Добірка наукової літератури з теми "Irradiation ciblée"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Irradiation ciblée".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Irradiation ciblée"
Mammar, H., K. Kerrou, P. Y. Bondiau, G. Angellier, J. Thariat, K. Benezery, J. Heroult, A. Leysalle, J. P. Gérard, and J. N. Talbot. "Amélioration du contrôle local des chordomes du rachis traités par chirurgie et une irradiation (CyberKnife®) ciblée sur les cellules hypoxiques marquées au 18F-FMiso." Cancer/Radiothérapie 15, no. 6-7 (October 2011): 597. http://dx.doi.org/10.1016/j.canrad.2011.07.106.
Повний текст джерелаVan Ryckeghem, S. "Caractérisation des formes physico-chimiques des deux radionucléides principaux (18F et 11C) produits par irradiation de cible et du principal radionucléide parasite (13N) rejetés par les installations françaises de fabrication de radiopharmaceutiques au moyen d’un cyclotron." Radioprotection 56, no. 2 (April 2021): 127–35. http://dx.doi.org/10.1051/radiopro/2021008.
Повний текст джерелаDe Bari, B., N. Sellal, and F. Mornex. "Scanographie quadrimensionelle et irradiation des carcinomes hépatocellulaires : rôle dans la définition du volume cible interne (ITV)." Cancer/Radiothérapie 15, no. 1 (February 2011): 43–48. http://dx.doi.org/10.1016/j.canrad.2010.11.009.
Повний текст джерелаThariat, J., Y. Kirova, G. Milano, and F. Mornex. "Association d’une chimiothérapie ou d’un traitement ciblé à une irradiation stéréotaxique : état des lieux et recommandations préliminaires." Cancer/Radiothérapie 18, no. 4 (July 2014): 270–79. http://dx.doi.org/10.1016/j.canrad.2014.05.007.
Повний текст джерелаBiscans, C., A. Garcia, G. Roy, A. Calenge, C. Debiais Delpech, and S. Guérif. "Intérêt des biopsies transpérinéales en saturation et ciblées pour la topographie de la récidive intraprostatique après une irradiation première." Cancer/Radiothérapie 23, no. 6-7 (October 2019): 790. http://dx.doi.org/10.1016/j.canrad.2019.07.008.
Повний текст джерелаBrembilla, Eleonora, Christina J. Hopfe, John Mardaljevic, Anastasia Mylona, and Eirini Mantesi. "Balancing daylight and overheating in low-energy design using CIBSE improved weather files." Building Services Engineering Research and Technology 41, no. 2 (November 14, 2019): 210–24. http://dx.doi.org/10.1177/0143624419889057.
Повний текст джерелаBiau, J., A. Bellière-Calandry, P. Verrelle, and M. Lapeyre. "Cancers bronchiques traités par irradiation tridimensionnelle : influence de la délinéation pulmonaire en mode automatique seul ou en mode automatique excluant le volume cible prévisionnel." Cancer/Radiothérapie 12, no. 6-7 (November 2008): 745. http://dx.doi.org/10.1016/j.canrad.2008.08.097.
Повний текст джерелаBenabdennebi, A., H. Oueslati, D. Llanas, M. Cheve, M. Besbes, D. Lefkopoulos, É. Deutsch, M. Benadjaoud, S. Rivera, and F. de Vathaire. "Évaluation des doses reçues dans les organes hors ou partiellement dans le volume cible d’une irradiation partielle et accélérée du sein par RapidArc™." Cancer/Radiothérapie 18, no. 5-6 (October 2014): 618. http://dx.doi.org/10.1016/j.canrad.2014.07.092.
Повний текст джерелаKen, S., X. Franceries, J. A. Lotterie, V. Lubrano, I. Catalaa, L. Vieillevigne, P. Celsis, I. Berry, É. M. Cohen-Jonathan, and A. Laprie. "Intégration de la spectrométrie par résonance magnétique tridimensionnelle au plan de traitement par irradiation des glioblastomes : définition de nouveaux volumes cibles." Cancer/Radiothérapie 14, no. 6-7 (October 2010): 611–12. http://dx.doi.org/10.1016/j.canrad.2010.07.494.
Повний текст джерелаBiscans, C., M. Vallée, K. Chalhoub, and S. Guérif. "Comparaison entre des biopsies ciblées sur l’IRM et le TEP-Choline et des biopsies transpérinéales de saturation pour la détection et la topographie d’une récidive intra prostatique après une irradiation première d’un cancer de la prostate." Progrès en Urologie 30, no. 13 (November 2020): 778. http://dx.doi.org/10.1016/j.purol.2020.07.143.
Повний текст джерелаДисертації з теми "Irradiation ciblée"
Vianna, François. "Micro-irradiation ciblée par faisceau d'ions pour la radiobiologie in vitro et in vivo." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0030/document.
Повний текст джерелаThe main goal of radiobiology is to understand the effects of ionizing radiations on the living.These past decades, ion microbeams have shown to be important tools to study for example the effects oflow dose exposure, or the bystander effect. Since 2003, the CENBG has been equipped with a system toperform targeted micro-irradiation of living samples. Recently, microbeams applications on this subjecthave diversified and the study of DNA repair mechanisms at the cellular and multicellular scales, in vitroand in vivo, has become possible thanks to important evolutions of fluorescence imaging techniques andcellular biology. To take into account these new approaches, the CENBG micro-irradiation beamline hasbeen entirely redesigned and rebuilt to implement new features and to improve the existing ones. My PhDobjectives were i) commissioning the facility, ii) characterizing the system on track etch detectors, and onliving samples, iii) implementing protocols to perform targeted irradiations of living samples with a controlleddelivered dose, at the cellular and multicellular scales, and to visualize the early consequencesonline, iv) modelling these irradiations to explain the biological results using the calculated physical data.The work of these past years has allowed us i) to measure the performances of our system: a beam spotsize of about 2 μm and a targeting accuracy of ± 2 μm, and to develop ion detection systems for an absolutedelivered dose control, ii) to create highly localized radiation-induced DNA damages and to see onlinethe recruitment of DNA repair proteins, iii) to apply these protocols to generate radiation-induced DNAdamages in vivo inside a multicellular organism at the embryonic stage: Caenorhabditis elegans.These results have opened up many perspectives on the study of the interaction between ionizing radiationsand the living, at the cellular and multicellular scales, in vitro and in vivo
Dwiri, Fatima azzahra. "Impacts de l'irradiation ciblée sur le tissu cérébral et les déficits cognitifs : études multiparamétriques et longitudinales chez le rat." Electronic Thesis or Diss., Normandie, 2023. http://www.theses.fr/2023NORMC411.
Повний текст джерелаAlthough radiotherapy, an essential treatment in neuro-oncology, improves the survival of patients, it significantly affects the surrounding healthy brain tissue, leading to cognitive deficits found in 50 to 90% of patients. Technological advancements made in the last decade have allowed the development of new irradiation techniques with promising ballistic properties. However, their potential for preventing cerebral radiotoxicity remains to be demonstrated, relying mainly on preclinical research, for which the use of these radiotherapy techniques is currently fragmented. The objective of this thesis work was to characterize the effects of targeted brain irradiation on tissue integrity and cognitive deficits in healthy adult rats and rats bearing brain tumor. This characterization was done through multiparametric imaging using MRI, various behavioral tests, as well as immunohistological analyses. Furthermore, a longitudinal approach was employed, with the animals being monitored up to 6 months after irradiation. Collectively, our data demonstrate, as expected and in accordance with the literature, that whole-brain irradiation leads to deficits in learning, memory, and emotion processes, both during acute and chronic phases. Similarly, this irradiation paradigm is associated with alterations in brain tissue. However, somewhat surprisingly compared to our initial hypothesis, irradiation of a single hemisphere did not significantly modify the evaluated cognitive performances or compromise tissue integrity. In the brain tumor model, cognitive deficits were observed following whole-brain irradiation, which were also present with hemispheric irradiation but with lesser effects. Unfortunately, due to low sample sizes within the experimental groups, it is difficult to conclude whether the observed radio-induced cognitive deficits are exacerbated in the presence of a tumor
Muggiolu, Giovanna. "Deciphering the biological effects of ionizing radiations using charged particle microbeam : from molecular mechanisms to perspectives in emerging cancer therapies." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0599/document.
Повний текст джерелаFew years ago, the paradigm of radiation biology was that the biological effects of ionizing radiations occurred only if cell nuclei were hit, and that cell death/dysfunction was strictly due to unrepaired/misrepaired DNA. Now, next this “DNA-centric” view several results have shown the importance of “non-DNA centered” effects. Both non-targeted effects and DNA-targeted effects induced by ionizing radiations need to be clarified for the evaluation of the associated radiation resistance phenomena and cancer risks. A complete overview on radiation induced effects requires the study of several points: (i) analyzing the contribution of different signaling and repair pathways activated in response to radiation-induced injuries; (ii) elucidating non-targeted effects to explain cellular mechanisms induced in cellular compartments different from DNA; and (iii) improving the knowledge of sensitivity/resistance molecular mechanisms to adapt, improve and optimize the radiation treatment protocols combining ionizing radiations and nanoparticles. Charged particle microbeams provide unique features to answer these challenge questions by (i) studying in vitro both targeted and non-targeted radiation responses at the cellular scale, (ii) performing dose-controlled irradiations on a cellular populations and (iii) quantifying the chemical element distribution in single cells after exposure to ionizing radiations or nanoparticles. By using this tool, I had the opportunity to (i) use an original micro-irradiation setup based on charged particles microbeam (AIFIRA) with which the delivered particles are controlled in time, amount and space to validate in vitro methodological approaches for assessing the radiation sensitivity of different biological compartments (DNA and cytoplasm); (ii) assess the radiation sensitivity of a collection of cancerous cell lines derived from patients in the context of radiation therapy; (iii) study metal oxide nanoparticles effects in cells in order to understand the potential of nanoparticles in emerging cancer therapeutic approaches
Torfeh, Eva. "Monte Carlo microdosimetry of charged-particle microbeam irradiations." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0159/document.
Повний текст джерелаThe interaction of charged particles with matter leads to a very localized energy deposits in sub-micrometric tracks. This unique property makes this type of ionizing radiation particularly interesting for deciphering the radiation-induced molecular mechanisms at the cell scale. Charged particle microbeams (CPMs) provide the ability to target a given cell compartment at the micrometer scale with a controlled dose down to single particle. My work focused on irradiations carried out with the CPM at the AIFIRA facility in the CENBG (Applications Interdisciplinaires des Faisceaux d’Ions en Région Aquitaine). This microbeam delivers protons and alpha particles and is dedicated to targeted irradiation in vitro (human cells) and in vivo (C. elegans).In addition to their interest for experimental studies, the energy deposits and the interactions of charged particles with matter can be modeled precisely along their trajectory using track structure codes based on Monte Carlo methods. These simulation tools allow a precise characterization of the micro-dosimetry of the irradations from the detailed description of the physical interactions at the nanoscale to the prediction of the number of DNA damage, their complexity and their distribution in space.During my thesis, I developed micro-dosimetric models based on the Geant4-DNA modeling toolkit in two cases. The first concerns the simulation of the energy distribution deposited in a cell nucleus and the calculation of the number of different types of DNA damage (single and double strand breaks) at the nanometric and micrometric scales, for different types and numbers of delivered particles. These simulations are compared with experimental measurements of the kinetics of GFP-labeled (Green Fluorescent Protein) DNA repair proteins in human cells. The second is the dosimetry of irradiation of a multicellular organism to study the genetic instability in a living organism during development (C. elegans). I simulated the distribution of the energy deposited in different compartments of a realistic 3D model of a C. elegans embryo following proton irradiations. Finally, and in parallel with these two studies, I developed a protocol to characterize the AIFIRA microbeam using fluorescent nuclear track detector (FNTD) for proton and alpha particle irradiations. This type of detector makes it possible to visualize in 3D the incident particle tracks with a resolution of about 200 nm and to examine the quality of the cellular irradiations carried out by the CPM
Morel, Arnaud. "Vaccinations antitumorales preventives dans un modele de carcinogenese ciblee." Paris 11, 1997. http://www.theses.fr/1997PA11TO14.
Повний текст джерелаDammak, Hichem. "Changement de phase cristalline induit par irradiation aux ions lourds rapides dans un métal pur /." Gif-sur-Yvette : Service de documentation et d'édition multimédia, Centre d'études de Saclay, 1994. http://catalogue.bnf.fr/ark:/12148/cb35771191c.
Повний текст джерелаDairou, Julien. "Porphyrines di-sulfonées : propriétés en solution ; interaction avec des protéines et photo-dommages ciblés sur la glycoprotéine GP120 du VIH." Paris 7, 2003. http://www.theses.fr/2003PA077031.
Повний текст джерелаLE, BRIGAND BLANDINE. "Dosimetrie au niveau des organes cibles (thyroide et cristallin), en milieu radiologique et lors de traitement par gamma unit." Aix-Marseille 2, 1994. http://www.theses.fr/1994AIX20847.
Повний текст джерелаBertrand, Gérald. "Caractérisation et ciblage thérapeutique d'une sous-population de cellules souches cancéreuses dans un modèle cellulaire de carcinome épidermoïde de la tête et du cou résistant à l'irradiation par photon et ions carbone." Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10118/document.
Повний текст джерелаHead and neck squamous cell carcinomas (HNSCC) have a poor prognosis, due to their resistance to standard treatments. In most cases, locoregional recurrence or metastases occur. This study has focused on the role of cancer stem cells (CSC) in the radioresistance of the SQ20B HNSCC cell line and their therapeutic targeting in association with photon or carbon ions irradiation. A subpopulation of SQ20B-CSC has been isolated by cell sorting based on 3 specific characteristics of HNSCC-CSC : Hoechst 33342 exclusion, CD44 expression and high aldehyde dehydrogenase activity (ALDH). SQ20B/SP/CD44high/ALDHhigh cells show the CSC characteristics (in vitro and in vivo tumorigenesis, high radioresistance). The response of CSC to both types of irradiation was compared to the non-“stem cells” SQ20B/SP/CD44low sub-population. The observed radioresistance involves a decrease in apoptotic cell death, an increase in proliferative capacities and an overexpression of the Bmi1 self-renewing signaling pathway. The radiosensitizing effects of 3 molecules targeting the CSC has been demonstrated : an induction of apoptotic cell death by the inhibition of the G2/M phase arrest after a treatment with UCN01 ; an inhibition of proliferative capacities using the all-trans-retinoic acid (ATRA) which induce their differentiation ; and an inhibition of Bmi1 by artesunate. These treatments, alone or in combination (UCN01+ATRA) have a synergistic effect with photon or carbon ion irradiation to overcome CSC radioresistance. Preclinical and clinical studies should confirm the benefit of targeting CSC and improve the control of tumor escape in patients with radioresistant HNSCC cancers
Crépin-Hémon, Stéphanie. "Irradiation de cibles nanometriques par des ions lourds rapides : etude par diffraction x de la modification structurale de l'oxyde d'yttrium." Caen, 1998. http://www.theses.fr/1998CAEN2036.
Повний текст джерелаТези доповідей конференцій з теми "Irradiation ciblée"
Ventroux, Francis. "Irradiation des cibles : aspects exploitation." In La compétitivité des technologies bas carbone de production de l’électricité. Les Ulis, France: EDP Sciences, 2016. http://dx.doi.org/10.1051/jtsfen/2016rad10.
Повний текст джерела