Статті в журналах з теми "Iron structures"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Iron structures.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Iron structures".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Chen, Jianlin, Shaolin Chen, Liu Zhong, Hao Feng, Yaoming Xie, and R. Bruce King. "Binuclear Methylborole Iron Carbonyls: Iron−Iron Multiple Bonds and Perpendicular Structures." Inorganic Chemistry 50, no. 4 (February 21, 2011): 1351–60. http://dx.doi.org/10.1021/ic101956z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

WANG, LAI-SHENG, JIAWEN FAN, and LIANG LOU. "IRON CLUSTERS AND OXYGEN-CHEMISORBED IRON CLUSTERS." Surface Review and Letters 03, no. 01 (February 1996): 695–99. http://dx.doi.org/10.1142/s0218625x9600125x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The photoelectron spectroscopy of size-selected [Formula: see text](n=3–24) clusters and oxygen-chemisorbed clusters Fe n O −(n=1–16), has been studied at 3.49-eV photon energy with a magnetic-bottle time-of-flight photoelectron spectrometer. While the spectra of the pure iron clusters show rather sharp features in the whole size range, those of the oxygen-chemisorbed species are considerably different, with extensive sharp structures observed for n only up to 6. The electron affinities (EAs) of both the bare and chemisorbed clusters exhibit strong size variations. However, the first oxygenation of the iron clusters induces a systematic lowering of EA in the size range n=9–15. Towards a complete molecular picture of these interesting clusters, density-functional calculations are being performed to determine the equilibrium cluster structures, oxygen chemisorption sites, and their electronic structures. The equilibrium structures obtained for Fe n O with n=2–6 are reported.
3

Marshall, W. G., J. S. Loveday, R. J. Nelmes, S. Klotz, G. Hamel, J. M. Besson, and J. B. Parise. "Magnetic Structures of Iron Sulphide." REVIEW OF HIGH PRESSURE SCIENCE AND TECHNOLOGY 7 (1998): 565–67. http://dx.doi.org/10.4131/jshpreview.7.565.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kolitsch, Uwe, Christian L. Lengauer, and Gerald Giester. "Crystal structures and isotypism of the iron(III) arsenate kamarizaite and the iron(III) phosphate tinticite." European Journal of Mineralogy 28, no. 1 (March 23, 2016): 71–81. http://dx.doi.org/10.1127/ejm/2015/0027-2485.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Li, Wei, Chandan Setty, X. H. Chen, and Jiangping Hu. "Electronic and magnetic structures of chain structured iron selenide compounds." Frontiers of Physics 9, no. 4 (June 13, 2014): 465–71. http://dx.doi.org/10.1007/s11467-014-0428-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hafner, J. "Noncollinear magnetic structures in amorphous iron and iron-based alloys." Journal of Magnetism and Magnetic Materials 139, no. 1-2 (January 1995): 209–27. http://dx.doi.org/10.1016/0304-8853(94)00440-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lorenz, R., and J. Hafner. "Noncollinear magnetic structures in amorphous iron and iron-based alloys." Journal of Magnetism and Magnetic Materials 139, no. 1-2 (January 1995): 209–27. http://dx.doi.org/10.1016/0304-8853(95)90049-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhou, Liqing, Guoliang Li, Qian-Shu Li, Yaoming Xie, and R. Bruce King. "The diversity of iron−sulfur bonding in binuclear iron carbonyl sulfides." Canadian Journal of Chemistry 92, no. 8 (August 2014): 750–57. http://dx.doi.org/10.1139/cjc-2014-0052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The potential accessibility of Fe2S(CO)n derivatives with 1:2 sulfur to iron ratios by the decarboxylation of iron carbonyl thionyls has led to their investigation using density functional theory. The lowest energy Fe2S(CO)n (n = 8, 7, 6) structures are predicted to be singlet structures with all terminal CO groups, a bridging sulfur atom, and a formal Fe–Fe single bond of length ∼2.5 Å. The Fe−S distances in these structures shorten from ∼2.3 to ∼2.1 Å as CO groups are lost, suggesting an increase in the formal Fe−S bond orders. The thermochemistry of CO dissociation suggests that both Fe2S(CO)8 and Fe2S(CO)7 are viable synthetic objectives. A similar density functional theory study of Fe2S2(CO)n derivatives (n = 7, 6, 5) finds the experimentally known Fe2S2(CO)7 structure with a bridging S2CO group and the Fe2S2(CO)6 structure with a bridging disulfide ligand to be the lowest energy structures by substantial margins of ∼17 and ∼21 kcal/mol, respectively. The low-energy structures for the unsaturated Fe2S2(CO)5 are derived from the low-energy Fe2S2(CO)6 structures by loss of a CO group in various ways with relatively little change in the underlying Fe2S2 framework.
9

Moy, S. S. J., and H. W. J. Clarke. "Strengthening wrought-iron structures using CFRP." Proceedings of the Institution of Civil Engineers - Structures and Buildings 162, no. 4 (August 2009): 251–61. http://dx.doi.org/10.1680/stbu.2009.162.4.251.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ishikawa, Tatsuo. "Formation and Structures of Iron Oxides." Zairyo-to-Kankyo 46, no. 7 (1997): 411–17. http://dx.doi.org/10.3323/jcorr1991.46.411.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Nelmes, R. J., M. I. McMahon, S. A. Belmonte, D. R. Allan, M. R. Gibbs, and J. B. Parise. "High Pressure Structures of Iron Sulphide." REVIEW OF HIGH PRESSURE SCIENCE AND TECHNOLOGY 7 (1998): 202–4. http://dx.doi.org/10.4131/jshpreview.7.202.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Kaduk, J. A. "D015 New iron fluoride crystal structures." Powder Diffraction 21, no. 2 (June 2006): 172. http://dx.doi.org/10.1154/1.2219800.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Heift, Dominikus, Lise-Marie Lacroix, Pierre Lecante, Pier-Francesco Fazzini, and Bruno Chaudret. "Controlling the Sulfidation Process of Iron Nanoparticles: Accessing Iron−Iron Sulfide Core-Shell Structures." ChemNanoMat 4, no. 7 (March 14, 2018): 663–69. http://dx.doi.org/10.1002/cnma.201800027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Plata-Guzmán, Laura Y., Rossana Arroyo, Nidia León-Sicairos, Adrián Canizález-Román, Héctor S. López-Moreno, Jeanett Chávez-Ontiveros, José A. Garzón-Tiznado, and Claudia León-Sicairos. "Stem–Loop Structures in Iron-Regulated mRNAs of Giardia duodenalis." International Journal of Environmental Research and Public Health 20, no. 4 (February 17, 2023): 3556. http://dx.doi.org/10.3390/ijerph20043556.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Giardia duodenalis is a significant cause of waterborne and foodborne infections, day-care center outbreaks, and traveler’s diarrhea worldwide. In protozoa such as Trichomonas vaginalis and Entamoeba histolytica, iron affects the growth, pathogenicity mechanisms, and expression of virulence genes. One of the proposed iron regulatory mechanisms is at the post-transcriptional level through an IRE/IRP-like (iron responsive element/iron regulatory protein) system. Recently, the expression of many putative giardial virulence factors in the free-iron levels has been reported in subsequent RNAseq experiments; however, the iron regulatory mechanism remains unknown. Thus, this work aimed to determine the effects of iron on the growth, gene expression, and presence of IRE-like structures in G. duodenalis. First, the parasite’s growth kinetics at different iron concentrations were studied, and the cell viability was determined. It was observed that the parasite can adapt to an iron range from 7.7 to 500 µM; however, in conditions without iron, it is unable to survive in the culture medium. Additionally, the iron modulation of three genes was determined by RT-PCR assays. The results suggested that Actin, glucosamine-6-phosphate deaminase, and cytochrome b5 mRNA were down-regulated by iron. To investigate the presence of IRE-like structures, in silico analyses were performed for different mRNAs from the Giardia genome database. The Zuker mfold v2.4 web server and theoretical analysis were used to predict the secondary structures of the 91 mRNAs analyzed. Interestingly, the iron-induced downregulation of the genes analyzed corresponds to the location of the stem–loop structures found in their UTR regions. In conclusion, iron modulates the growth and expression of specific genes, likely due to the presence of IRE-like structures in G. duodenalis mRNAs.
15

Gołdyn, Michał, and Tadeusz Urban. "Failures of the Cast-Iron Columns of Historic Buildings—Case Studies." Infrastructures 5, no. 9 (September 2, 2020): 71. http://dx.doi.org/10.3390/infrastructures5090071.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Selected technical problems related to the rehabilitation of cast-iron columns in structures from the turn of the 19th and 20th century are discussed in the paper. Lack of contemporary standard regulations related to the design of cast-iron structures is a significant problem in the design works and experimental investigations on cast-iron columns are frequently required. The paper presents results of the tests concerning principal properties of cast-iron—strength and deformability. The historical design principles are discussed in the light of the results of experimental investigations. As it was demonstrated, the actual load-carrying capacities of cast-iron columns may exceed by several times the values resulting from the 20th century design rules. The conservatism of the design principles resulted, however, from the material uncertainties—lack of homogeneity and hidden defects of the cast-iron. Selected examples of failures of cast-iron columns from 19th-century structures such as post-industrial buildings and engineering structures are discussed. They resulted from errors made during adaptation works. The reasons for these failures and considered methods of repairing the structures are presented.
16

Doroshenko, Volodymyr, and Olexander Yanchenko. "METAL BEARING AND SEALING STRUCTURES FOR UNDERGROUND AND PROTECTIVE STRUCTURES." Modern technology, materials and design in construction 34, no. 1 (July 30, 2023): 27–35. http://dx.doi.org/10.31649/2311-1429-2023-1-27-35.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The development of new technologies for the construction of multi-purpose protective structures reflects the current need to improve measures to protect civilian human and material resources (and dual purpose) and increase defense capability with the help of structures, buildings, storage and shelters. For a thorough assessment of known developments on this topic, a review of the history and achievements in the field of production and use of metal materials and structures in the construction of underground and protective structures was carried out, achievements and shortcomings were analyzed. The main attention was paid to the experience of large-tonnage production of cast iron tubing at the enterprises of the former USSR, as the closest to modern times of large-scale production with significant results, useful for study and improvement in design and technological directions. Since the sixties of the last century, 25,000 to 40,000 tons of cast iron tubing were produced annually in the former USSR for fastening underground structures of various purposes, including for protective and special facilities. Almost all the trunks of Metrobud, many trunks of the Ministry of Defense and other ministries of the former USSR constantly used cast iron tubing at their facilities. For the present time, the necessity and possibility of intensification of the construction of protective structures through the use of metal materials, in particular high-strength casting alloys, especially high-strength cast irons, as well as resource-efficient casting methods for the production of construction and protective segments or tubing, have been identified. The most suitable technology for such production of thin-walled lightweight metal products at the present time is the Lost Foam casting process, which, after improvements over the past decades, including thanks to 3D technologies and adaptation to the use of the latest alloys, has the potential to ensure the growth of both stationary and mobile construction protective structures.
17

Deng, Jianming, Qian-shu Li, Yaoming Xie, R. Bruce King, and H. F. Schaefer, III. "Binuclear hexafluorocyclopentadiene iron carbonyls: bis(dihapto) versus trihapto–monohapto bonding in iron–iron bonded structures." New Journal of Chemistry 37, no. 9 (2013): 2902. http://dx.doi.org/10.1039/c3nj00311f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Du Plessis, E., G. Kruger, and J. de Villiers. "The crystal structures of the iron carbides." Acta Crystallographica Section A Foundations of Crystallography 61, a1 (August 23, 2005): c407. http://dx.doi.org/10.1107/s0108767305082759.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Farrell, D., Y. Cheng, S. Kan, M. Sachan, Y. Ding, S. A. Majetich, and L. Yang. "Iron nanoparticle assemblies: structures and magnetic behavior." Journal of Physics: Conference Series 17 (January 1, 2005): 185–95. http://dx.doi.org/10.1088/1742-6596/17/1/026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Uspenskaya, L. S., D. S. L’vov, G. A. Penzyakov, and O. V. Skryabina. "Nonreciprocity in Yttrium-Iron Garnet–Superconductor Structures." Physics of Metals and Metallography 121, no. 5 (May 2020): 423–28. http://dx.doi.org/10.1134/s0031918x20050129.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Beinert, H. "Iron-Sulfur Clusters: Nature's Modular, Multipurpose Structures." Science 277, no. 5326 (August 1, 1997): 653–59. http://dx.doi.org/10.1126/science.277.5326.653.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Harris, Hugh H., and Ian G. Dance. "Iron–carbon clusters: Geometric structures and interconversions." Polyhedron 26, no. 2 (January 2007): 250–65. http://dx.doi.org/10.1016/j.poly.2006.05.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Paul Attfield, J., John F. Clarke, and David A. Perkins. "Magnetic and crystal structures of iron borates." Physica B: Condensed Matter 180-181 (June 1992): 581–84. http://dx.doi.org/10.1016/0921-4526(92)90401-d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Zhao, G. L., J. Callaway, and M. Hayashibara. "Electronic structures of iron and cobalt pyrites." Physical Review B 48, no. 21 (December 1, 1993): 15781–86. http://dx.doi.org/10.1103/physrevb.48.15781.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Kelly, Anna T., Carly S. Filgueira, Desmond E. Schipper, Naomi J. Halas, and Kenton H. Whitmire. "Gold coated iron phosphide core–shell structures." RSC Advances 7, no. 42 (2017): 25848–54. http://dx.doi.org/10.1039/c7ra01195d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Core–shell Fe2P@Au particles were made from Fe2P particles by reaction with (1) γ-aminobutyric acid, (2) Au seeds and (3) HAuCl4 (aq.) and H2CO or CO with shells up to 65 ± 21 nm. Increasing shell thickness gave a red shift in the plasmonic resonance.
26

Teschke, O. "Spatial-temporal structures in iron electrodic reactions." Journal of Physics: Condensed Matter 5, no. 33A (August 16, 1993): A201—A202. http://dx.doi.org/10.1088/0953-8984/5/33a/061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Dauscher, A., V. Feregotto, P. Cordier, and A. Thomy. "Laser induced periodic surface structures on iron." Applied Surface Science 96-98 (April 1996): 410–14. http://dx.doi.org/10.1016/0169-4332(95)00495-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Zubov, V. E., G. S. Krinchik, V. N. Seleznyov, and M. B. Strugatsky. "Near-surface magnetic structures in iron borate." Journal of Magnetism and Magnetic Materials 86, no. 1 (April 1990): 105–14. http://dx.doi.org/10.1016/0304-8853(90)90091-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Stephani, G., O. Andersen, H. Göhler, C. Kostmann, K. Kümmel, P. Quadbeck, M. Reinfried, T. Studnitzky, and U. Waag. "Iron Based Cellular Structures – Status and Prospects." Advanced Engineering Materials 8, no. 9 (September 2006): 847–52. http://dx.doi.org/10.1002/adem.200600078.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Zheng, Heping, Karol M. Langner, Gregory P. Shields, Jing Hou, Marcin Kowiel, Frank H. Allen, Garib Murshudov, and Wladek Minor. "Data mining of iron(II) and iron(III) bond-valence parameters, and their relevance for macromolecular crystallography." Acta Crystallographica Section D Structural Biology 73, no. 4 (March 31, 2017): 316–25. http://dx.doi.org/10.1107/s2059798317000584.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The bond-valence model is a reliable way to validate assumed oxidation states based on structural data. It has successfully been employed for analyzing metal-binding sites in macromolecule structures. However, inconsistent results for heme-based structures suggest that some widely used bond-valenceR0parameters may need to be adjusted in certain cases. Given the large number of experimental crystal structures gathered since these initial parameters were determined and the similarity of binding sites in organic compounds and macromolecules, the Cambridge Structural Database (CSD) is a valuable resource for refining metal–organic bond-valence parameters.R0bond-valence parameters for iron(II), iron(III) and other metals have been optimized based on an automated processing of all CSD crystal structures. Almost allR0bond-valence parameters were reproduced, except for iron–nitrogen bonds, for which distinctR0parameters were defined for two observed subpopulations, corresponding to low-spin and high-spin states, of iron in both oxidation states. The significance of this data-driven method for parameter discovery, and how the spin state affects the interpretation of heme-containing proteins and iron-binding sites in macromolecular structures, are discussed.
31

Višňovský, Štefan. "Magnetooptics in Cylindrical Structures." Applied Sciences 8, no. 12 (December 8, 2018): 2547. http://dx.doi.org/10.3390/app8122547.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Understanding magnetooptics in cylindrical structures presents interest in the development of magnetic sensor and nonreciprocal devices compatible with optical fibers. The present work studies wave propagation in dielectric circular cylindrical structures characterized by magnetic permeability and electric permittivity tensors at axial magnetization. The Helmholtz equations deduced from the Maxwell equations in transverse circularly polarized representation provide electric and magnetic fields. With the restriction to terms linear in off-diagonal tensor elements, these can be expressed analytically. The results are applied to magnetooptic (MO) circular cylindrical waveguides with a step refractive index profile. The nonreciprocal propagation is illustrated on waveguides with an yttrium iron garnet (YIG) core and a lower refractive index cladding formed by gallium substituted yttrium iron garnet (GaYIG) at the optical communication wavelength. The propagation distance required for the isolator operation is about one hundred micrometers. The approach may be applied to other structures of cylindrical symmetry in the range from microwave to optical frequencies.
32

Kurata, Hiroki, Kazuhiro Nagai, Seiji Isoda, and Takashi Kobayashi. "ELNES of Iron Compounds." Proceedings, annual meeting, Electron Microscopy Society of America 48, no. 2 (August 12, 1990): 28–29. http://dx.doi.org/10.1017/s0424820100133734.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Electron energy loss spectra of transition metal oxides, which show various fine structures in inner shell edges, have been extensively studied. These structures and their positions are related to the oxidation state of metal ions. In this sence an influence of anions coordinated with the metal ions is very interesting. In the present work, we have investigated the energy loss near-edge structures (ELNES) of some iron compounds, i.e. oxides, chlorides, fluorides and potassium cyanides. In these compounds, Fe ions (Fe2+ or Fe3+) are octahedrally surrounded by six ligand anions and this means that the local symmetry around each iron is almost isotropic.EELS spectra were obtained using a JEM-2000FX with a Gatan Model-666 PEELS. The energy resolution was about leV which was mainly due to the energy spread of LaB6 -filament. The threshole energies of each edges were measured using a voltage scan module which was calibrated by setting the Ni L3 peak in NiO to an energy value of 853 eV.
33

Al-Haik, M., C. C. Luhrs, M. M. Reda Taha, A. K. Roy, L. Dai, J. Phillips, and S. Doorn. "Hybrid Carbon Fibers/Carbon Nanotubes Structures for Next Generation Polymeric Composites." Journal of Nanotechnology 2010 (2010): 1–9. http://dx.doi.org/10.1155/2010/860178.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Pitch-based carbon fibers are commonly used to produce polymeric carbon fiber structural composites. Several investigations have reported different methods for dispersing and subsequently aligning carbon nanotubes (CNTs) as a filler to reinforce polymer matrix. The significant difficulty in dispersing CNTs suggested the controlled-growth of CNTs on surfaces where they are needed. Here we compare between two techniques for depositing the catalyst iron used toward growing CNTs on pitch-based carbon fiber surfaces. Electrochemical deposition of iron using pulse voltametry is compared to DC magnetron iron sputtering. Carbon nanostructures growth was performed using a thermal CVD system. Characterization for comparison between both techniques was compared via SEM, TEM, and Raman spectroscopy analysis. It is shown that while both techniques were successful to grow CNTs on the carbon fiber surfaces, iron sputtering technique was capable of producing more uniform distribution of iron catalyst and thus multiwall carbon nanotubes (MWCNTs) compared to MWCNTs grown using the electrochemical deposition of iron.
34

Claros, Martha, Milena Setka, Yecid P. Jimenez, and Stella Vallejos. "AACVD Synthesis and Characterization of Iron and Copper Oxides Modified ZnO Structured Films." Nanomaterials 10, no. 3 (March 5, 2020): 471. http://dx.doi.org/10.3390/nano10030471.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Non-modified (ZnO) and modified (Fe2O3@ZnO and CuO@ZnO) structured films are deposited via aerosol assisted chemical vapor deposition. The surface modification of ZnO with iron or copper oxides is achieved in a second aerosol assisted chemical vapor deposition step and the characterization of morphology, structure, and surface of these new structured films is discussed. X-ray photoelectron spectrometry and X-ray diffraction corroborate the formation of ZnO, Fe2O3, and CuO and the electron microscopy images show the morphological and crystalline characteristics of these structured films. Static water contact angle measurements for these structured films indicate hydrophobic behavior with the modified structures showing higher contact angles compared to the non-modified films. Overall, results show that the modification of ZnO with iron or copper oxides enhances the hydrophobic behavior of the surface, increasing the contact angle of the water drops at the non-modified ZnO structures from 122° to 135° and 145° for Fe2O3@ZnO and CuO@ZnO, respectively. This is attributed to the different surface properties of the films including the morphology and chemical composition.
35

Rekha Kumari, Hariprasad Rao L, Gopinath T T, and Pandiyan K R. "Investigation on Haematinic accessible Assortments and Measurable Structures available in Indian Markets." International Journal of Research in Pharmaceutical Sciences 11, SPL4 (December 25, 2020): 704–8. http://dx.doi.org/10.26452/ijrps.v11ispl4.4022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
To investigate Haematinic definitions accessible in India arcade for their assortments of measurements structures, hard salts utilized, the substance of essential iron, recurrence of organization compulsory, the occurrence of extra supplements, levelheadedness and price. Haematinic details recorded in IDR 2018, were investigated for salts of Iron present. Arrangements of ferrous fumarate were additionally investigated for Iron substance, presence of folic corrosive and other included extra parts. A sum of 522 plans, 291 (55.74%) was oral strong measurement structure, 206 (39.46%) were oral fluids and 25 (4.7%) were parenteral. Iron salts in these details were in a type of ferrous fumarate, carbonyl iron, iron ascorbate, iron ammonium citrate, ferric hydroxide polymaltose perplexing, ferrous sulfate, sodium hydrate. Carbonyl iron was available in 92 arrangements and was most ordinarily utilized readiness in oral strong plans. A few details moreover contained Vitamin B12, zinc sulfate, histidine, lysine different multivitamins and calcium arrangements in factor extent. Out of 291 oral strong, 45 (15.46 %) arrangements required organization > three times each day to accomplish the remedial fixation. The normal expense of the sound planning was more than the normal expense of silly arrangement. Investigation of different haematinics shows there is no consistency in details. Iron and folic corrosive are included wide factor range in addition, different substances were additionally included with no very much demonstrated proof. Steps ought to be taken to normalize these details.
36

Baldokhin, Yuriy V., Yuriy D. Perfiliev, and Leonid A. Kulikov. "Size effects in ultrafine iron. New structures: 2D - 3D." Nexo Revista Científica 34, no. 01 (April 13, 2021): 13–23. http://dx.doi.org/10.5377/nexo.v34i01.11282.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This article is devoted to the analysis of the size of iron nanoparticles impact on the structure, to comparison of the results obtained for the nanopowders in the various authors’ researches. The article considers factors that may impact on the form and parameters of the Mössbauer spectra of iron nanopowders obtained by the inert gas condensation technique (Gen-Miller’s method). Possible causes of the new state of the iron are proved with the effective magnetic field at the 57 Fe nucleus (H=365 kOe). But the results related to size effects differ from the researches of other authors. It was revealed that nanoparticles with a mean (X-ray data) particle size of 50 nm have also Angstrem patterns, which can meet the new structure. Presence of small amounts of superparamagnetic oxide could be a catalyst, impetus for the formation of the new structure, and also, at the exchange interactions, could modify the charge of the electron density at the Fe nuclei. Reviewed and other factors can result in appearing of such a high value of the effective magnetic field at the iron nuclei.
37

Zhang, Ming Huan, Qing Shao, Lu Yuan, Guang Wen Zhou, and Yi Qian Wang. "Mechanism of the Oxidation of Iron." Advanced Materials Research 709 (June 2013): 106–9. http://dx.doi.org/10.4028/www.scientific.net/amr.709.106.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A layered structure of different iron oxides was produced by thermal oxidation of iron. The structure and microstructure of different layers were examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Selected area electron diffraction (SAED) was used to identify the structures of the different oxide layers. Two different structures of Fe2O3were found to co-exist. Based on our observation, a possible oxidation mechanism for iron was proposed. The results shed light on the oxidation process of metals and provide insight into the synthesis of iron oxides.
38

Steiner, Margreet. "Iron Age Cultic Sites in Transjordan." Religions 10, no. 3 (February 27, 2019): 145. http://dx.doi.org/10.3390/rel10030145.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the area east of the river Jordan, eight Iron Age structures identified as cultic have been excavated. This paper presents the evidence as published and discusses the relevance of the cultic identification of the structures.
39

Pechlivani, E. M., and F. Stergioudis. "Commensurability of the Structures of Boride Layers." Key Engineering Materials 495 (November 2011): 181–84. http://dx.doi.org/10.4028/www.scientific.net/kem.495.181.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The interaction of solid NH4HCO3 with iron, where the ammonia product has been adsorbed nondissociatively to iron surfaces at low temperatures [1] was investigated. The nitride clusters formed on steel substrates modified the surface morphology and characteristics of the substrate and influenced their adhesion during subsequent procedure of coating. In our case, efforts were made to decorate the steel substrate in order to influence the base metal reactivity towards boron and its ability to react and form stable compounds with boron [2]. Boride layers on steel are examined by means of SEM and XRD analysis. The decorated surface was observed by FTIR method.
40

Wang, Jun, Jun-Wei Zhao, Hai-Yan Zhao, Bai-Feng Yang, Huan He, and Guo-Yu Yang. "Syntheses, structures and properties of two multi-iron–samarium/multi-iron substituted germanotungstates." CrystEngComm 16, no. 2 (2014): 252–59. http://dx.doi.org/10.1039/c3ce42023j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Schultz, Richard H., and P. B. Armentrout. "Threshold collisional activation of FeC2H6+: iron(1+)-ethane vs. iron(1+)-dimethyl structures." Journal of Physical Chemistry 96, no. 4 (February 1992): 1662–67. http://dx.doi.org/10.1021/j100183a031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Yoshimura, S., S. Yoshihara, T. Shirakashi, E. Sato, and K. Ishii. "Magnetic Properties and Structures of Electrodeposited Iron Films." Journal of the Magnetics Society of Japan 18, no. 2 (1994): 281–84. http://dx.doi.org/10.3379/jmsjmag.18.281.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Barge, Laura M., Ivria J. Doloboff, Lauren M. White, Galen D. Stucky, Michael J. Russell, and Isik Kanik. "Characterization of Iron–Phosphate–Silicate Chemical Garden Structures." Langmuir 28, no. 8 (November 16, 2011): 3714–21. http://dx.doi.org/10.1021/la203727g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Wang Zhi-Cheng and Cao Guang-Han. "Self-doped iron-based superconductors with intergrowth structures." Acta Physica Sinica 67, no. 20 (2018): 207406. http://dx.doi.org/10.7498/aps.67.20181355.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Yoshimura, S., S. Yoshihara, T. Shirakashi, E. Sato, and K. Ishii. "Magnetic Properties and Structures of Electrodeposited Iron Films." IEEE Translation Journal on Magnetics in Japan 9, no. 5 (September 1994): 112–17. http://dx.doi.org/10.1109/tjmj.1994.4565933.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Zhang, Rui, Wei Fan, Brendan Twamley, David J. Berg, and Reginald H. Mitchell. "Synthesis and Structures of Dimethyldihydropyrene Iron Carbonyl Complexes." Organometallics 26, no. 8 (April 2007): 1888–94. http://dx.doi.org/10.1021/om0700112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Qi, Li, Shidong Feng, Na Xu, Mingzhen Ma, Qin Jing, Gong Li, and Riping Liu. "Pressure-induced Structures and Structural Evolution in Iron." Materials Research 18, suppl 1 (November 17, 2015): 78–82. http://dx.doi.org/10.1590/1516-1439.327014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Redrup, Kate V., and Mark T. Weller. "Synthesis and crystal structures of iron hydrogen phosphates." Dalton Transactions, no. 19 (2009): 3786. http://dx.doi.org/10.1039/b902519g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Kabir, M. K., N. Miyazaki, S. Kawata, K. Adachi, H. Kumagai, K. Inoue, S. Kitagawa, K. Iijima, and M. Katada. "Novel layered structures constructed from iron–chloranilate compounds." Coordination Chemistry Reviews 198, no. 1 (March 2000): 157–69. http://dx.doi.org/10.1016/s0010-8545(00)00232-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Lii, Kwang-Hwa, Yuh-Feng Huang, Vítezslav Zima, Chih-Yuan Huang, Hsiu-Mei Lin, Yau-Chen Jiang, Fen-Ling Liao, and Sue-Lein Wang. "Syntheses and Structures of Organically Templated Iron Phosphates." Chemistry of Materials 10, no. 10 (October 1998): 2599–609. http://dx.doi.org/10.1021/cm980152h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії