Добірка наукової літератури з теми "IPSC-Derived neural models"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "IPSC-Derived neural models".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "IPSC-Derived neural models"
Amalakanti, *Sridhar, Vijaya Chandra Reddy Avula, and Sachin Singh. "SYSTEMATIC REVIEW OF INDUCED PLURIPOTENT STEM CELL THERAPY IN TRAUMATIC BRAIN INJURY." International Journal of Neuropsychopharmacology 28, Supplement_1 (February 2025): i364—i365. https://doi.org/10.1093/ijnp/pyae059.649.
Повний текст джерелаYang, Guang, Hyenjong Hong, April Torres, Kristen Malloy, Gourav Choudhury, Jeffrey Kim, and Marcel Daadi. "Standards for Deriving Nonhuman Primate-Induced Pluripotent Stem Cells, Neural Stem Cells and Dopaminergic Lineage." International Journal of Molecular Sciences 19, no. 9 (September 17, 2018): 2788. http://dx.doi.org/10.3390/ijms19092788.
Повний текст джерелаSupakul, Sopak, Chisato Oyama, Yuki Hatakeyama, Sumihiro Maeda, and Hideyuki Okano. "Estradiol enhanced neuronal plasticity and ameliorated astrogliosis in human iPSC-derived neural models." Regenerative Therapy 25 (March 2024): 250–63. http://dx.doi.org/10.1016/j.reth.2023.12.018.
Повний текст джерелаLiu, Sijun, Yuying Zhao, Xiaoying Su, Chengcheng Zhou, Peifen Yang, Qiusan Lin, Shijun Li, et al. "Reconstruction of Alzheimer’s Disease Cell Model In Vitro via Extracted Peripheral Blood Molecular Cells from a Sporadic Patient." Stem Cells International 2020 (December 18, 2020): 1–10. http://dx.doi.org/10.1155/2020/8897494.
Повний текст джерелаBarak, Martin, Veronika Fedorova, Veronika Pospisilova, Jan Raska, Simona Vochyanova, Jiri Sedmik, Hana Hribkova, Hana Klimova, Tereza Vanova, and Dasa Bohaciakova. "Human iPSC-Derived Neural Models for Studying Alzheimer’s Disease: from Neural Stem Cells to Cerebral Organoids." Stem Cell Reviews and Reports 18, no. 2 (February 2022): 792–820. http://dx.doi.org/10.1007/s12015-021-10254-3.
Повний текст джерелаCostamagna, Gianluca, Giacomo Pietro Comi, and Stefania Corti. "Advancing Drug Discovery for Neurological Disorders Using iPSC-Derived Neural Organoids." International Journal of Molecular Sciences 22, no. 5 (March 6, 2021): 2659. http://dx.doi.org/10.3390/ijms22052659.
Повний текст джерелаHunt, Jack F. V., Meng Li, Ryan Risgaard, Gene E. Ananiev, Scott Wildman, Fan Zhang, Tim S. Bugni, Xinyu Zhao, and Anita Bhattacharyya. "High Throughput Small Molecule Screen for Reactivation of FMR1 in Fragile X Syndrome Human Neural Cells." Cells 11, no. 1 (December 27, 2021): 69. http://dx.doi.org/10.3390/cells11010069.
Повний текст джерелаCsöbönyeiová, Mária, Štefan Polák, and L’uboš Danišovič. "Toxicity testing and drug screening using iPSC-derived hepatocytes, cardiomyocytes, and neural cells." Canadian Journal of Physiology and Pharmacology 94, no. 7 (July 2016): 687–94. http://dx.doi.org/10.1139/cjpp-2015-0459.
Повний текст джерелаFernández-Santiago, Rubén, and Mario Ezquerra. "Epigenetic Research of Neurodegenerative Disorders Using Patient iPSC-Based Models." Stem Cells International 2016 (2016): 1–16. http://dx.doi.org/10.1155/2016/9464591.
Повний текст джерелаTamura, Ryota, Masahiro Yo, Hiroyuki Miyoshi, Oltea Sampetrean, Hideyuki Saya, Hideyuki Okano, and Masahiro Toda. "ET-1 STEM CELL-BASED GENE THERAPY FOR MALIGNANT GLIOMA USING GENOME-EDITED HUMAN INDUCED PLURIPOTENT STEM CELLS." Neuro-Oncology Advances 4, Supplement_3 (December 1, 2022): iii4—iii5. http://dx.doi.org/10.1093/noajnl/vdac167.015.
Повний текст джерелаДисертації з теми "IPSC-Derived neural models"
Chaput, Carole. "Therapeutic functionalization of a rare neurodevelopmental and monogenic disease model based on the contribution of the HSF2 stress pathway." Electronic Thesis or Diss., Université Paris Cité, 2024. http://www.theses.fr/2024UNIP5190.
Повний текст джерелаNeurodevelopmental disorders (NDD) affect around 10% of children and are a major source of lifelong disability. Characterised by defective brain development and great variability in the clinical picture of patients, which compromises diagnosis and the emergence of therapeutic solutions, they represent a significant human, societal and economic cost. The aim of this project is to gain a better understanding of a common feature of NDDs - the deregulation of stress response pathways - which could provide a readout to understanding these pathologies. The integration of processes triggered by stress is governed by heat shock transcription factors (HSFs), which are strongly deregulated in several NDDs. This has two consequences: an altered stress response in neural cells leading to defects in brain development. We have helped to show that these HSFs are essential for proper brain development. More specifically, the team demonstrated that HSF2 plays a key role in regulating the proliferation of progenitor cells and neuronal migration in the cortex by modulating the expression of genes involved in cell adhesion. Pharmacological modulation of this pathway could therefore offer new therapeutic possibilities. In a first study, the mechanisms underlying HSF deregulation were investigated in cells from patients with Rubinstein-Taybi syndrome (RSTS), a rare genetic NDD caused by mutations in the CREBBP or EP300 genes. Our study showed a decrease in HSF2 protein levels in fibroblasts and in neural models (2D and 3D) derived from induced pluripotent stem cells (iPSCs) from RSTS patients. This decrease in HSF2 protein levels resulted from a defect in acetylation by CBP or EP300, leading to ubiquitination and degradation by the proteasome. As a result, RSTS cells showed an altered stress response and reduced expression of genes essential for neural development, in particular N-cadherin. Restoration of HSF2 levels, either by proteasome inhibition or by acetylation-mimicking mutations, restored both the stress response and the expression of neurodevelopmental genes. We found that disruption of the CBP/EP300-HSF2-N-cadherin pathway is recapitulated in RSTS neural models, which display proliferation abnormalities linked to altered cell-cell adhesion, particularly in the N-cadherin pathway. On the basis of these results and in collaboration with Ksilink, my CIFRE thesis project aims to develop a cellular model of NDD based on RSTS patients. This model will enable us to explore how perturbations in the HSF pathway could contribute to various NDDs. To achieve this objective, I first generated an HSF2 mutant that mimics the acetylated form of the protein in iPSCs derived from RSTS patient fibroblasts. Using this isogenic model as a reference, I developed and validated a two-dimensional neural culture model and identified new HSF2-dependent targets and phenotypes using a multiparametric approach ranging from high-throughput transcriptomics to cell morphological analyses. This approach made it possible to identify the pro-neuronal factor, ASCL1, and a morphological phenotype, rosette formation, as key readouts for analysis by high-content imaging. On the basis of these two phenotypes, I used the neural model to screen a selection of molecules with therapeutic potential using high-content imaging. This work will pave the way for new therapeutic approaches aimed at modulating stress response pathways, thereby opening up new possibilities for the treatment of NDD
Книги з теми "IPSC-Derived neural models"
Wainger, Brian J. Amyotrophic Lateral Sclerosis. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199937837.003.0028.
Повний текст джерелаЧастини книг з теми "IPSC-Derived neural models"
Singstad, Bjørn Jostein, Bendik Steinsvåg Dalen, Sandhya Sihra, Nickolas Forsch, and Samuel Wall. "Identifying Ionic Channel Block in a Virtual Cardiomyocyte Population Using Machine Learning Classifiers." In Computational Physiology, 91–109. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05164-7_8.
Повний текст джерелаPré, Deborah, Alexander T. Wooten, Haowen Zhou, Ashley Neil, and Anne G. Bang. "Assaying Chemical Long-Term Potentiation in Human iPSC-Derived Neuronal Networks." In Stem Cell-Based Neural Model Systems for Brain Disorders, 275–89. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3287-1_22.
Повний текст джерелаLomoio, Selene, and Giuseppina Tesco. "A 3D Bioengineered Neural Tissue Model Generated from Human iPSC-Derived Neural Precursor Cells." In Stem Cell-Based Neural Model Systems for Brain Disorders, 185–92. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3287-1_14.
Повний текст джерелаTukker, Anke M., Fiona M. J. Wijnolts, Aart de Groot, Richard W. Wubbolts, and Remco H. S. Westerink. "In Vitro Techniques for Assessing Neurotoxicity Using Human iPSC-Derived Neuronal Models." In Neuromethods, 17–35. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9228-7_2.
Повний текст джерелаVulakh, Gabriella, and Xin Yang. "Characterizing the Neuron-Glial Interactions by the Co-cultures of Human iPSC-Derived Oligodendroglia and Neurons." In Stem Cell-Based Neural Model Systems for Brain Disorders, 103–11. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3287-1_9.
Повний текст джерелаO’Rourke, Ryan, Guzide Ayse Erdemir, and Yu-Wen Alvin Huang. "Assays of Monitoring and Measuring Autophagic Flux for iPSC-Derived Human Neurons and Other Brain Cell Types." In Stem Cell-Based Neural Model Systems for Brain Disorders, 221–33. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3287-1_18.
Повний текст джерелаConnolly, Kevin, Mikael Lehoux, Benedetta Assetta, and Yu-Wen Alvin Huang. "Modeling Cellular Crosstalk of Neuroinflammation Axis by Tri-cultures of iPSC-Derived Human Microglia, Astrocytes, and Neurons." In Stem Cell-Based Neural Model Systems for Brain Disorders, 79–87. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3287-1_7.
Повний текст джерелаVarela, Maria C., Ranmal Samarasinghe, and Jack M. Parent. "Functional Exploration of Epilepsy Genes in Patient-Derived Cells." In Jasper's Basic Mechanisms of the Epilepsies, edited by Jeffrey L. Noebels, 841–60. 5th ed. Oxford University PressNew York, 2024. http://dx.doi.org/10.1093/med/9780197549469.003.0042.
Повний текст джерелаТези доповідей конференцій з теми "IPSC-Derived neural models"
Pitta, Marina Galdino da Rocha, Jordy Silva de Carvalho, Luzilene Pereira de Lima, and Ivan da Rocha Pitta. "iPSC therapies applied to rehabilitation in parkinson’s disease." In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.022.
Повний текст джерелаRavagnani, Felipe, Hellen Valerio, Jersey Maués, Arthur de Oliveira, Renato Puga, Karina Oliveira, Fabíola Picosse, et al. "Omics profile of iPSC-derived astrocytes from Progressive Supranuclear Palsy (PSP) patients." In XIV Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2023. http://dx.doi.org/10.5327/1516-3180.141s1.414.
Повний текст джерела