Добірка наукової літератури з теми "Ion Conducting Glasses"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Ion Conducting Glasses".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Ion Conducting Glasses"

1

Mehrer, Helmut. "Diffusion and Ion Conduction in Cation-Conducting Oxide Glasses." Diffusion Foundations 6 (February 2016): 59–106. http://dx.doi.org/10.4028/www.scientific.net/df.6.59.

Повний текст джерела
Анотація:
In this Chapter we review knowledge about diffusion and cation conduction in oxide glasses. We first remind the reader in Section 1 of major aspects of the glassy state and recall in Section 2 the more common glass families. The diffusive motion in ion-conducting oxide glasses can be studied by several techniques – measurements of radiotracer diffusion, studies of the ionic conductivity by impedance spectroscopy, viscosity studies and pressure dependent studies of tracer diffusion and ion conduction. These methods are briefly reviewed in Section 3. Radiotracer diffusion is element-specific, whereas ionic conduction is not. A comparison of both types of experiments can throw considerable light on the question which type of ions are carriers of ionic conduction. For ionic conductors Haven ratios can be obtained from the tracer diffusivity and the ionic conductivity for those ions which dominate the conductivity.In the following sections we review the diffusive motion of cations in soda-lime silicate glass and in several alkali-oxide glasses based mainly on results from our laboratory published in detail elsewhere, but we also take into account literature data.Section 4 is devoted to two soda-lime silicate glasses, materials which are commonly used for window glass and glass containers. A comparison between ionic conductivity and tracer diffusion of Na and Ca isotopes, using the Nernst-Einstein relation to deduce charge diffusivities, reveals that sodium ions are the carriers of ionic conduction in soda-lime glasses. A comparison with viscosity data on the basis of the Stokes-Einstein relation shows that the SiO2 network is many orders of magnitude less mobile than the relatively fast diffusing modifier cations Na. The Ca ions are less mobile than the Na ions but nevertheless Ca is considerably more mobile than the network.Section 5 summarizes results of ion conduction and tracer diffusion for single Na and single Rb borate glasses. Tracer diffusion and ionic conduction have been studied in single alkali-borate glasses as functions of temperature and pressure. The smaller ion is the faster diffusing species in its own glass. This is a common feature of all alkali oxide glasses. The Haven ratio of Na in Na borate glass is temperature independent whereas the Haven ratio of Rb diffusion in Rb borate glass decreases with decreasing temperature.Section 6 reviews major facts of alkali-oxide glasses with two different alkali ions. Such glasses reveal the so-called mixed-alkali effect. Its major feature is a deep minimum of the conductivity near some middle composition for the ratio of the two alkali ions. Tracer diffusion shows a crossover of the two tracer diffusivities as functions of the relative alkali content near the conductivity minimum. The values of the tracer diffusivities also reveal in which composition range which ions dominate ionic conduction. Tracer diffusion is faster for those alkali ions which dominate the composition of the mixed glass.Section 7 considers the pressure dependence of tracer diffusion and ionic conduction. Activation volumes of tracer diffusion and of charge diffusion are reviewed. By comparison of tracer and charge diffusion the so-called Haven ratios are obtained as functions of temperature, pressure and composition. The Haven ratio of Rb in Rb borate glass decreases with temperature and pressure whereas that of Na in Na borate glass is almost constant.Section 8 summarizes additional common features of alkali-oxide glasses. Activation enthalpies of charge diffusion decrease with decreasing average ion-ion distance. The Haven ratio is unity for large ion-ion distances and decreases with increasing alkali content and hence with decreasing ion-ion distance.Conclusions about the mechanism of diffusion are discussed in Section 9. The Haven ratio near unity at low alkali concentrations can be attributed to interstitial-like diffusion similar to interstitial diffusion in crystals. At higher alkali contents collective, chain-like motions of several ions prevail and lead to a decrease of the Haven ratio. The tracer diffusivities have a pressure dependence which is stronger than that of ionic conductivity. This entails a pressure-dependent Haven ratio, which can be attributed to an increasing degree of collectivity of the ionic jump process with increasing pressure. Monte Carlo simulations showed that the number of ions which participate in collective jump events increases with increasing ion content – i.e. with decreasing average ion-ion distance. For the highest alkali contents up to four ions can be involved in collective motion. Common aspects of the motion process of ions in glasses and of atoms in glassy metals are pointed out. Diffusion in glassy metals also occurs by collective motion of several atoms.Section 10 summarizes the major features of ionic conduction and tracer diffusion and its temperature and pressure dependence of oxide glasses.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jacob, Sarah, John Javornizky, George H. Wolf, and C. Austen Angell. "Oxide ion conducting glasses." International Journal of Inorganic Materials 3, no. 3 (June 2001): 241–51. http://dx.doi.org/10.1016/s1466-6049(01)00024-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Minami, Tsutomu. "Fast ion conducting glasses." Journal of Non-Crystalline Solids 73, no. 1-3 (August 1985): 273–84. http://dx.doi.org/10.1016/0022-3093(85)90353-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Burckhardt, W., B. Rudolph, and U. Schütze. "New Li+-ion conducting glasses." Solid State Ionics 28-30 (September 1988): 739–42. http://dx.doi.org/10.1016/s0167-2738(88)80137-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Burckhardt, W. "New Li+-ion conducting glasses." Solid State Ionics 36, no. 3-4 (November 1989): 153–54. http://dx.doi.org/10.1016/0167-2738(89)90160-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

KADONO, K., K. MITANI, M. YAMASHITA, and H. TANAKA. "New lithium ion-conducting glasses." Solid State Ionics 47, no. 3-4 (September 1991): 227–30. http://dx.doi.org/10.1016/0167-2738(91)90243-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pradel, A., and M. Ribes. "Ion transport in superionic conducting glasses." Journal of Non-Crystalline Solids 172-174 (September 1994): 1315–23. http://dx.doi.org/10.1016/0022-3093(94)90658-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Weitzel, Karl Michael. "Bombardment Induced Ion Transport through Ion Conducting Glasses." Diffusion Foundations 6 (February 2016): 107–43. http://dx.doi.org/10.4028/www.scientific.net/df.6.107.

Повний текст джерела
Анотація:
The recently developed bombardment induced ion transport (BIIT) technique is reviewed. BIIT is based on shining an energy-selected alkali ion beam at the surface of a sample of interest. Attachment of these ions leads to the build-up of a surface potential and a surface particle density. This in turn generates the corresponding gradients which induce ion transport towards a single metal electrode connected to the backside of the sample where it is detected as a neutralization current. Two different versions of BIIT are presented, i.) the native ion BIIT and ii.) the foreign ion BIIT. The former is demonstrated to provide access to absolute ionic conductivities and activation energies, the latter leads to the generation of electrodiffusion profiles. Theoretical modelling of these concentration profiles by means of the Nernst-Planck-Poisson theory allows to deduce the concentration dependence of diffusion coefficients.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pietrzak, Tomasz K., Marek Wasiucionek, and Jerzy E. Garbarczyk. "Towards Higher Electric Conductivity and Wider Phase Stability Range via Nanostructured Glass-Ceramics Processing." Nanomaterials 11, no. 5 (May 17, 2021): 1321. http://dx.doi.org/10.3390/nano11051321.

Повний текст джерела
Анотація:
This review article presents recent studies on nanostructured glass-ceramic materials with substantially improved electrical (ionic or electronic) conductivity or with an extended temperature stability range of highly conducting high-temperature crystalline phases. Such materials were synthesized by the thermal nanocrystallization of selected electrically conducting oxide glasses. Various nanostructured systems have been described, including glass-ceramics based on ion conductive glasses (silver iodate and bismuth oxide ones) and electronic conductive glasses (vanadate-phosphate and olivine-like ones). Most systems under consideration have been studied with the practical aim of using them as electrode or solid electrolyte materials for rechargeable Li-ion, Na-ion, all-solid batteries, or solid oxide fuel cells. It has been shown that the conductivity enhancement of glass-ceramics is closely correlated with their dual microstructure, consisting of nanocrystallites (5–100 nm) confined in the glassy matrix. The disordered interfacial regions in those materials form “easy conduction” paths. It has also been shown that the glassy matrices may be a suitable environment for phases, which in bulk form are stable at high temperatures, and may exist when confined in nanograins embedded in the glassy matrix even at room temperature. Many complementary experimental techniques probing the electrical conductivity, long- and short-range structure, microstructure at the nanometer scale, or thermal transitions have been used to characterize the glass-ceramic systems under consideration. Their results have helped to explain the correlations between the microstructure and the properties of these systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bhattacharya, S., and A. Ghosh. "Electrical properties of ion conducting molybdate glasses." Journal of Applied Physics 100, no. 11 (2006): 114119. http://dx.doi.org/10.1063/1.2400116.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Ion Conducting Glasses"

1

Hadzifejzovic, Emina. "Electrical and structural aspects of Li-ion conducting phosphate based glasses and glass ceramics." Thesis, Queen Mary, University of London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.408396.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Trott, Christian Robert [Verfasser], Philipp [Akademischer Betreuer] Maaß, Erich [Akademischer Betreuer] Runge, and Hans [Akademischer Betreuer] Babovsky. "LAMMPScuda - a new GPU accelerated Molecular Dynamics Simulations Package and its Application to Ion-Conducting Glasses / Christian Robert Trott. Gutachter: Erich Runge ; Hans Babovsky. Betreuer: Philipp Maaß." Ilmenau : Universitätsbibliothek Ilmenau, 2012. http://d-nb.info/1020401990/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Trott, Christian [Verfasser], Philipp [Akademischer Betreuer] Maaß, Erich [Akademischer Betreuer] Runge, and Hans [Akademischer Betreuer] Babovsky. "LAMMPScuda - a new GPU accelerated Molecular Dynamics Simulations Package and its Application to Ion-Conducting Glasses / Christian Robert Trott. Gutachter: Erich Runge ; Hans Babovsky. Betreuer: Philipp Maaß." Ilmenau : Universitätsbibliothek Ilmenau, 2012. http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2011000472.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Niyompan, Anuson. "Fast-ion conducting glass and glass-ceramics for the pH sensor." Thesis, University of Warwick, 2002. http://wrap.warwick.ac.uk/98497/.

Повний текст джерела
Анотація:
Fast-ion conducting glasses of the compositions Na1+xM2-x/3SixP3-xOI2-2x3 (0≤ x ≤3), where M = Zr, Ti, were studied to determine their structural arrangement, physical properties and ionic conductivity. Glass samples were prepared using the conventional melt-quench method in the melting temperature range, 1550 °C to 1650 °C. Glass products were characterised by XRD, DTA, dilatometry and density measurement. Solid state MAS NMR experiments of three accessible nuclei, 23Na, 29Si and 31P were used to determine short-range order arrangement in the glasses. XRD confirms the amorphicity of glasses for the compositions of x in range 0-3. Glass transition temperatures, Tg. TEC, and molar volume are controlled by glass composition. The MAS NMR results suggest that glass structure could be visualised as the silicate network modified by Na+ and Zr4+ or Ti4+ and [PO4] tetrahedra link up with the remaining of these modifiers with no Si-O-P observed. The glass structures were also controlled by the compositions. Using parameters determined by DTA, the corresponding glass-ceramics were produced by heat treatment for 4 hr. The composition containing ZrO2 provided the fast-ion conducting crystalline phase at a small concentration. The major crystalline phase is Na2ZrSi2O7. Glass-ceramics containing TiO2 produce very small concentration of the crystallised phase. Ionic conductivity measurement was used to determine the electrical properties of glass and glass-ceramics. Glasses having high Na2O content showed the higher ionic conductivity compared to the others.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Campbell, A. G. "Electrical processes at metallic contacts to sodium ion conducting glass." Thesis, University of Edinburgh, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378729.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kingdom, Rachel Michele. "Conducting Polymer Matrix Poly(2,2’-Bithiophene) Mercuric Metal Ion Incorporation." Wright State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=wright1259889438.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Salami, Taiye James. "Novel Conductive Glass-Perovskites as Solid Electrolytes in Lithium – ion Batteries." University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1533220964477566.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Benmore, Christopher James. "A neutron diffraction study on the structure of fast-ion conducting and semiconducting glassy chalcogenide alloys." Thesis, University of East Anglia, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334267.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nuernberg, Rafael. "Lithium ion conducting glass-ceramics with NASICON-type structure based on the Li1+x Crx (Gey Ti1-y)2-x (PO4)3 system." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS141/document.

Повний текст джерела
Анотація:
L'objectif principal de ce travail est de développer une nouvelle vitrocéramique structurée par NASICON avec une conductivité Li-ion élevée. Par conséquent, ce travail présente une nouvelle série de compositions de type NASICON sur la base du système Li1+xCrx(GeyTi1-y)2-x(PO4)3. Dans un premier temps, une composition spécifique de ce système a été synthétisée par la méthode de fusion et refroidissement rapide, suivie d'une cristallisation. Le comportement de cristallisation du verre précurseur a été examiné par calorimétrie différentielle à balayage et spectroscopie infrarouge. Les principaux résultats indiquent que le verre précurseur présente une nucléation homogène, a une stabilité de verre considérable et cristallise une phase de type NASICON, qui permet d'obtenir des électrolytes solides par voie vitrocéramique. Dans une deuxième étape, on examine l'effet de la substitution de Ti par Cr et Ge sur la stabilité de verre du verre précurseur, sur les paramètres structuraux de la phase cristalline NASICON et sur les propriétés électriques des vitrocéramiques. Par conséquent, un ensemble de seize compositions de ce système est synthétisé. Les principaux résultats indiquent que la stabilité de verre augmente lorsque Ti est remplacé par Ge et Cr. Après cristallisation, toutes les vitrocéramiques présentent une phase de type NASICON, et leurs paramètres de maille décroissent avec Ge et augmentent avec la teneur en Cr, ce qui permet de régler le volume de la cellule unitaire de la structure de type NASICON. De plus, la conductivité ionique et l'énergie d'activation pour la conduction du lithium dans les vitrocéramiques dépendent notamment du volume de la cellule unitaire de la structure de type NASICON. Enfin, la fenêtre de stabilité électrochimique de la vitrocéramique à structure NASICON de conductivité ionique la plus élevée est étudiée. Les mesures de voltampérométrie cyclique sont suivies par spectroscopie d'impédance électrochimique in situ, permettant de déterminer l'effet des réactions d'oxydation et de réduction sur les propriétés électriques des vitrocéramiques en question. La spectroscopie photoélectronique par rayons X, à son tour, est appliquée pour déterminer quelles espèces chimiques subissent une réduction/oxydation. Nos résultats révèlent que la stabilité électrochimique de ce matériau est limitée par la réduction des cations Ti+4 dans les faibles potentiels et par l'oxydation des anions O-2 dans les hauts potentiels. Aux hauts potentiels, un comportement similaire a également été rencontré pour d'autres conduites Li-ion de type NASICON bien connues, suggérant que le comportement électrochimique dans les potentiels oxydatifs pourrait être généralisé pour les phosphates à structure NASICON
The primary goal of this work is to develop a new NASICON-structured glass-ceramic with high Li-ion conductivity. Therefore, this work introduces a new series of NASICON-type compositions based on the Li1+xCrx(GeyTi1-y)2-x(PO4)3 system. At first, a specific composition of this system is synthesized by the melt-quenching method, followed by crystallization. The crystallization behavior of the precursor glass is examined by differential scanning calorimetry and infrared spectroscopy. The main results indicate that the precursor glass presents homogeneous nucleation, has considerable glass stability and crystallizes a NASICON-like phase, which allows solid electrolytes to be obtained by the glass-ceramic route. As a second step, we examine the effect of substituting Ti by Cr and Ge on the glass stability of the precursor glass, on the structural parameters of NASICON-like phase and the electrical properties of the glass-ceramics. Hence, a set of sixteen compositions of this system is synthesized. The main results indicate that the glass stability increases when Ti is replaced by Ge and Cr. After crystallization, all the glass-ceramics present NASICON-like phase, and their lattice parameters decrease with Ge and increase with Cr content, making it possible to adjust the unit cell volume of the NASICON-type structure. Furthermore, the ionic conductivity and activation energy for lithium conduction in the glass-ceramics are notably dependent on the unit cell volume of the NASICON-type structure. Finally, the electrochemical stability window of the NASICON-structured glass-ceramics of highest ionic conductivity is investigated. Cyclic voltammetry measurements are followed by in situ electrochemical impedance spectroscopy, enabling the effect of oxidation and reduction reactions on the electrical properties of the glass-ceramics in question to be determined. X-ray photoelectron spectroscopy, in turn, is applied to determine which chemical species undergo reduction/oxidation. Our findings reveal that the electrochemical stability of this material is limited by the reduction of Ti+4 cations in low potentials and by the oxidation of O-2 anions in high potentials. At high potentials, similar behavior is also encountered for other well-known NASICON-like Li-ion conducting suggesting that the electrochemical behavior in oxidative potentials could be generalized for NASICON-structured phosphates
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Paraskiva, Alla. "Développement de membranes pour les capteurs chimiques potentiométriques spécifiques aux ions Thallium et Sodium." Thesis, Littoral, 2017. http://www.theses.fr/2017DUNK0466/document.

Повний текст джерела
Анотація:
Le but de ce travail de thèse a consisté à étudier les propriétés physico-chimiques des verres chalcogénures des systèmes pour pouvoir les utiliser comme les membranes des capteurs chimiques pour le dosage des ions TI⁺ et NA⁺ . D'abord, on a effectué les mesures des propriétés macroscopiques telles que les densités et les températures caractéristiques (Tg, Tc, Tf) et leur analyse selon les compositions des verres. Après, les propriétés de transport ont été étudiés à l'aide de la spectroscopie d'impédance complexe ou par les mesures de la résistivité. Il a été ainsi montré l'effet de cation mixte pour les trois systèmes vitreux avec les ions TI/Ag et le régime de la percolation dans le système NaCl-Ga₂S₃-GeS₂ . Puis, on a réalisé les mesures de diffusion par traceur ¹⁰⁸mAg et ²⁰⁴TI pour le système (TI₂S)ₓ(Ag₂S)₅₀₋ₓ(GeS)₂₅(GeS₂)₂₅. Les résultats ont permis d'expliquer l'effet de cation mixte. Afin de mieux comprendre les phénomènes de transport des systèmes étudiés, diverses études structurales ont été déployées par spectroscopie Raman, diffusion de neutrons et diffraction de rayons X haute énergie. Enfin, la dernière partie de ce travail est entièrement consacrée à la caractérisation de nouveaux capteurs chimiques pour la détection des ions TI⁺ et NA⁺ en solution. Dans le premier cas, les électrodes sélectives aux ions TI⁺ avec les différentes compositions de membrane ont été testées afin de définir la sensibilité, la limite de détection, les coefficients de sélectivité en présence d'ions interférents, la reproductabilité, l'influence de pH. En plus, il était effectué l'échange des traceurs ²⁰⁴TI entre la solution et les verres à base des matrices GeS₂ et Ge₂S₃ pour comprendre et expliquer les différences significatives dans la sensibilité et la limite de détection présentés par les capteurs dont les membranes ont la composition de verre similaire. Dans le deuxième cas, les études montrent l'existence de la sensibilité aux ions NA⁺ donc le développement des capteurs pour le dosage des ions de sodium est possible
The aim of this thesis was to study the physicochemical properties of the chalcogenide glasses for possibility to use them as the chemical sensor membranes for the quantitative analysis of TI⁺ and NA⁺ ions. Firstly, the measurements of the macroscopic properties such as the densities and the characteristic temperatures (Tg, Tc, Tf) and their analysis according to the glass compositions were carried out. After that, the transport properties were studied through complex impedance conductivity measurements and from dc conductivity measurements. These experiments have shown the mixed cation effect in three chalcogenide glassy systems with TI/Ag ions and the percolation regime in the NaCl-Ga₂S₃-GeS₂ system. Then the silver ¹⁰⁸mAg and thallium ²⁰⁴TI tracer diffusion measurements were carried out for (TI₂S)ₓ(Ag₂S)₅₀₋ₓ(GeS)₂₅(GeS₂)₂₅ system. The result permit to explain the mixed cation effect. In order to better understand the transport phenomena of the studied systems, the various structural studies have been deployed using Raman spectroscopy, neutron diffraction and high energy X-ray diffraction. Finally, the last part of this work is entirely devoted to the characterization of new chemical sensors for detection of TI⁺ and NA⁺ ions in solution. In the first case, the sensors with different membrane compositions were tested for defining the sensitivity, the detection limit, the selectivity coefficients in the presence of interfering ions, the reproductibility, the pH influence. In addition, the ionic exchange with radioactive isotopes ²⁰⁴TI between the solution and the GeS₂ or Ge₂S₃ based glasses was performed for understanding and explaining the significant differences in the sensitivity and the detection limit presented by the sensors whose membranes have the similar glass compositions. In the second case, the studies shows the existence of sensitivity for NA⁺ ions so the development of sensors for the determination of sodium ions is possible
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Ion Conducting Glasses"

1

Mehrer, Helmut. Progress in Ion Transport and Structure of Ion Conducting Compounds and Glasses. Trans Tech Publications, Limited, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Helmut, Mehrer. Progress in Ion Transport and Structure of Ion Conducting Compounds and Glasses. Trans Tech Publications, Limited, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cameron, Allan. Visceral Screens. Edinburgh University Press, 2020. http://dx.doi.org/10.3366/edinburgh/9781474419192.001.0001.

Повний текст джерела
Анотація:
Horror cinema grants bodies and images a precarious hold on sense and order: from the zombie’s gory disintegration to the vampire’s absent reflection and from the shaky camerawork of ‘found footage’ horror to the spectacle of shattering glass in the Italian giallo. Addressing classic horror movies alongside popular and innovative contemporary works, Visceral Screens shows how they have rendered the human form as a type of ‘image-body’, mediated by optical effects, chromatic shifts, glitches and audiovisual fragmentation. The question of signification is central to this metaphorical exchange, since horror frequently pushes both bodies and media to the limits of their expressive capacity. Conducting their own anatomies of the screen, cutting across bodies and media alike, horror films revel in the breakdown of frames, patterns and figures, exposing the seams between matter and meaning.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Ion Conducting Glasses"

1

Gordon, R. S. "Sodium Ion Conducting Glasses." In Inorganic Reactions and Methods, 211–12. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145333.ch144.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Julien, Christian, and Gholam-Abbas Nazri. "Materials for electrolyte: Fast-ion-conducting glasses." In The Kluwer International Series in Engineering and Computer Science, 183–283. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2704-6_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Balkanski, M., R. F. Wallis, J. Deppe, and M. Massot. "Dynamical Properties of Fast Ion Conducting Borate Glasses." In Solid State Materials, 53–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-09935-3_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nogami, M. "Ion Conducting Coatings." In Sol-Gel Technologies for Glass Producers and Users, 175–78. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-0-387-88953-5_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Magistris, A. "Ionic Conduction in Glasses." In Fast Ion Transport in Solids, 213–30. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1916-0_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hiki, Y., H. Takahashi, and Y. Kogure. "Thermal Transport in Superionic Conducting Glasses." In Springer Series in Solid-State Sciences, 295–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84888-9_117.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Balkanski, M., R. F. Wallis, and I. Darianian. "Free Lithium Ion Conduction in Lithium Borate Glasses Doped with Li2SO4." In NATO ASI Series, 317–18. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0509-5_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Elliott, S. R. "A. C. Conduction in Chalcogenide Glasses." In Structure and Bonding in Noncrystalline Solids, 251–84. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4615-9477-2_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Elliott, S. R. "Non-Debye-Like Dielectric Relaxation in Ionically and Electronically Conducting Glasses." In Relaxation in Complex Systems and Related Topics, 251–60. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-2136-9_34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Takayanagi, M. "Microcomposite Formation of p-Aramid with Inorganic Glass and Conductive Polymers." In Progress in Pacific Polymer Science 2, 1–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77636-6_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Ion Conducting Glasses"

1

HAYASHI, Akitoshi, Ryoichi KOMIYA, Masahiro TATSUMISAGO, and Tsutomu MINAMI. "DEVELOPMENT OF LITHIUM ION CONDUCTING OXYSULFIDE GLASSES." In Proceedings of the 7th Asian Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812791979_0025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Agrawal, R. C., M. L. Verma, and A. Bhatt. "POLARIZATION/SELF-DEPOLARIZATION STUDIES ON SOME FAST Ag+ ION CONDUCTING GLASSES." In Proceedings of the 8th Asian Conference. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776259_0087.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Konidakis, Ioannis, and Stavros Pissadakis. "All-glass photonic bandgap fibers and fiber-tapers infiltrated with silver fast-ion-conducting glasses." In 2015 17th International Conference on Transparent Optical Networks (ICTON). IEEE, 2015. http://dx.doi.org/10.1109/icton.2015.7193545.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Agrawal, R. C., M. L. Verma, R. Kumar, and C. K. Sinha. "SOLID STATE BATTERY DISCHARGE CHARACTERISTIC STUDIES ON SOME NEW Ag+ ION CONDUCTING GLASSES." In Proceedings of the 8th Asian Conference. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776259_0020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Matsuo, S., H. Yugami, M. Ishigame, and S. Shin. "Hole-burning in proton conducting oxide SrZrO3: Pr3+." In Spectral Hole-Burning and Related Spectroscopies: Science and Applications. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/shbs.1994.wd52.

Повний текст джерела
Анотація:
Long-lived or persistent spectral hole-burning has been observed in many rare-earth doped glasses and crystals [1]. In Eu3+ doped solids, hole-burning due to optical pumping of nuclear quadrupole levels has been observed. In Pr3+ doped solids, local ion rearrangement around Pr3+ often causes hole-burning. Macfarlane and co-workers have reported persistent spectral hole-burning in SrF2: Pr3+ and CaF2: Pr3+ [2, 3]. They have concluded that the light-induced D− ion motion causes the hole burning. In contrast with organic materials, such proton related hole-burning has not been reported so much in inorganic solids.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Balkanski, Minko. "Invited Paper Fast Ion Conducting Glasses And Intercalation Compounds, Constituents Of Solid State Micro-Batteries, Characterized By Light Scattering, Luminescence And Optical Absorption." In 31st Annual Technical Symposium, edited by Fran Adar and James E. Griffiths. SPIE, 1988. http://dx.doi.org/10.1117/12.941939.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rathan, S. Vinoth, Aashaq Hussain Shah, G. Govindaraj, Alka B. Garg, R. Mittal, and R. Mukhopadhyay. "Ac Conductivity and Electrical Relaxation in ion conducting Li[sub 4]Nb[sub 1−x] Zn[sub 2.5x]P[sub 3]O[sub 12] glasses." In SOLID STATE PHYSICS, PROCEEDINGS OF THE 55TH DAE SOLID STATE PHYSICS SYMPOSIUM 2010. AIP, 2011. http://dx.doi.org/10.1063/1.3606213.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Menezes, P. V., J. Martin, M. Schafer, and K. M. Weitzel. "Bombardment induced ion transport through an ion-conducting Ca30 glass." In 2011 IEEE 14th International Symposium on Electrets ISE 14. IEEE, 2011. http://dx.doi.org/10.1109/ise.2011.6084970.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Takaoka, Gikan, H. Ryuto, and M. Takeuchi. "Surface Interaction and Processing Using Polyatomic Cluster Ions." In 13th International Conference on Plasma Surface Engineering September 10 - 14, 2012, in Garmisch-Partenkirchen, Germany. Linköping University Electronic Press, 2013. http://dx.doi.org/10.3384/wcc2.18-21.

Повний текст джерела
Анотація:
We developed two types of polyatomic cluster ion sources, one of which was a liquid cluster ion source using organic materials with a high-vapor pressure. Vapors of liquid material such as ethanol and water were ejected through a nozzle into a vacuum region, and liquid clusters were produced by an adiabatic expansion phenomenon. Another type was a cluster ion source using ionic liquids with a relatively low-vapor pressure. Positive and negative cluster ions were produced by a high-electric field emission. In addition, the interaction of polyatomic cluster ions with solid surfaces such as Si(100), SiO2, glass, and PMMA surfaces was investigated, and chemical sputtering was predominant for the Si(100) surfaces irradiated by ethanol cluster ion beams. Also, the irradiation damage of the Si(100) surfaces by ethanol and water cluster ion beams was smaller than that by Ar monomer ion irradiation at the same acceleration voltage. With regard to surface modification, PMMA surfaces were chemically modified by water cluster irradiation. Also, glass surfaces changed to electrically conductive surfaces by ionic liquid cluster ion irradiation. Furthermore, to demonstrate engineering applications of high-rate sputtering and low-damage irradiation by ethanol cluster ion beams, micro-patterning was performed on the Si surfaces.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sidebottom, David L. "SCALING PROPERTIES OF ION CONDUCTION AND WHAT THEY REVEAL ABOUT ION MOTION IN GLASSES." In Proceedings of the 1st International Discussion Meeting. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812706904_0020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Ion Conducting Glasses"

1

Tuller, H. Electrical conduction and corrosion processes in fast ion conducting glasses. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/7158324.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Meyer, Benjamin Michael. Nuclear Spin Lattice Relaxation and Conductivity Studies of the Non-Arrhenius Conductivity Behavior in Lithium Fast Ion Conducting Sulfide Glasses. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/815760.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yao, Wenlong. Structure, ionic conductivity and mobile carrier density in fast ionic conducting chalcogenide glasses. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/897364.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії