Добірка наукової літератури з теми "Irradiation par ion"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Irradiation par ion".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Irradiation par ion"
Han, X. G., J. F. Lv, Y. Z. Chen, Y. C. Shan, and J. J. Xu. "Influence of irradiation intensity on corrosion properties of microarc oxidation film on AZ31 magnesium alloy with HIPIB." Anti-Corrosion Methods and Materials 66, no. 4 (July 1, 2019): 418–24. http://dx.doi.org/10.1108/acmm-10-2018-2007.
Повний текст джерелаGnaser, Hubert. "Nanostructures on surfaces by ion irradiation." Pure and Applied Chemistry 83, no. 11 (July 17, 2011): 2003–25. http://dx.doi.org/10.1351/pac-con-11-03-05.
Повний текст джерелаMilosavljević, Srdjan, Djordje Lazarević, Koviljka Stanković, Milić Pejović, and Miloš Vujisić. "Effects of Ion Beam Irradiation on NanoscaleInOxCooper-Pair Insulators." International Journal of Photoenergy 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/236823.
Повний текст джерелаJung, Chan-Hee, In-Tae Hwang, Ho-Je Kwon, Young-Chang Nho, and Jae-Hak Choi. "Patterning of cells on a PVC film surface functionalized by ion irradiation." Polymers for Advanced Technologies 21, no. 2 (April 12, 2009): 135–38. http://dx.doi.org/10.1002/pat.1437.
Повний текст джерелаSharma, Swati, Mausumi Mukhopadhyay, and Zagabathuni Venkata Panchakshari Murthy. "Photolytic degradation of chlorophenols from industrial wastewaters by organic oxidants peroxy acetic acid, para nitro benzoic acid and methyl ethyl ketone peroxide: identification of reaction products." Water Science and Technology 69, no. 6 (January 2, 2014): 1259–66. http://dx.doi.org/10.2166/wst.2014.001.
Повний текст джерелаKUKSENOVA, L. I., and D. A. KOZLOV. "ALLOYING THE SURFACE OF STEEL 30KHGSN2A TO INCREASE ITS TRIBOLOGICAL CHARACTERISTICS." Fundamental and Applied Problems of Engineering and Technology 4, no. 2 (2020): 55–60. http://dx.doi.org/10.33979/2073-7408-2020-342-4-2-55-60.
Повний текст джерелаChen, Tao, Junfeng Zhen, Ying Wang, Harold Linnartz, and Alexander G. G. M. Tielens. "Photodissociation processes of Bisanthenquinone cation." Proceedings of the International Astronomical Union 13, S332 (March 2017): 353–59. http://dx.doi.org/10.1017/s1743921317007864.
Повний текст джерелаFeng, Xin, Xinwei Li, Wen Cui, Fan Dong, and Tierui Zhang. "An ion-exchange strategy for I-doped BiOCOOH nanoplates with enhanced visible light photocatalytic NOx removal." Pure and Applied Chemistry 90, no. 2 (February 23, 2018): 353–61. http://dx.doi.org/10.1515/pac-2017-0509.
Повний текст джерелаHiruma, Hitomi, Shoichiro Asayama, and Hiroyoshi Kawakami. "Control of cell morphology on the polyimide surface patterned by rubbing and ion-irradiation." Polymers for Advanced Technologies 22, no. 8 (April 25, 2011): 1311–14. http://dx.doi.org/10.1002/pat.1949.
Повний текст джерелаHoldsworth, Eccles, Rowbotham, Bond, Kavi, and Edge. "The Effect of Gamma Irradiation on the Ion Exchange Properties of Caesium-Selective Ammonium Phosphomolybdate-Polyacrylonitrile (AMP-PAN) Composites under Spent Fuel Recycling Conditions." Separations 6, no. 2 (April 24, 2019): 23. http://dx.doi.org/10.3390/separations6020023.
Повний текст джерелаДисертації з теми "Irradiation par ion"
Barberet, Philippe. "Développement d'une ligne d'irradiation microfaisceau en mode ion par ion pour la radiobiologie expérimentale à l'échelle cellulaire." Bordeaux 1, 2003. http://www.theses.fr/2003BOR12708.
Повний текст джерелаLin, Jun. "Radiation-induced alterations in mesoporous silicas : The effect of electronic processes involving ions and electrons." Thesis, Montpellier, Ecole nationale supérieure de chimie, 2022. http://theses.enscm.fr/ENSCM_2022_LIN.pdf.
Повний текст джерелаMaterials used in nuclear energy (fuel, packaging matrix, structural materials...) are subject to significant stresses due to the creation of defects that modify their properties. Several studies have shown that interfaces can act as a sink for defects caused by irradiation, which suggests that nanomaterials could have a higher resistance to irradiation than materials with a "micrometric" structure. Simultaneously, mesoporous silica materials have grown in popularity in recent years and are becoming more involved in the domain related to radiation conditioning, such as the prospective use of conditioning for nuclear waste. While research has begun to focus on the behavior of non-porous silica materials when exposed to radiation, no extensive investigations have been conducted on the behavior of mesoporous silica when exposed to radiation, particularly at electronic irradiation regime.This thesis aims to comprehend and explain the radiation-induced changes in mesoporous silicas under electronic regimes. This work quantified the evolution of physical (pore volume, pore diameter and distribution...) and structural (polymerization of the network, creation of defects...) properties of mesoporous silica irradiated with high-energy ion beams with stopping powers ranging from 1 keV/nm to 12 keV/nm, and with electron beams (10 - 300 keV and 0.6 - 2.4 MeV). Post-irradiation characterization methods (X-ray reflectivity, gas adsorption, SAXS, FTIR, etc.) have been used, as well as in-situ pore structure monitoring using electron microscopes. The experimental findings indicated that pore structures were susceptible to a certain degree of irradiation-induced shrinking. In contrast, evidence shows that the silica network itself does not alter much in porous silica compared to non-porous silica. Meanwhile, a 3DTS (3D thermal spike) model has been successfully applied to describe and explain the observed pore contraction behavior in response to ionic irradiation. Additionally, the mechanism of pore contraction under electron irradiation has been delineated according to the domain of incident electron energies. When compared to non-porous silica, this research has demonstrated that the existence of nanoscale pores reduces the accumulation of damage induced by irradiation. In conjunction with this effect, the pore contracts until it completely disappears under the impact of irradiation. This characteristic could, from an applicative point of view, be of interest to practitioners in the context of new methods of treating radioactive effluents, such as through the use of a "separation/conditioning" strategy, or in the context of the self-healing of porous gel layers formed on the surface of vitrified waste packages whose final destination is deep geological disposal
Bachiller, Perea Diana. "Ion-Irradiation-Induced Damage in Nuclear Materials : Case Study of a-SiO₂ and MgO." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS158/document.
Повний текст джерелаOne of the most important challenges in Physics today is the development of a clean, sustainable, and efficient energy source that can satisfy the needs of the actual and future society producing the minimum impact on the environment. For this purpose, a huge international research effort is being devoted to the study of new systems of energy production; in particular, Generation IV fission reactors and nuclear fusion reactors are being developed. The materials used in these reactors will be subjected to high levels of radiation, making necessary the study of their behavior under irradiation to achieve a successful development of these new technologies. In this thesis two materials have been studied: amorphous silica (a-SiO₂) and magnesium oxide (MgO). Both materials are insulating oxides with applications in the nuclear energy industry. High-energy ion irradiations have been carried out at different accelerator facilities to induce the irradiation damage in these two materials; then, the mechanisms of damage have been characterized using principally Ion Beam Analysis (IBA) techniques. One of the challenges of this thesis was to develop the Ion Beam Induced Luminescence or ionoluminescence (which is not a widely known IBA technique) and to apply it to the study of the mechanisms of irradiation damage in materials, proving the power of this technique. For this purpose, the ionoluminescence of three different types of silica (containing different amounts of OH groups) has been studied in detail and used to describe the creation and evolution of point defects under irradiation. In the case of MgO, the damage produced under 1.2 MeV Au⁺ irradiation has been characterized using Rutherford backscattering spectrometry in channeling configuration and X-ray diffraction. Finally, the ionoluminescence of MgO under different irradiation conditions has also been studied.The results obtained in this thesis help to understand the irradiation-damage processes in materials, which is essential for the development of new nuclear energy sources
Garric, Victor. "Etude du gonflement par cavités d'un alliage d'aluminium irradié sous faisceau d'ions." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAI091.
Повний текст джерела6061-T6 (Al-Mg-Si) aluminum alloy chose for the core of the Jules Horowitz Reactor (JHR) benefits from the T6 structural hardening induced by nanoprecipitates formed after an annealing followed by a quench and an artificial ageing. Because of the thickness of reactor parts, the quench rate is far slower than what is commonly seen on usual thin plates. In order to study the influence of the quench on the microstructure and the behavior under irradiation, three 10 cm side cubes of 6061 alloy have been tempered with a T6 treatment in three different quenching conditions (water, oil and air). Treatment have been followed by microstructural investigations on each temper.The contribution of voids, formed under fast neutron flux, to the global swelling of the alloy is poorly known. Using ion irradiation on bulk TEM samples at different damage levels (from 15 dpa to 100 dpa), microstructural evolutions have been characterized and swelling has been both quantified and modeled.Triple beam irradiations (W, He, Si) alloying to obtain a consistent damage level while implanting fission products (Si, He) showed silicon implantation lead to the precipitation of a new Si enriched phase. Simple beam irradiations (Au), showed voids are localized around linear defects and dispersoïds. Implantation of helium lead to a homogeneous distribution of bubbles in the whole matrix. Acknowledging the very high dose of helium implanted, quantitative measurements of swelling has been performed exclusively on single beam irradiated samples.The measured swelling, higher than what has been observed under neutron flux, lead to consider two series of data (ions and neutrons) in order to model the swelling. The base of a swelling model has been performed and the remaining physical parameters to determine were identified
Vianna, François. "Micro-irradiation ciblée par faisceau d'ions pour la radiobiologie in vitro et in vivo." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0030/document.
Повний текст джерелаThe main goal of radiobiology is to understand the effects of ionizing radiations on the living.These past decades, ion microbeams have shown to be important tools to study for example the effects oflow dose exposure, or the bystander effect. Since 2003, the CENBG has been equipped with a system toperform targeted micro-irradiation of living samples. Recently, microbeams applications on this subjecthave diversified and the study of DNA repair mechanisms at the cellular and multicellular scales, in vitroand in vivo, has become possible thanks to important evolutions of fluorescence imaging techniques andcellular biology. To take into account these new approaches, the CENBG micro-irradiation beamline hasbeen entirely redesigned and rebuilt to implement new features and to improve the existing ones. My PhDobjectives were i) commissioning the facility, ii) characterizing the system on track etch detectors, and onliving samples, iii) implementing protocols to perform targeted irradiations of living samples with a controlleddelivered dose, at the cellular and multicellular scales, and to visualize the early consequencesonline, iv) modelling these irradiations to explain the biological results using the calculated physical data.The work of these past years has allowed us i) to measure the performances of our system: a beam spotsize of about 2 μm and a targeting accuracy of ± 2 μm, and to develop ion detection systems for an absolutedelivered dose control, ii) to create highly localized radiation-induced DNA damages and to see onlinethe recruitment of DNA repair proteins, iii) to apply these protocols to generate radiation-induced DNAdamages in vivo inside a multicellular organism at the embryonic stage: Caenorhabditis elegans.These results have opened up many perspectives on the study of the interaction between ionizing radiationsand the living, at the cellular and multicellular scales, in vitro and in vivo
Hérault, Joël. "Etude experimentale du ralentissement d'ions lourds de 20 a 100 mev par nucleon dans la matiere." Toulouse 3, 1988. http://www.theses.fr/1988TOU30075.
Повний текст джерелаMahfoudhi, Mohamed. "Eu3+ ion environment modification by Electron and femtosecond laser irradiation in metaphosphate and polyphosphate glasses." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX066.
Повний текст джерелаRare Earth (RE) doped phosphate glasses are attractive materials in optic due to their low glass transition temperature and their high ability to dissolve rare earth ions compared to silicate glasses. In this work, we are interested in understanding the mechanisms leading to the structural modification of zinc polyphosphate and metaphosphate glasses under irradiation with the aim of controlling the environment of rare earth ions (in particular Eu3+ ions) by irradiation. We compared the effects obtained under electron and femtosecond laser irradiation by varying the dose and electron energy (700 keV and 2.5 MeV), the laser repetition rate as well as the glass compositions that contain different alkaline and alkaline earth ions (Na, Li, K and Mg) and Zn contents.We have demonstrated the decrease of the Eu3+ site symmetry, the increase of the sites dispersion as well as an effective reduction of Eu3+ to Eu2+ under electron irradiation.The presence of Zn attenuates the variation of the local order around the rare earth, while the vitreous network is less stable under irradiation. The formation of Eu2+ ions (under two types of high and low symmetry environments) is further enhanced in the presence of Zn and using 700 keV electrons. The femtosecond laser at 10 KHz gives causes crystallization of metaphosphate glasses without reduction of Eu3+ ions
Boccanfuso, Marc. "Relation entre le gonflement et la creation de defauts dans les cristaux ioniques irradies par des ions lourds rapides." Phd thesis, Université de Caen, 2001. http://tel.archives-ouvertes.fr/tel-00002023.
Повний текст джерелаLes résultats de ce travail montrent que le CaF2 répond de manière multiple aux excitations électroniques créées par l'irradiation. Pour des pouvoirs d'arrt supérieurs à environ 5 keV/nm, un phénomène de polygonisation semble se produire. Ceci provoque un désordre structural, un gonflement de 0,27 % du matériau et la formation de fractures. Un deuxième mécanisme d'endommagement est occasionné au-dessus d'environ 13 keV/nm et se traduit par une perte de la structure cristalline d'origine. Cependant, des centres absorbants apparaissent quel que soit le pouvoir d'arrèt des ions, ce qui indique que ces défauts ne peuvent tre la cause des deux mécanismes d'endommagement précédents. L'interprétation par un modèle de pointe thermique permet d'associer les deux seuils précédents respectivement aux énergies de fusion et de sublimation du matériau.
Tenorio, Castilleros Maria Dolorès. "Contribution a l'etude de l'emission x induit par des ions br et kr acceleres et possibilites d'application analytiques." Université Louis Pasteur (Strasbourg) (1971-2008), 1986. http://www.theses.fr/1986STR13075.
Повний текст джерелаMarinoni, Mathias. "Étude des modifications morphologiques induites par un ion lourd unique sur des structures SiO2-Si : fiabilité des dispositifs MIS." Nice, 2008. http://www.theses.fr/2008NICE4104.
Повний текст джерелаHeavy ion effects on the reliability of on-board satellite MOS devices have been investigated in this PhD dissertation. In order to give some elements to understand better the physical mechanisms leading to electrical effects, such as the reduction of the device lifetime, this new approach is based on the material response to heavy ion irradiation. The obtained results led to find out a physical origin to latent defects formation that is known to result in a device lifetime decrease. Using both thermal annealing experiments and electrical stress procedures, structural modifications induced by heavy ions in silicon dioxide have been shown to possibly act as an extra contribution leading to premature gate oxide breakdown of MOS devices. Those results could have implications on MOSFET devices, in terms of radiation assurance and for tests standards
Книги з теми "Irradiation par ion"
Hoskin, Peter. Testis. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199696567.003.0011.
Повний текст джерелаЧастини книг з теми "Irradiation par ion"
Müller, W., H. Piazena, and Peter Vaupel. "From Sun to Therapeutic wIRA." In Water-filtered Infrared A (wIRA) Irradiation, 17–33. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92880-3_2.
Повний текст джерелаKlemm, P., I. Aykara, and U. Lange. "Water-Filtered Infrared A Irradiation in Axial Spondyloarthritis: Heat for Lower Back Pain." In Water-filtered Infrared A (wIRA) Irradiation, 233–43. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92880-3_20.
Повний текст джерелаBoycheva, Irina, Ralitsa Georgieva, Lubomir Stoilov, and Vasilissa Manova. "Effects of light and UV-C radiation on the transcriptional activity of COP1 and HY5 gene homologues in barley." In Mutation breeding, genetic diversity and crop adaptation to climate change, 478–86. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789249095.0049.
Повний текст джерелаBoaventura, Paula, Dina Pereira, Paula Soares, and José Teixeira-Gomes. "The ringworm campaign in Portugal, 1940–1970." In Ringworm and Irradiation, 181–214. Oxford University Press, 2022. http://dx.doi.org/10.1093/med/9780197568965.003.0007.
Повний текст джерелаHoskin, Peter. "Testis." In External Beam Therapy, 279–81. Oxford University Press, 2019. http://dx.doi.org/10.1093/med/9780198786757.003.0012.
Повний текст джерелаW. Nims, Raymond, and Mark Plavsic. "Physical Inactivation of SARS-CoV-2 and Other Coronaviruses: A Review." In Disinfection of Viruses [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.103161.
Повний текст джерелаMaruyama, Yuji, Yasushi Ikarashi, C. Leroy Blank, and W. B. Stavinoha. "Current status of rapid enzyme inactivation through the use of microwave irradiation." In Methods in Neurotransmitter and Neuropeptide Research, Part 1, 273–309. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-444-81369-5.50014-6.
Повний текст джерелаHanu, Alina-Mihaela, Eveline Popovici, Pegie Cool, and Etienne F. Vansant. "A facile synthesis of MCM-41 by ultrasound irradiation." In Recent Progress in Mesostructured Materials - Proceedings of the 5th International Mesostructured Materials Symposium (IMMS2006), Shanghai, P.R. China, August 5-7, 2006, 169–72. Elsevier, 2007. http://dx.doi.org/10.1016/s0167-2991(07)80291-6.
Повний текст джерелаDutta, Debnarayan, and Yarlagadda Sreenija. "Radiation Induced Liver Toxicity." In Hepatotoxicity [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.105410.
Повний текст джерелаBoterberg, Tom, Yen-Ch’ing Chang, Karin Dieckmann, Eve Gallop-Evans, Mark Gaze, Paul Humphries, Anna Kelsey, Øystein Olsen, Derek Roebuck, and Chitra Sethuraman. "Lymphoid and haematological malignancy and related conditions." In Radiotherapy and the Cancers of Children, Teenagers, and Young Adults, edited by Tom Boterberg, Karin Dieckmann, and Mark Gaze, 278–300. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198793076.003.0008.
Повний текст джерелаТези доповідей конференцій з теми "Irradiation par ion"
Ruxandra, Caramitu Alina, Zaharescu Traian, and Mitrea Sorina. "Irradiation effect on PA6 properties of electrical insulation." In 2015 9th International Symposium on Advanced Topics in Electrical Engineering (ATEE). IEEE, 2015. http://dx.doi.org/10.1109/atee.2015.7133852.
Повний текст джерелаPeithmann, Konrad, Mohammad-Reza Zamani-Meymian, Hilke Hattermann, Matz Haaks, Karl Maier, Birk Andreas, Michael Kösters, and Ingo Breunig. "Permanent modification of material parameters in LiNbO3 crystals by irradiation with low-mass, high-energy ions." In Photorefractive Effects, Photosensitivity, Fiber Gratings, Photonic Materials and More. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/pr.2007.sub2.
Повний текст джерелаMimura, Hitoshi, Shunsuke Susa, Yoshiyuki Ito, Yasuo Saito, and Minoru Matsukura. "Adsorption Properties of Sr(II) on Zeolite Type Adsorbents and Their Irradiation Stabilities." In 2014 22nd International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icone22-30329.
Повний текст джерелаLin, Dong, Sergey Suslov, Chang Ye, Yiliang Liao, C. Richard Liu, and Gary J. Cheng. "Nanoparticles Embedding Into Metallic Materials by Laser Direct Irradiation." In ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/msec2012-7379.
Повний текст джерелаAlhadri, Muapper, Waleed Zakri, and Siamak Farhad. "Second-Life Analysis of Lithium-Ion Battery in a Residential Solar Photovoltaic Grid-Tied System." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-73403.
Повний текст джерелаAutsavapromporn, Narongchai, Ianik Plante, Cuihua Liu, Teruaki Konishi, Noriko Usami, Tomoo Funayama, Yukio Uchihori, et al. "Abstract 1815: Bystander effect and genomic instability in human cells and their progeny after irradiation with X rays, protons or carbon ions: role of gap junction communication." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-1815.
Повний текст джерелаЗвіти організацій з теми "Irradiation par ion"
Garner, F. A., and M. B. Toloczko. Irradiation creep and swelling of various austenitic alloys irradiated in PFR and FFTF. Office of Scientific and Technical Information (OSTI), October 1996. http://dx.doi.org/10.2172/414882.
Повний текст джерелаGray, P. L. Thorium-1.4 wt per cent 235Uranium Metal Fuel Tubes - Fabrication and Irradiation in HWCTR. Office of Scientific and Technical Information (OSTI), March 2003. http://dx.doi.org/10.2172/810365.
Повний текст джерелаToloczko, M. B., F. A. Garner, and C. R. Eiholzer. Irradiation creep of various ferritic alloys irradiated {approximately}400 C in the PFR and FFTF reactors. Office of Scientific and Technical Information (OSTI), March 1998. http://dx.doi.org/10.2172/335392.
Повний текст джерелаBates, J. K., D. F. Fischer, and T. J. Gerding. Reaction of glass during gamma irradiation in a saturated tuff environment. Part 1. SRL 165 glass. Office of Scientific and Technical Information (OSTI), February 1986. http://dx.doi.org/10.2172/59835.
Повний текст джерелаToloczko, M. B., F. A. Garner, and B. Munro. The compositional dependence of irradiation creep of austenitic alloys irradiated in PFR at 420{degrees}C. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/543297.
Повний текст джерелаToloczko, M. B., F. A. Garner, and C. R. Eiholzer. Irradiation creep of various ferritic alloys irradiated at {approximately}400{degrees}C in the PFR and FFTF reactors. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/543290.
Повний текст джерелаHendel, Susanne, Carmel Margaret Lindkvist, Gabriele Lobaccaro, Romain Nouvel, Alexander Saurbier, Nava Shahin, Tanja Siems, Tjado Voss, and Maria Wall. State-of-the-Art of Education on Solar Energy in Urban Planning - Part 2: Solar Irradiation Potential Tools in Education. Edited by Tanja Siems, Katharina Simon, and Karsten Voss. IEA SHC Task 51, February 2018. http://dx.doi.org/10.18777/ieashc-task51-2018-0002.
Повний текст джерелаAbrajano, T. A. Jr, J. K. Bates, T. J. Gerding, and W. L. Ebert. The reaction of glass during gamma irradiation in a saturated tuff environment: Part 3, long-term experiments at 1 x 10{sup 4}rad/hour. Office of Scientific and Technical Information (OSTI), February 1988. http://dx.doi.org/10.2172/60456.
Повний текст джерелаEbert, W., J. Bates, and T. Gerding. The reaction of glass during gamma irradiation in a saturated tuff environment; Part 4, SRL 165, ATM-1c, and ATM-8 glasses at 1E3 R/h and O R/h. Office of Scientific and Technical Information (OSTI), May 1990. http://dx.doi.org/10.2172/137753.
Повний текст джерела