné des informations indispensables à l’identification des paramètres qui doivent être modifiés afin d'améliorer la sélectivité en acroléine. La première réaction du procédé implique l'oxydation du méthanol et de l'éthanol respectivement en formaldéhyde et acétaldéhyde sur un catalyseur rédox de type FeMoOx.Ensuite, l'aldolisation croisée des deux aldéhydes et la déshydratation en acroléine sont effectuées sur des catalyseurs acido-basiques.Les alcools impliqués dans ce procédé pouvant dériver de la biomasse, cette nouvelle voie de production d'acroléine présente un intérêt élevé puisqu'elle peut remplacer la production actuelle d'acroléine basée sur des ressources fossiles (aujourd'hui l’acroléine est produite industriellement par oxydation du propylène).Le catalyseur optimal doit présenter des caractéristiques amphotères avec une quantité similaire de sites basiques et acides. Une présence modérée et équilibrée de sites acides et basiques améliore le rendement en acroléine et déplace à plus haute température la production des oxydes de carbone. Parmi tous les catalyseurs étudiés, et grâce à ses propriétés acido-basiques spécifiques, MgO supporté sur silice a été identifié comme étant le meilleur catalyseur pour la condensation aldolique des aldéhydes en acroléine en conditions oxydantes
The present work focuses on the impact of the amount and strength of acidic and/or basic sites on the yield of acrolein produced by alcohols oxidative coupling in gas phase. The influence of acid/base ratio of catalytic sites has been studied in the aldol condensation of acetaldehyde and formaldehyde to acrolein performed in oxidizing conditions. The obtained data and correlations supplied valuable information to understand which parameters have to be modified to improve the acrolein selectivity. The first reaction of the process implies methanol and ethanol oxidation respectively to formaldehyde and acetaldehyde on a FeMoOx redox catalyst. Then the cross-aldolization of the two aldehydes and the dehydration to acrolein is performed on acid/base catalysts. Because the alcohols involved in this process can be bio-sourced, this new route to produce acrolein presents a very high interest, since it can replace the current fossil-based acrolein production (nowadays industrially produced by oxidation of propylene). The optimal catalyst should present amphoteric features with a similar amount of both basic and acidic sites. A moderate and balanced presence of acidic and basic sites improves the acrolein yield and the production of carbon oxides is significantly increased only at high temperature. Among all studied catalysts, MgO supported on silica has been identified as the best catalyst for aldol-condensation of aldehydes to acrolein in oxidizing conditions thanks to a given ratio of basic to acidic sites
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Almukhlifi, Hanadi A. "Nanoparticle effects on partial and complete oxidation of isobutane over metal oxide catalysts." Thesis, 2016. http://hdl.handle.net/1959.13/1311957.

Повний текст джерела
Анотація:
Research Doctorate - Doctor of Philosophy (PhD)
Gold nanoparticles, derived from preformed n-alkanethiolate-stabilised gold nanoparticles, have been supported on metal oxide catalysts and pyrovanadates for the complete oxidation of isobutane and the oxidative dehydrogenation of isobutane to isobutene, respectively. The initial adsorption of gold nanoparticles on metal oxides depends on the length of the alkyl carbon chain and the surface area of the metal oxide, and also forms alkyl-sulfoxide and -sulfone species. On thermolysis (340°C) to decompose the organic alkylthiolate ligands, residual adsorbed sulfate (0.2-0.3 wt%) remains on the catalyst surface. TEM/STEM studies have shown that the sizes of gold nanoparticles, originally 1.8-2.0 nm, increase in diameter following adsorption and thermolysis. This depends on the surface area of the support. n-Hexanethiolate-stabilised gold nanoparticles were used to obtain 5 wt% Au nanoparticles supported on β-MnO₂, α-Fe₂O₃, Co₃O₄ and NiO. The oxides, with and without gold nanoparticles, were investigated for the complete oxidation of isobutane. Some effect from residual sulfate was detected, although this depended on the metal oxide. TEM/STEM and XRD studies were used to monitor the sizes of the gold nanoparticles, which were 2-4 nm in size. Analogous studies, with and without gold nanoparticles, on supported metal oxides of the type MOx/γ-Al₂O₃ and MOx/CeO₂ (M = Mn, Fe, Co, Ni), were studied for the complete oxidation of isobutane. Gold 4f XPS studies showed that it was likely that gold nanoparticles were the key to the oxidation catalysis and not any higher oxidation states of gold. The transition metal pyrovanadates, M₂V₂O₇ (MII = Mn, Co, Ni, Cu and Zn), again with and without gold nanoparticles (5 wt%) have been investigated for the oxidative dehydrogenation of isobutane to isobutene from 300-450°C under reducing conditions (isobutane:O₂ = 20:1). Pyrovanadate reduction occurred to produce V(IV) and/or V(III) products that depended on the identity of M(II) and the presence of gold nanoparticles. The conversions reached as high as 11% and 16% in the absence and presence of gold nanoparticles, and the selectivities to isobutene were as high as 40-50%. Gold 4f XPS studies showed that the highest yields of isobutene correlated with a lower Au(I) content. Co₂VO₄ and ZnV₂O₄ were also found to be active catalysts for this reaction.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Almukhlifi, Hanadi. "The effects of gold nanoparticles on isobutane oxidation by phosphopolyoxomolybdates and metal oxides." Thesis, 2012. http://hdl.handle.net/1959.13/933148.

Повний текст джерела
Анотація:
Masters Research - Master of Philopophy (MPhil)
This thesis describes a new approach for the preparation of oxidation catalysts that contain pure gold nanoparticles on their surfaces and within their pore structures. The prepared gold nanoparticles were loaded onto phosphopolyoxomolybdate and metal oxide surfaces and the resulting catalysts were used for the partial and complete oxidation of isobutane. The process involved the initial formation of n-hexanethiol-stabilised gold nanoparticles, followed by addition of a solution of the stabilised gold nanoparticles in n-hexane to the solid catalyst and allowing adsorption to occur. Following this, thermolysis converted the n-hexanethiolate-stabilised gold nanoparticles to pure gold nanoparticles loaded on the catalyst surface by decomposition of the thiolate ligand from the gold nanoparticle surface.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cheng, Chih-Hsiang, and 鄭至翔. "Removal of organic compounds in spent acid from isobutene/olefinalkylation process by electrochemical oxidation." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/64399078439458452605.

Повний текст джерела
Анотація:
碩士
雲林科技大學
化學工程與材料工程研究所
97
In this study the electrochemical oxidation method is employed todispose the spent acid from isobutene/olefin alkylation process. The spentacid produced in the laboratory is by means of passing a butene streamthrough concentrated sulfuric acid, of which organic compoundsconcentration is 10970-23770 mg/L. Effects of operating parameters onthe performance of removal of organic compounds in spent acid havebeen investigated, including electrode potential, reaction temperature,sulfuric acid concentration and oxygen dosage. The removal percentageof TOC reaches 58% under the conditions of electrode potential = 5V, T =298 K, O2 = 120 ml/min and H2SO4 = 96 wt% after the duration of 12 hrs.The phenomenon observed is attributed to the oxidizing agentelectrogenerated in the cathode, wherein the oxygen is reduced intohydrogen peroxide. The oxygen gas is believed to mainly derive fromwater electrolysis in the anode. In another respect, the degradation oforganic compounds in spent acid using Electro-Fenton method has alsobeen conducted. The removal percentage of organic compounds is merely%. The observation may be explained by the reduction of ferrous iron inthe cathode, which would block some active sites for electrogeneration ofhydrogen peroxide.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Taubert, Thomas. "Festbettreaktor vs. Mikrostrukturreaktor am Beispiel der oxidativen Dimerisierung von Isobuten /." 2006. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=016700298&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Taubert, Thomas [Verfasser]. "Festbettreaktor vs. Mikrostrukturreaktor am Beispiel der oxidativen Dimerisierung von Isobuten / von Thomas Taubert." 2006. http://d-nb.info/98931037X/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Isobutane Oxidation"

1

Cavani, Fabrizio, Clara Comuzzi, Giuliano Dolcetti, Richard G. Finke, Arianna Lucchi, Ferruccio Trifirò, and Alessandro Trovarelli. "The Catalytic Activity of Wells—Dawson and Keggin Heteropolyoxotungstates in the Selective Oxidation of Isobutane to Isobutene." In ACS Symposium Series, 140–54. Washington, DC: American Chemical Society, 1996. http://dx.doi.org/10.1021/bk-1996-0638.ch010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fan, Li, Takashi Watanabe, and Kaoru Fujimoto. "Supercritical-phase oxidation of isobutane to t-butanol by air." In Natural Gas Conversion V, Proceedings ofthe 5th International Natural Gas Conversion Symposium,, 581–86. Elsevier, 1998. http://dx.doi.org/10.1016/s0167-2991(98)80494-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sultan, M., S. Paul, and D. Vanhove. "Kinetic effects of chemical modifications of PMo12 catalysts for the selective oxidation of isobutane." In Studies in Surface Science and Catalysis, 283–90. Elsevier, 1999. http://dx.doi.org/10.1016/s0167-2991(99)80158-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mizuno, Noritaka, Wonchull Han, Tetsuichi Kudo, and Masakazu Iwamoto. "Direct oxidation of isobutane into methacrylic acid over Cs, Ni, and V-substituted H3PMo12O40 heteropoly compounds." In 11th International Congress On Catalysis - 40th Anniversary, Proceedings of the 11th ICC, 1001–10. Elsevier, 1996. http://dx.doi.org/10.1016/s0167-2991(96)80311-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cavani, F., R. Mezzogori, A. Pigamo, and F. Trifirò. "Modification of redox and catalytic properties of Keggin-type, Sb-doped P/Mo polyoxometalates in the selective oxidation of isobutane to methacrylic acid: control of preparation conditions." In Studies in Surface Science and Catalysis, 141–52. Elsevier, 2001. http://dx.doi.org/10.1016/s0167-2991(01)80144-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Calvert, Jack, Abdelwahid Mellouki, John Orlando, Michael Pilling, and Timothy Wallington. "Rate Coefficients and Mechanisms for the Atmospheric Oxidation of the Alcohols." In Mechanisms of Atmospheric Oxidation of the Oxygenates. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780199767076.003.0005.

Повний текст джерела
Анотація:
The presence of alcohols in the atmosphere is attributable to natural and anthropogenic sources (e.g., Graedel, 1978). They are released into the atmosphere as a result of their use as fuels (e.g., methanol, ethanol), fuel additives (e.g., ethanol), solvents (e.g., ethanol, propanol) and as starting materials or intermediates for organic synthesis in a large number of industries (e.g., isobutanol, isopentanol, hexylene glycol). Vegetation also provides a significant source of alcohols to the atmosphere (Kesselmeier and Straudt, 1999; Fall, 2003). A number of saturated and unsaturated alcohols have been identified to be biogenically emitted (e.g., methanol, ethanol, methylbutenol, linalool, Z-hex-3-en-1-ol “leaf alcohol”). High ambient concentrations of certain alcohols have been measured in some areas, up to 68 ppb for ethanol in Porto Alegre, Brazil (Grosjean et al., 1998a) and up to 3 ppb for 2-methyl-3-buten-2-ol in the Colorado mountains (Goldan et al., 1993). Amore complete description of the emission sources and ambient concentrations of alcohols is given in chapter I. Reaction with OH radicals is the dominant atmospheric loss process for the saturated alcohols while reactions with NO3, O3, and photolysis are negligible.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Raybold, T. M., and M. C. Huff. "Catalytic oxidative dehydrogenation of isobutane in a Pd membrane reactor." In Studies in Surface Science and Catalysis, 501–7. Elsevier, 1997. http://dx.doi.org/10.1016/s0167-2991(97)81011-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nekrasov, N. V., N. A. Gaidai, Yu A. Agafonov, S. L. Kiperman, V. Cortés Corberán, and M. F. Portela. "Transient response studies of isobutane oxidative dehydrogenation over molybdenum catalysts." In Studies in Surface Science and Catalysis, 1901–6. Elsevier, 2000. http://dx.doi.org/10.1016/s0167-2991(00)80479-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hiltner, H., and G. Emig. "Oxidative coupling of isobutene in a two step process." In Studies in Surface Science and Catalysis, 593–602. Elsevier, 1997. http://dx.doi.org/10.1016/s0167-2991(97)81021-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Belomestnykh, I. P., and G. V. Isaguliants. "Oxidative alkylation of isobutene, propene and toluene with methanol." In Studies in Surface Science and Catalysis, 2639–44. Elsevier, 2000. http://dx.doi.org/10.1016/s0167-2991(00)80868-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Isobutane Oxidation"

1

"THE ANALYSIS OF LITERARY AND EXPERIMENTAL STUDIES WHEN DEVELOPING THE THEORETICAL BASES OF THE PROCESS OF OXIDATION OF ISOBUTENE ON OXIDIC CATALYSTS." In Advanced Studies in Science: Theory and Practice. Global Partnership on Development of Scientific Cooperation LLC, 2015. http://dx.doi.org/10.17809/14(2015)-19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Isobutane Oxidation"

1

Lee, Ivan C., Jeffrey G. St. Clair, and Adam S. Gamson. Catalytic Oxidative Dehydration of Butanol Isomers: 1-Butanol, 2-Butanol, and Isobutanol. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada550017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії