Добірка наукової літератури з теми "Ionic gating"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Ionic gating".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Ionic gating"

1

Tang, Chih-Yung, Francisco Bezanilla, and Diane M. Papazian. "Extracellular Mg2+ Modulates Slow Gating Transitions and the Opening of Drosophila Ether-à-Go-Go Potassium Channels." Journal of General Physiology 115, no. 3 (February 28, 2000): 319–38. http://dx.doi.org/10.1085/jgp.115.3.319.

Повний текст джерела
Анотація:
We have characterized the effects of prepulse hyperpolarization and extracellular Mg2+ on the ionic and gating currents of the Drosophila ether-à-go-go K+ channel (eag). Hyperpolarizing prepulses significantly slowed channel opening elicited by a subsequent depolarization, revealing rate-limiting transitions for activation of the ionic currents. Extracellular Mg2+ dramatically slowed activation of eag ionic currents evoked with or without prepulse hyperpolarization and regulated the kinetics of channel opening from a nearby closed state(s). These results suggest that Mg2+ modulates voltage-dependent gating and pore opening in eag channels. To investigate the mechanism of this modulation, eag gating currents were recorded using the cut-open oocyte voltage clamp. Prepulse hyperpolarization and extracellular Mg2+ slowed the time course of ON gating currents. These kinetic changes resembled the results at the ionic current level, but were much smaller in magnitude, suggesting that prepulse hyperpolarization and Mg2+ modulate gating transitions that occur slowly and/or move relatively little gating charge. To determine whether quantitatively different effects on ionic and gating currents could be obtained from a sequential activation pathway, computer simulations were performed. Simulations using a sequential model for activation reproduced the key features of eag ionic and gating currents and their modulation by prepulse hyperpolarization and extracellular Mg2+. We have also identified mutations in the S3–S4 loop that modify or eliminate the regulation of eag gating by prepulse hyperpolarization and Mg2+, indicating an important role for this region in the voltage-dependent activation of eag.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yue, Zengji. "Ionic gating for ion intercalation." Nature Reviews Physics 3, no. 5 (April 1, 2021): 306. http://dx.doi.org/10.1038/s42254-021-00311-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ertel, E. A., M. M. Smith, M. D. Leibowitz, and C. J. Cohen. "Isolation of myocardial L-type calcium channel gating currents with the spider toxin omega-Aga-IIIA." Journal of General Physiology 103, no. 5 (May 1, 1994): 731–53. http://dx.doi.org/10.1085/jgp.103.5.731.

Повний текст джерела
Анотація:
The peptide omega-agatoxin-IIIA (omega-Aga-IIIA) blocks ionic current through L-type Ca channels in guinea pig atrial cells without affecting the associated gating currents. omega-Aga-IIIA permits the study of L-type Ca channel ionic and gating currents under nearly identical ionic conditions. Under conditions that isolate L-type Ca channel currents, omega-Aga-IIIA blocks all ionic current during a test pulse and after repolarization. This block reveals intramembrane charge movements of equal magnitude and opposite sign at the beginning of the pulse (Q(on)) and after repolarization (Q(off)). Q(on) and Q(off) are suppressed by 1 microM felodipine, saturate with increasing test potential, and are insensitive to Cd. The decay of the transient current associated with Q(on) is composed of fast and slow exponential components. The slow component has a time constant similar to that for activation of L-type Ca channel ionic current, over a broad voltage range. The current associated with Q(off) decays monoexponentially and more slowly than ionic current. Similar charge movements are found in guinea pig tracheal myocytes, which lack Na channels and T-type Ca channels. The kinetic and pharmacological properties of Q(on) and Q(off) indicate that they reflect gating currents associated with L-type Ca channels. omega-Aga-IIIA has no effect on gating currents when ionic current is eliminated by stepping to the reversal potential for Ca or by Cd block. Gating currents constitute a significant component of total current when physiological concentrations of Ca are present and they obscure the activation and deactivation of L-type Ca channels. By using omega-Aga-IIIA, we resolve the entire time course of L-type Ca channel ionic and gating currents. We also show that L- and T-type Ca channel ionic currents can be accurately quantified by tail current analysis once gating currents are taken into account.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Stefani, E., L. Toro, E. Perozo, and F. Bezanilla. "Gating of Shaker K+ channels: I. Ionic and gating currents." Biophysical Journal 66, no. 4 (April 1994): 996–1010. http://dx.doi.org/10.1016/s0006-3495(94)80881-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Roux, Michel J., Riccardo Olcese, Ligia Toro, Francisco Bezanilla, and Enrico Stefani. "Fast Inactivation in Shaker K+ Channels." Journal of General Physiology 111, no. 5 (May 1, 1998): 625–38. http://dx.doi.org/10.1085/jgp.111.5.625.

Повний текст джерела
Анотація:
Fast inactivating Shaker H4 potassium channels and nonconducting pore mutant Shaker H4 W434F channels have been used to correlate the installation and recovery of the fast inactivation of ionic current with changes in the kinetics of gating current known as “charge immobilization” (Armstrong, C.M., and F. Bezanilla. 1977. J. Gen. Physiol. 70:567–590.). Shaker H4 W434F gating currents are very similar to those of the conducting clone recorded in potassium-free solutions. This mutant channel allows the recording of the total gating charge return, even when returning from potentials that would largely inactivate conducting channels. As the depolarizing potential increased, the OFF gating currents decay phase at −90 mV return potential changed from a single fast component to at least two components, the slower requiring ∼200 ms for a full charge return. The charge immobilization onset and the ionic current decay have an identical time course. The recoveries of gating current (Shaker H4 W434F) and ionic current (Shaker H4) in 2 mM external potassium have at least two components. Both recoveries are similar at −120 and −90 mV. In contrast, at higher potentials (−70 and −50 mV), the gating charge recovers significantly more slowly than the ionic current. A model with a single inactivated state cannot account for all our data, which strongly support the existence of “parallel” inactivated states. In this model, a fraction of the charge can be recovered upon repolarization while the channel pore is occupied by the NH2-terminus region.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Misra, Rajiv, Mitchell McCarthy, and Arthur F. Hebard. "Electric field gating with ionic liquids." Applied Physics Letters 90, no. 5 (January 29, 2007): 052905. http://dx.doi.org/10.1063/1.2437663.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bezanilla, F., and E. Stefani. "Voltage-Dependent Gating of Ionic Channels." Annual Review of Biophysics and Biomolecular Structure 23, no. 1 (June 1994): 819–46. http://dx.doi.org/10.1146/annurev.bb.23.060194.004131.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bhatnagar-Schöffmann, T., A. Kovàcs, R. Pachat, D. Ourdani, A. Lamperti, M. A. Syskaki, T. da Câmara Santa Clara Gomes, et al. "Controlling interface anisotropy in CoFeB/MgO/HfO2 using dusting layers and magneto-ionic gating." Applied Physics Letters 122, no. 4 (January 23, 2023): 042402. http://dx.doi.org/10.1063/5.0132870.

Повний текст джерела
Анотація:
In this work, we present the magneto-ionic response to ionic liquid gating in Ta/CoFeB/MgO/HfO2 stacks, where heavy metal dusting layers of Ta, W, and Pt are inserted at the Ta/CoFeB and CoFeB/MgO interfaces. Dusting layers of W inserted at the Ta/CoFeB interface increase perpendicular magnetic anisotropy (PMA) by more than 50%, while no significant changes are seen for Pt. In these samples, gating cannot break the PMA seeded at the CoFeB/MgO interface, only relatively small changes in the coercivity can be induced, about 20% for Ta and Pt and 6% for W. At the CoFeB/MgO interface, a significant quenching of the magnetization is seen when W and Ta dusting layers are inserted, which remains unchanged after gating, suggesting a critical deterioration of the CoFeB. In contrast, Pt dusting layers result in an in-plane anisotropy that can be reversibly converted to PMA through magneto-ionic gating while preserving the polycrystalline structure of the MgO layer. This shows that dusting layers can be effectively used not only to engineer magnetic properties in multilayers but also to strongly modify their magneto-ionic performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Spires, S., and T. Begenisich. "Pharmacological and kinetic analysis of K channel gating currents." Journal of General Physiology 93, no. 2 (February 1, 1989): 263–83. http://dx.doi.org/10.1085/jgp.93.2.263.

Повний текст джерела
Анотація:
We have measured gating currents from the squid giant axon using solutions that preserve functional K channels and with experimental conditions that minimize Na channel contributions to these currents. Two pharmacological agents were used to identify a component of gating current that is associated with K channels. Low concentrations of internal Zn2+ that considerably slow K channel ionic currents with no effect on Na channel currents altered the component of gating current associated with K channels. At low concentrations (10-50 microM) the small, organic, dipolar molecule phloretin has several reported specific effects on K channels: it reduces K channel conductance, shifts the relationship between channel conductance and membrane voltage (Vm) to more positive potentials, and reduces the voltage dependence of the conductance-Vm relation. The K channel gating charge movements were altered in an analogous manner by 10 microM phloretin. We also measured the dominant time constants of the K channel ionic and gating currents. These time constants were similar over part of the accessible voltage range, but at potentials between -40 and 0 mV the gating current time constants were two to three times faster than the corresponding ionic current values. These features of K channel function can be reproduced by a simple kinetic model in which the channel is considered to consist of two, two-state, nonidentical subunits.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chen, Senbin, Falk Frenzel, Bin Cui, Fang Gao, Antonella Campanella, Alexander Funtan, Friedrich Kremer, Stuart S. P. Parkin, and Wolfgang H. Binder. "Gating effects of conductive polymeric ionic liquids." Journal of Materials Chemistry C 6, no. 30 (2018): 8242–50. http://dx.doi.org/10.1039/c8tc01936c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Ionic gating"

1

Hassan, Muhammad Umair. "Field induced charge modulation of thin film materials using ionic liquid gating." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610675.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Demers, Giroux Pierre-Olivier. "Couplage entre les régions IIS4S5 et IIIS6 lors de l’activation du canal calcique CaV3.2." Thèse, 2013. http://hdl.handle.net/1866/10899.

Повний текст джерела
Анотація:
Le canal calcique dépendant du voltage de type-T CaV3.2 joue un rôle important dans l’excitabilité neuronale et dans la perception de la douleur. Le canal CaV3.2 partage une grande homologie structurale et fonctionnelle avec les canaux NaV. Ces deux types de canaux sont activés par de faibles dépolarisations membranaires et possèdent des cinétiques de temps d’activation et d’inactivation plus rapides que les canaux CaV de type-L. Les structures cristallines à haute résolution des canaux bactériens NaVAb (Payandeh et al. 2011; Payandeh et al. 2012) et NaVRh (Zhang et al. 2012) suggèrent que l’hélice amphiphile S4S5 du domaine II peut être couplée avec les résidus de l’hélice S6 dans le domaine II ainsi qu’avec des résidus de l’hélice homologue dans le domaine adjacent, soit le domaine III, et ce, durant l’activation du canal. Pour déterminer les résidus fonctionnellement couplés, durant l’activation du canal CaV3.2, une analyse cyclique de doubles mutants a été effectuée par substitution en glycine et alanine des résidus clés entre l’hélice S4S5 du domaine II et le segment S6 des domaines II et III. Les propriétés biophysiques ont été mesurées à l’aide de la technique de « cut-open » sur les ovocytes. Les énergies d’activation ont été mesurées pour 47 mutations ponctuelles et pour 14 paires de mutants. De grandes énergies de couplage (ΔΔGinteract > 2 kcal mol-1) ont été observées pour 3 paires de mutants introduites dans les IIS4S5/IIS6 et IIS4S5/IIIS6. Aucun couplage significatif n’a été observé entre le IIS4S5 et le IVS6. Nos résultats semblent démontrer que les hélices S4S5 et S6 provenant de deux domaines voisins sont couplées durant l’activation du canal calcique de type-T CaV3.2.
Voltage-activated T-type calcium channel CaV3.2 plays an important role in neuronal excitability and in pain perception. CaV3.2 channel bears a strong structural and functional homology with voltage-dependent NaV channels. In particular, these channels are activated by relatively small depolarization and display faster activation and inactivation kinetics than the L-type CaV channel. High-resolution crystal structures of bacterial NaVAb (Payandeh et al. 2011; Payandeh et al. 2012) and NaVRh (Zhang et al. 2012) suggest that the amphiphilic helix S4S5 in Domain II may be coupled with S6 residues both in Domain II and in the adjacent Domain III during channel activation.To determine whether residues in the S4S5 helix of Domain II are functionally coupled with residues in the S6 helix in Domain II and Domain III during the voltage-dependent activation of CaV3.2, a double mutant cycle analysis was performed by introducing pairs of glycine and alanine residues in the S4S5 helix of Domain II and the S6 region of Domains II and III. Biophysical properties were measured with the cut-open oocyte technique. Activation gating was measured for 47 single mutants and 14 pairs of mutants. Strong coupling energies (ΔΔGinteract > 2 kcal mol-1) were reported for 3 pairs of mutants introduced in IIS4S5/IIS6 and IIS4S5/IIIS6. No significant coupling was observed between IIS4S5 and IVS6. Altogether, our results demonstrate that the S4S5 and S6 helices from neighboring domains are energetically coupled during the activation of the low voltage-gated T-type CaV3.2 channel.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Ionic gating"

1

Bezanilla, Francisco. "Voltage-Dependent Gating." In Ionic Channels in Cells and Model Systems, 37–52. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5077-4_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Goldman, L., and J. L. Kenyon. "Gating Kinetics in Ionic Channels." In Water and Ions in Biological Systems, 791–99. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4899-0424-9_78.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Barnard, A. E. "Gating of Ion Channels by Transmitters: The Range of Structures of the Transmitter-Gated Channels." In Pharmacology of Ionic Channel Function: Activators and Inhibitors, 365–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-57083-4_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ozokwelu, Dickson, Suojiang Zhang, Obiefuna C. Okafor, Weiguo Cheng, and Nicholas Litombe. "Ionic Liquid Gating of Thin Films." In Novel Catalytic and Separation Processes Based on Ionic Liquids, 233–43. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-802027-2.00016-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Partenskii, Micheal, Gennady Miloshevsky, and Peter Jordan. "Engergetics and Gating of Narrow Ionic Channels." In Interfacial Catalysis. CRC Press, 2002. http://dx.doi.org/10.1201/9780203910429.ch17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Keynes, Richard D. "Studies of the kinetics of the ionic and gating currents in the axons of Loligo forbesi as a guide to modelling of the sodium channel." In Cephalopod NeurobiologyNeuroscience Studies in Squid, Octopus and Cuttlefish, 86–96. Oxford University Press, 1995. http://dx.doi.org/10.1093/acprof:oso/9780198547907.003.0061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Ionic gating"

1

Luchinsky, D. G., R. Tindjong, P. V. E. McClintock, I. Kaufman, and R. S. Eisenberg. "On selectivity and gating of ionic channels." In SPIE Fourth International Symposium on Fluctuations and Noise, edited by Sergey M. Bezrukov. SPIE, 2007. http://dx.doi.org/10.1117/12.724703.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Boone, C., M. Fuest, K. Wellmerling, and S. Prakash. "Effect of Time Dependent Excitation Signals on Gating in Nanofluidic Channels." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-53038.

Повний текст джерела
Анотація:
Nanofluidic field effect devices feature a gate electrode embedded in the nanochannel wall. The gate electrode creates local variation in the electric field allowing active, tunable control of ionic transport. Tunable control over ionic transport through nanofluidic networks is essential for applications including artificial ion channels, ion pumps, ion separation, and biosensing. Using DC excitation at the gate, experiments have demonstrated multiple current states in the nanochannel, including the ability to switch off the measured current; however, experimental evaluation of transient signals at the gate electrode has not been explored. Modeling results have shown ion transport at the nanoscale has known time scales for diffusion, electromigration, and convection. This supports the evidence detailed here that use of a time-dependent signal to create local perturbation in the electric field can be used for systematic manipulation of ionic transport in nanochannels. In this report, sinusoidal waveforms of various frequencies were compared against DC excitation on the gate electrode. The ionic transport was quantified by measuring the current through the nanochannels as a function of applied axial and gate potentials. It was found that time varying signals have a higher degree of modulation than a VRMS matched DC signal.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Macchia, Eleonora, Kyriaki Manoli, Brigitte Holtzer, Cinzia Di Franco, Fabrizio Torricelli, Rosaria Anna Picca, Gerardo Palazzo, Gaetano Scamarcio, and Luisa Torsi. "Effect of the ionic-strength of the gating-solution on a bioelectronic response." In 2019 IEEE 8th International Workshop on Advances in Sensors and Interfaces (IWASI). IEEE, 2019. http://dx.doi.org/10.1109/iwasi.2019.8791318.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wong, H., S. Ng, Y. Liu, K. Lam, K. Chan, W. Cheng, D. von Nordheim, C. Mak, B. Ploss, and C. Leung. "Ionic Liquid Gating Modulation of Diluted Magnetic Semicon-ductor (Zn, Mn)O Thin Films." In 2018 IEEE International Magnetic Conference (INTERMAG). IEEE, 2018. http://dx.doi.org/10.1109/intmag.2018.8508168.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gréboval, Charlie, Ulrich Noumbé, Jean-François Dayen, and Emmanuel Lhuillier. "Ionic glasses as an efficient gating strategy to tune the carrier density in narrow bandgap nanocrystal arrays." In Internet Conference for Quantum Dots. València: Fundació Scito, 2020. http://dx.doi.org/10.29363/nanoge.icqd.2020.013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ueda, K., S. Hirose, M. Mori, and H. Asano. "Ambipolar transport and modulation of electronic properties of Mn2CoAl films by ionic liquid gating." In 2017 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2017. http://dx.doi.org/10.7567/ssdm.2017.k-8-04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії