Статті в журналах з теми "InxGa1-xN"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: InxGa1-xN.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "InxGa1-xN".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Jeong, Myoungho, Hyo Sung Lee, Seok Kyu Han, Eun-Jung-Shin, Soon-Ku Hong, Jeong Yong Lee, Yun Chang Park, Jun-Mo Yang, and Takafumi Yao. "Microstructural Characterization of High Indium-Composition InXGa1−XN Epilayers Grown on c-Plane Sapphire Substrates." Microscopy and Microanalysis 19, S5 (August 2013): 145–48. http://dx.doi.org/10.1017/s143192761301252x.

Повний текст джерела
Анотація:
AbstractThe growth of high-quality indium (In)-rich InXGa1−XN alloys is technologically important for applications to attain highly efficient green light-emitting diodes and solar cells. However, phase separation and composition modulation in In-rich InXGa1−XN alloys are inevitable phenomena that degrade the crystal quality of In-rich InXGa1−XN layers. Composition modulations were observed in the In-rich InXGa1−XN layers with various In compositions. The In composition modulation in the InXGa1−XN alloys formed in samples with In compositions exceeding 47%. The misfit strain between the InGaN layer and the GaN buffer retarded the composition modulation, which resulted in the formation of modulated regions 100 nm above the In0.67Ga0.33N/GaN interface. The composition modulations were formed on the specific crystallographic planes of both the {0001} and {0114} planes of InGaN.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Manzoor, Habib Ullah, Aik Kwan Tan, Sha Shiong Ng, and Zainuriah Hassan. "Carrier Density and Thickness Optimization of InxGa1-xN Layer by Scaps-1D Simulation for High Efficiency III-V Solar CelL." Sains Malaysiana 51, no. 5 (May 31, 2022): 1567–76. http://dx.doi.org/10.17576/jsm-2022-5105-24.

Повний текст джерела
Анотація:
In this study, the indium gallium nitride (InxGa1-xN) p-n junction solar cells were optimized to achieve the highest conversion efficiency. The InxGa1-xN p-n junction solar cells with the whole indium mole fraction (0 £ x £ 1) were simulated using SCAPS-1D software. Optimization of the p- and n-InxGa1-xN layer's thickness and carrier density were also carried out. The thickness and carrier density of each layer was varied from 0.01 to 1.50 µm and 1015 to 1020 cm-3. The simulation results showed that the highest conversion efficiency of 23.11% was achieved with x = 0.6. The thickness (carrier density) of the p- and n-layers for this In0.6Ga0.4N p-n junction solar cell are 0.01 (1020) and 1.50 μm (1019 cm-3), respectively. Simulation results also showed that the conversion efficiency is more sensitive to the variations of layer's thickness and carrier density of the top p-InxGa1-xN layer than the bottom n-InxGa1-xN layer. Besides that, the results also demonstrated that thinner p-InxGa1-xN layer with higher carrier density offers better conversion efficiency.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Song, Juan, Zijiang Luo, Xuefei Liu, Ershi Li, Chong Jiang, Zechen Huang, Jiawei Li, Xiang Guo, Zhao Ding, and Jihong Wang. "The Study on Structural and Photoelectric Properties of Zincblende InGaN via First Principles Calculation." Crystals 10, no. 12 (December 19, 2020): 1159. http://dx.doi.org/10.3390/cryst10121159.

Повний текст джерела
Анотація:
In this paper, the structure and photoelectric characteristics of zincblende InxGa1−xN alloys are systematically calculated and analyzed based on the density functional theory, including the lattice constant, band structure, distribution of electronic states, dielectric function, and absorption coefficient. The calculation results show that with the increase in x, the lattice constants and the supercell volume increase, whereas the bandgap tends to decrease, and InxGa1−xN alloys are direct band gap semiconductor materials. In addition, the imaginary part of the dielectric function and the absorption coefficient are found to redshift with the increase in indium composition, expanding the absorption range of visible light. By analyzing the lattice constants, polarization characteristics, and photoelectric properties of the InxGa1−xN systems, it is observed that zincblende InxGa1−xN can be used as an alternative material to replace the channel layer of wurtzite InxGa1−xN heterojunction high electron mobility transistor (HEMT) devices to achieve the manufacture of HEMT devices with higher power and higher frequency. In addition, it also provides a theoretical reference for the practical application of InxGa1−xN systems in optoelectronic devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lin, Yu-Chung, Ikai Lo, Cheng-Da Tsai, Ying-Chieh Wang, Hui-Chun Huang, Chu-An Li, Mitch M. C. Chou, and Ting-Chang Chang. "Optimization of Ternary InxGa1-xN Quantum Wells on GaN Microdisks for Full-Color GaN Micro-LEDs." Nanomaterials 13, no. 13 (June 23, 2023): 1922. http://dx.doi.org/10.3390/nano13131922.

Повний текст джерела
Анотація:
Red, green, and blue light InxGa1−xN multiple quantum wells have been grown on GaN/γ-LiAlO2 microdisk substrates by plasma-assisted molecular beam epitaxy. We established a mechanism to optimize the self-assembly growth with ball-stick model for InxGa1-xN multiple quantum well microdisks by bottom-up nanotechnology. We showed that three different red, green, and blue lighting micro-LEDs can be made of one single material (InxGa1-xN) solely by tuning the indium content. We also demonstrated that one can fabricate a beautiful InxGa1-xN-QW microdisk by choosing an appropriate buffer layer for optoelectronic applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Han, Li Jun, Bin Feng Ding, and Guo Man Lin. "The Optical and Structural Properties of InxGa1-XN/GaN Multiple Quantum Wells by Metal Organic Chemical Vapor Deposition." Advanced Materials Research 535-537 (June 2012): 1270–74. http://dx.doi.org/10.4028/www.scientific.net/amr.535-537.1270.

Повний текст джерела
Анотація:
The structural and optical properties of InxGa1-xN/GaN multi-quantum wells (MQWs) grown on sapphire are discussed. Two kinds of InxGa1-xN/GaN MQWs with same period and different single cycle thickness and different growth temperature of MQWs are selected. Firstly, from the result of SRXRD and RBS/C, we can estimate that indium content of InxGa1-xN /GaN MQWs is 0.033 and 0.056, the single cycle thickness of MQWs is 13.04nm and 15.86nm respectively. Secondly the PL results indicate the optical properties of InxGa1-xN/GaN MQWs. Finally, we find indium content decreasing with increasing growth temperature of MQWs and the emission intensity reducing with temperature increasing, the emission optical peak position versus temperature show the “S-shaped” character. All these experimental results testify the material design of InxGa1-xN/GaN MQWs will have potential applications in spectral LED.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wu, Ren Tu Ya, and Qi Zhao Feng. "Polaronic Effects in Wurtzite InxGa1-xN/GaN Parabolic Quantum Well." Advanced Materials Research 629 (December 2012): 145–51. http://dx.doi.org/10.4028/www.scientific.net/amr.629.145.

Повний текст джерела
Анотація:
The energy levels of polaron in a wurtzite InxGa1-xN/GaN parabolic quantum well are investigated by adopting a modified Lee-Low-Pines variational method. The ground state energy, the transition energy and the contributions of different branches of optical phonon modes to the ground state energy as functions of the well width are given. The effects of the anisotropy of optical phonon modes and the spatial dependence effective mass, dielectric constant, phonon frequency on energy levels are considered in calculation. In order to compare, the corresponding results in zinc-blende parabolic quantum well are given. The results indicate that the contributions of the electron-optical phonon interaction to ground state energy of polaron in InxGa1-xN/GaN is very large, and make the energy of polaron reduces. For a narrower quantum well,the contributions of half-space optical phonon modes is large , while for a wider one, the contributions of the confined optical phonon modes are larger. The ground state energy and the transition energy of polaron in wurtzite InxGa1-xN/GaN are smaller than that of zinc-blende InxGa1-xN/GaN, and the contributions of the electron-optical phonon interaction to ground state energy of polaron in wurtzite InxGa1-xN/GaN are greater than that of zinc-blende InxGa1-xN/GaN. The contributions of the electron-optical phonon interaction to ground state energy of polaron in wurtzite InxGa1-xN/GaN (about from 22 to 32 meV) are greater than that of GaAs/AlxGa1-xAs parabolic quantum well (about from 1.8 to 3.2 meV). Therefore, the electron-optical phonon interaction should be considered for studying electron state in InxGa1-xN/GaN parabolic quantum well.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kaysir, Md Rejvi, and Rafiqul Islam. "Theoretical Charge Control Investigations in InN-Based Quantum Well Double Heterostructure High Electron Mobility Transistors (QW-DHEMTs)." Advanced Materials Research 403-408 (November 2011): 52–58. http://dx.doi.org/10.4028/www.scientific.net/amr.403-408.52.

Повний текст джерела
Анотація:
In this paper, charge control mechanism and carrier features have been precisely investigated in InxGa1-xN/InN/InxGa1-xN based quantum-well double heterostructure high electron mobility transistors (QW-DHEMTs). A study of charge control in the InxGa1-xN/InN/InxGa1-xN structure is performed by self-consistently solving Schrödinger equation in conjunction with Poisson’s equation taking into account the spontaneous and piezoelectric polarization effects. The potential profile and the distribution of electron density in the channel as a function of gate voltage are investigated here. A large conduction band offset of about 2.2eV is obtained for the proposed device for In content x=0.05, which ensure better carrier confinement and higher sheet charge density. The influence of In composition(x) and doping concentration of InxGa1-xN upper barrier on sheet charge density and carrier distributions in channel is also presented. This analysis provides a platform to investigate the InN based QW-DHEMTs and to optimized their design.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tsai, ChengDa, Ikai Lo, YingChieh Wang, ChenChi Yang, HongYi Yang, HueiJyun Shih, HuiChun Huang, Mitch M. C. Chou, Louie Huang, and Binson Tseng. "Indium-Incorporation with InxGa1-xN Layers on GaN-Microdisks by Plasma-Assisted Molecular Beam Epitaxy." Crystals 9, no. 6 (June 14, 2019): 308. http://dx.doi.org/10.3390/cryst9060308.

Повний текст джерела
Анотація:
Indium-incorporation with InxGa1-xN layers on GaN-microdisks has been systematically studied against growth parameters by plasma-assisted molecular beam epitaxy. The indium content (x) of InxGa1-xN layer increased to 44.2% with an In/(In + Ga) flux ratio of up to 0.6 for a growth temperature of 620 °C, and quickly dropped with a flux ratio of 0.8. At a fixed In/(In + Ga) flux ratio of 0.6, we found that the indium content decreased as the growth temperature increased from 600 °C to 720 °C and dropped to zero at 780 °C. By adjusting the growth parameters, we demonstrated an appropriate InxGa1-xN layer as a buffer to grow high-indium-content InxGa1-xN/GaN microdisk quantum wells for micro-LED applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Humayun, M. A., M. A. Rashid, F. Malek, A. Yusof, F. S. Abdullah, and N. B. Ahmad. "A Comparative Study of Confined Carrier Concentration of Laser Using Quantum well and Quantum Dot in Active Layer." Advanced Materials Research 701 (May 2013): 188–91. http://dx.doi.org/10.4028/www.scientific.net/amr.701.188.

Повний текст джерела
Анотація:
This paper presents a comparative analysis of some of the important characteristics of the carriers of quantum well and quantum dot based laser. Among the characteristics of the carriers, confined carrier concentrations in the gain medium as well as the carrier concentrations at the threshold have been studied extensively by using InxGa1-xN based quantum well and InxGa1-xN based quantum dot in the active layer of the laser structure. The numerical results obtained are compared to investigate the superiority of the quantum dot over quantum well. It is ascertained from the comparison results that InxGa1-xN based quantum dot provides higher density of confined carrier and lower level of carrier concentration required for lasing action. This paper reports the enhancement of confined carrier density and minimization of carrier concentration at threshold of laser using InxGa1-xN based quantum dot as the active layer material. Hence, it is revealed that better performances of lasers have been obtained using InxGa1-xN based quantum dot than that of quantum well in the active medium of the device structure.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hu, Yan-Ling, Yuqin Zhu, Huayu Ji, Qingyuan Luo, Ao Fu, Xin Wang, Guiyan Xu, et al. "Fabrication of InxGa1−xN Nanowires on Tantalum Substrates by Vapor-Liquid-Solid Chemical Vapor Deposition." Nanomaterials 8, no. 12 (November 29, 2018): 990. http://dx.doi.org/10.3390/nano8120990.

Повний текст джерела
Анотація:
InxGa1−xN nanowires (NWs) have drawn great attentions for their applications in optoelectronic and energy conversion devices. Compared to conventional substrates, metal substrates can offer InxGa1−xN NW devices with better thermal conductivity, electric conductivity, and mechanic flexibility. In this article, InxGa1−xN NWs were successfully grown on the surface of a tantalum (Ta) substrate via vapor-liquid-solid chemical vapor deposition (VLS-CVD), as characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), scanning and transmission electron microscope (STEM), and photoluminescence spectroscopy (PL). It was found that the surface pretreatment of Ta and the composition of metallic catalysts played important roles in the formation of NWs. A dimpled nitrided Ta surface combined with a catalyst of nickle is suitable for VLS-CVD growth of the NWs. The obtained InxGa1−xN NWs grew along the [1100] direction with the presence of basal stacking faults and an enriched indium composition of ~3 at.%. The successful VLS-CVD preparation of InxGa1−xN nanowires on Ta substrates could pave the way for the large-scale manufacture of optoelectronic devices in a more cost-effective way.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Shih, Huei-Jyun, Ikai Lo, Ying-Chieh Wang, Cheng-Da Tsai, Yu-Chung Lin, Yi-Ying Lu, and Hui-Chun Huang. "Growth and Characterization of GaN/InxGa1−xN/InyAl1−yN Quantum Wells by Plasma-Assisted Molecular Beam Epitaxy." Crystals 12, no. 3 (March 17, 2022): 417. http://dx.doi.org/10.3390/cryst12030417.

Повний текст джерела
Анотація:
The nearly lattice-matched InxGa1−xN/InyAl1−yN epi-layers were grown on a GaN template by plasma-assisted molecular beam epitaxy with a metal modulation technique. The band-gap energy of InxGa1−xN QW in photoluminescence measurement was estimated to be 2.89 eV and the indium concentration (x) was 14.8%. In X-ray photoelectric spectroscopy, we obtained an indium concentration (y) in the InyAl1−yN barrier of 25.9% and the band-offset was estimated to be 4.31 eV. From the atomic layer measurements from high-resolution transmission electron microscopy, the lattice misfit between the InxGa1−xN QW and InyAl1−yN barrier was 0.71%. The lattice-matched InxGa1−xN/InyAl1−yN QWs can therefore be evaluated from the band profiles of III-nitrides for engineering of full-visible-light emitting diode in optoelectronic application.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Jun, Yong-Ki, and Sang-Jo Chung. "Optical properties of InxGa1-xN/GaN epilayers." Korean Journal of Materials Research 12, no. 1 (January 1, 2002): 54–57. http://dx.doi.org/10.3740/mrsk.2002.12.1.054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Biswas, Dipankar, Tapas Das, Sanjib Kabi, and Subindu Kumar. "Conspicuous Presence of Higher Order Transitions in the Photoluminescence of InxGa1-xN/GaN Quantum Wells." Advanced Materials Research 31 (November 2007): 62–64. http://dx.doi.org/10.4028/www.scientific.net/amr.31.62.

Повний текст джерела
Анотація:
For successive annealing stages the photoluminescence (PL) peaks of InXGa1-XN/GaN quantum wells (QWs) shift initially towards red which is followed by a blue. This phenomenon contradicts the usual monotonic blueshift. We have found that the phenomena can be explained properly only if we consider recombinations from the higher sub-bands to be present in the PL of the InXGa1-XN/GaN QWs, which is not usual. When a strong piezoelectric field exists across a QW, as encountered in InXGa1-XN/GaN QWs, the probability of optical transitions from higher sub-bands of the QW become more probable. In this paper this theory has been established from experimental results.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

B. Kashyout, Fathy, Gad, Badr, and A. Bishara. "Synthesis of Nanostructure InxGa1-xN Bulk Alloys and Thin Films for LED Devices." Photonics 6, no. 2 (April 24, 2019): 44. http://dx.doi.org/10.3390/photonics6020044.

Повний текст джерела
Анотація:
In this study, we investigated an innovative method for the fabrication of nanostructure bulk alloys and thin films of indium gallium nitride (InxGa1-xN) as active, thin films for light-emitting diode (LED) devices using both crystal growth and thermal vacuum evaporation techniques, respectively. These methods resulted in some tangible improvements upon the usual techniques of InxGa1-xN systems. A cheap glass substrate was used for the fabrication of the LED devices instead of sapphire. Indium (In) and Gallium (Ga) metals, and ammonia (NH3) were the precursors for the alloy formation. The alloys were prepared at different growth temperatures with compositions ranging from 0.1≤x≤0.9. InxGa1-xN alloys at 0.1≤x≤0.9 had different crystallinities with respect to X-Ray diffraction (XRD) patterns where the energy bandgap that was measured by photoluminescence (PL) fell in the range between 1.3 and 2.5 eV. The bulk alloys were utilized to deposit the thin films onto the glass substrate using thermal vacuum evaporation (TVE). The XRD thin films that were prepared by TVE showed high crystallinity of cubic and hexagonal structures with high homogeneity. Using TVE, the InxGa1-xN phase separation of 0.1≤x≤0.9 was eliminated and highly detected by XRD and FESEM. Also, the Raman spectroscopy confirmed the structure that was detected by XRD. The FESEM showed a variance in the grain size of both alloys and thin films. The InxGa1-xN LED device with the structure of glass/GaN/n-In0.1Ga0.9N:n/In0.1Ga0.9N/p-In0.1Ga0.9N:Mg was checked by the light emitted by electroluminescence (EL). White light generation is a promising new direction for the fabrication of such devices based on InxGa1-xN LED devices with simple and low-cost techniques.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Vartuli, C. B. "Implant isolation of InxAl1−xN and InxGa1−xN." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 13, no. 6 (November 1995): 2293. http://dx.doi.org/10.1116/1.588065.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Zhao, Xiaofang, Tao Wang, Bowen Sheng, Xiantong Zheng, Li Chen, Haihui Liu, Chao He, Jun Xu, Rui Zhu, and Xinqiang Wang. "Cathodoluminescence Spectroscopy in Graded InxGa1−xN." Nanomaterials 12, no. 21 (October 23, 2022): 3719. http://dx.doi.org/10.3390/nano12213719.

Повний текст джерела
Анотація:
InGaN materials are widely used in optoelectronic devices due to their excellent optical properties. Since the emission wavelength of the full-composition-graded InxGa1−xN films perfectly matches the solar spectrum, providing a full-spectrum response, this makes them suitable for the manufacturing of high-efficiency optoelectronic devices. It is extremely important to study the optical properties of materials, but there are very few studies of the luminescence of full-composition-graded InxGa1−xN ternary alloy. In this work, the optical properties of full-composition-graded InxGa1−xN films are studied by cathodoluminescence (CL). The CL spectra with multiple luminescence peaks in the range of 365–1000 nm were acquired in the cross-sectional and plan-view directions. The CL spectroscopy studies were carried out inside and outside of microplates formed under the indium droplets on the InGaN surface, which found that the intensity of the light emission peaks inside and outside of microplates differed significantly. Additionally, the paired defects structure is studied by using the spectroscopic method. A detailed CL spectroscopy study paves the way for the growth and device optimization of high-quality, full-composition-graded InxGa1−xN ternary alloy materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Cho, Hyun, S. M. Donovan, C. R. Abernathy, S. J. Pearton, F. Ren, J. Han, and R. J. Shul. "Photoelectrochemical Etching of InxGa1−xN." MRS Internet Journal of Nitride Semiconductor Research 4, S1 (1999): 691–96. http://dx.doi.org/10.1557/s1092578300003264.

Повний текст джерела
Анотація:
A comparison of KOH, NaOH and AZ400K solutions for UV photo-assisted etching of undoped and n+ GaN is discussed. The etching is diffusion-limited (Ea < 6kCal·mol−1) under all conditions and is significantly faster with bias applied to the sample during light exposure. No etching of InN was observed, due to the very high n-type background doping (> 1020cm−3) in the material.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Bartel, T. P., P. Specht, J. C. Ho, and C. Kisielowski. "Phase separation in InxGa1−xN." Philosophical Magazine 87, no. 13 (May 2007): 1983–98. http://dx.doi.org/10.1080/14786430601146905.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Anani, M., H. Abid, Z. Chama, C. Mathieu, A. Sayede, and B. Khelifa. "InxGa1−xN refractive index calculations." Microelectronics Journal 38, no. 2 (February 2007): 262–66. http://dx.doi.org/10.1016/j.mejo.2006.11.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Hwang, J. M., J. T. Hsieh, C. Y. Ko, H. L. Hwang, and W. H. Hung. "Photoelectrochemical etching of InxGa1−xN." Applied Physics Letters 76, no. 26 (June 26, 2000): 3917–19. http://dx.doi.org/10.1063/1.126820.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Sztein, Alexander, John Haberstroh, John E. Bowers, Steven P. DenBaars, and Shuji Nakamura. "Calculated thermoelectric properties of InxGa1−xN, InxAl1−xN, and AlxGa1−xN." Journal of Applied Physics 113, no. 18 (May 14, 2013): 183707. http://dx.doi.org/10.1063/1.4804174.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Кукушкин, С. А., та А. В. Осипов. "Термодинамическая стабильность твердых растворов In-=SUB=-x-=/SUB=-Ga-=SUB=-1-x-=/SUB=-N". Письма в журнал технической физики 47, № 19 (2021): 51. http://dx.doi.org/10.21883/pjtf.2021.19.51516.18879.

Повний текст джерела
Анотація:
A group-theoretical analysis of solid solutions of indium and gallium nitrides InxGa1-xN was carried out, and all the main symmetry groups were found for these solutions with the initial hexagonal structure. The thermodynamic potentials of the main phases with different compositions x are calculated using the density functional theory. It is shown that for small and large x, i.e. at 0 <x <0.2 and 0.8 <x <1, there is a large number of monoclinic phases Pm and P2_1, which are stable with respect to decomposition into InN and GaN at room temperature. In the range 0.2 <x <0.8, there are only two stable orthorhombic phases Cmc2_1 with compositions x = 1/3 and x = 2/3. All basic geometric and thermodynamic properties of various InxGa1-xN phases have been calculated. It was found that the stability of InxGa1-xN epitaxial films increases with growth on InN and decreases with growth on GaN.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

WANG, Xuewen, Wenwen LIU, Chunxue ZHAI, Jiangni YUN, and Zhiyong ZHANG. "DFT Calculation on the Electronic Structure and Optical Properties of InxGa1-xN Alloy Semiconductors." Materials Science 26, no. 2 (December 18, 2019): 127–32. http://dx.doi.org/10.5755/j01.ms.26.2.21569.

Повний текст джерела
Анотація:
Using the density functional theory (DFT) of the first principle and Generalized gradient approximation method, the electronic structures and optical properties of the InxGa1-xN crystals with different x (x = 0.25, 0.5, 0.75, 1) have been calculated in this paper. The influence of the electronic structure on the properties has been analyzed. Then the influence of doping quantity on the characteristics has been summarized, which also indicates the trend of complex dielectric function, absorption spectrum and transitivity. With the increase of x, the computational result shows that the optical band gap (i.e.Eg) of the InxGa1-xN crystal tends to be narrow, then the absorption spectrum shifts to the low-energy direction. And the Fermi energy slightly moves to the bottom of conduction band which would cause the growth of conductivity by increasing x. In a word, the InxGa1-xN compound can be achieved theoretically the adjustable Eg and photoelectric performance with x, which will be used in making various optoelectronic devices including solar cell and sensors.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Annab, N., T. Baghdadli, S. Mamoun, and A. E. Merad. "Numerical simulation of highly photovoltaic efficiency of InGaN based solar cells with ZnO as window layer." Journal of Ovonic Research 19, no. 4 (August 2023): 421–31. http://dx.doi.org/10.15251/jor.2023.194.421.

Повний текст джерела
Анотація:
InxGa1-xN, as one promising nitride semiconductor alloys for modern optoelectronic devices, has received extensive attention in recent years. However, due to its powerful modulation of energy band gap from UV to visible spectra (0.7-3.4 eV) and its interesting absorption coefficient can range from 103 to 105 cm-1 , depending on the material properties, it can be considered as a potential candidate for high efficiency solar cells. The actual efficiency reached is (30.38%) [1]. In order to enhance more the efficiency, we perform in this work, a device modeling and numerical simulation using SCAPS software. We optimize the photovoltaic characteristics of a solar cell based on InxGa1-xN. This cell is mainly composed of indium gallium nitride semiconductors for both buffer and active layer p-InxGa1-xN/i-InxGa1-xN and the window layer contains of n-ZnO. The optimization of the various optoelectronic parameters allows improving performance of the solar cell, in addition to absorbing as much solar radiation as possible. The main photovoltaic parameters of the analog device: open circuit voltage, short circuit current density, fill factor and conversion efficiency (η) were compared and analyzed. We have reached the conversion efficiency of 26.11% for a thickness of 1450 nm and an n-doping of 3×1018 cm-3 in the active layer (In0.3Ga0.7N). This study investigates the great potential of InGaN solar cells and can be used for the design and manufacture of high efficiency III-nitride based solar cells.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Pantha, B. N., R. Dahal, J. Li, J. Y. Lin, H. X. Jiang, and G. Pomrenke. "Thermoelectric properties of InxGa1−xN alloys." Applied Physics Letters 92, no. 4 (January 28, 2008): 042112. http://dx.doi.org/10.1063/1.2839309.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Kuo, Yen-Kuang, Han-Yi Chu, Sheng-Horng Yen, Bo-Ting Liou, and Mei-Ling Chen. "Bowing parameter of zincblende InxGa1−xN." Optics Communications 280, no. 1 (December 2007): 153–56. http://dx.doi.org/10.1016/j.optcom.2007.07.058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Li, S. X., K. M. Yu, J. Wu, R. E. Jones, W. Walukiewicz, J. W. Ager, W. Shan, E. E. Haller, Hai Lu, and William J. Schaff. "Native defects in InxGa1−xN alloys." Physica B: Condensed Matter 376-377 (April 2006): 432–35. http://dx.doi.org/10.1016/j.physb.2005.12.111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Gartner, M., C. Kruse, M. Modreanu, A. Tausendfreund, C. Roder, and D. Hommel. "Optical characterization of InxGa1−xN alloys." Applied Surface Science 253, no. 1 (October 2006): 254–57. http://dx.doi.org/10.1016/j.apsusc.2006.05.077.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Jenkins, David W., and John D. Dow. "Electronic structures and doping of InN,InxGa1−xN, andInxAl1−xN." Physical Review B 39, no. 5 (February 15, 1989): 3317–29. http://dx.doi.org/10.1103/physrevb.39.3317.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Huq, Md Fazlul, Zamshed Iqbal Chowdhury, Mehedhi Hasan, and Zahid Hasan Mahmood. "The efficiency of the single junction and multijunction InxGa1-xN solar cell using AMPS-1D simulator." Journal of Bangladesh Academy of Sciences 37, no. 1 (July 13, 2013): 65–72. http://dx.doi.org/10.3329/jbas.v37i1.15682.

Повний текст джерела
Анотація:
Transparency loss and excess excitation loss are responsible for relatively lower conversion efficiency of single junction solar cell. One way to reduce these two losses is to use multijunction solar cell. In this research InxGa1-xN based single, double and triple junction solar cells were simulated employing AMPS-1D simulator. The band gap of each layer depends on the composition percentage of InN and GaN within InxGa1-xN. In this simulation the authors found 24.51, 33.89, and 42.12% efficiencies for single, double and triple junctions, respectively. DOI: http://dx.doi.org/10.3329/jbas.v37i1.15682 Journal of Bangladesh Academy of Sciences, Vol. 37, No. 1, 65-72, 2013
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Kim, Ki-Hong, In-Su Kim, Hun-Bo Park, In-Ho Bae, jae-In Yu, and Yoon-Seok Jang. "Study of Optical Properties of InxGa1-xN/GaN Multi-Quantum-Well." Journal of the Korean Vacuum Society 18, no. 1 (January 30, 2009): 37–43. http://dx.doi.org/10.5757/jkvs.2009.18.1.037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Manz, Ch, M. Kunzer, H. Obloh, A. Ramakrishnan, and U. Kaufmann. "InxGa1−xN/GaN band offsets as inferred from the deep, yellow-red emission band in InxGa1−xN." Applied Physics Letters 74, no. 26 (June 28, 1999): 3993–95. http://dx.doi.org/10.1063/1.124247.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Hadjaj, F., M. Belhadj, K. Laoufi, and A. Missoum. "Optimized design of strain-compensated InxGa1-xN/GaN and InxGa1-xN/InYGa1-YN multiple-quantum-well laser diodes." Journal of Ovonic Research 17, no. 2 (March 2021): 107–15. http://dx.doi.org/10.15251/jor.2021.172.107.

Повний текст джерела
Анотація:
We carried out a study of the strain-compensated InxGa1−xN/GaN and InxGa1-xN/InyGa1-yN multiple quantum wells, In order to carry out this analysis, we choose a set of three different types of samples. The optimization of this laser structure allowed us to determine the optimal values of the functional parameters, in order to adjust their performance and interest. We also studied the electronic and structural properties of compound semiconductor alloys used in wurtzite phase and we have presented a comparative theoretical study of both structures. Our studies show the improvement of the spontaneous emission spectra and better carrier confinement from the use of InxGa1-xN/InyGa1-yN MQW with higher In-content in barrier as active regions for diode lasers and this structure is useful for the design of new high performance Laser diodes emitting in the Blue/Violet range, and it’s also shows that the process of the electron-holes transition is strongly affected by the quantum well width and the Indium composition, and the InGaN lattice mismatch that increases with In-content causing the strain accumulation inside the QW structure. However, strain is undesirable as it can cause defects such as cracking at the interface.We can optimize the InGaN/GaN strained quantum well structures to achieve a reliable optoelectronic component. It suffices to incorporate small amounts of indium in the barrier enhances the annihilation of the defect and strain, thereby improving their structural properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Dridi, Z., B. Bouhafs, and P. Ruterana. "Pressure dependence of energy band gaps for AlxGa1 -xN, InxGa1 -xN and InxAl1 -xN." New Journal of Physics 4 (November 15, 2002): 94. http://dx.doi.org/10.1088/1367-2630/4/1/394.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Masyukov, N. A., and A. V. Dmitriev. "Hot Electrons in InxGa1–xN and InxAl1–xN Binary Solid Solutions." Moscow University Physics Bulletin 73, no. 3 (May 2018): 325–28. http://dx.doi.org/10.3103/s0027134918030116.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Santos, A. M., E. C. F. Silva, O. C. Noriega, H. W. L. Alves, J. L. A. Alves, and J. R. Leite. "Vibrational Properties of Cubic AlxGa1?xN and InxGa1?xN Ternary Alloys." physica status solidi (b) 232, no. 1 (July 2002): 182–87. http://dx.doi.org/10.1002/1521-3951(200207)232:1<182::aid-pssb182>3.0.co;2-q.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Wang, Shuo, Hongen Xie, Hanxiao Liu, Alec M. Fischer, Heather McFavilen, and Fernando A. Ponce. "Dislocation baskets in thick InxGa1−xN epilayers." Journal of Applied Physics 124, no. 10 (September 14, 2018): 105701. http://dx.doi.org/10.1063/1.5042079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Shan, W., J. J. Song, Z. C. Feng, M. Schurman, and R. A. Stall. "Pressure-dependent photoluminescence study of InxGa1−xN." Applied Physics Letters 71, no. 17 (October 27, 1997): 2433–35. http://dx.doi.org/10.1063/1.120083.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Kucheyev, S. O., J. S. Williams, J. Zou, S. J. Pearton, and Y. Nakagawa. "Implantation-produced structural damage in InxGa1−xN." Applied Physics Letters 79, no. 5 (July 30, 2001): 602–4. http://dx.doi.org/10.1063/1.1388881.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Prozheeva, V., I. Makkonen, R. Cuscó, L. Artús, A. Dadgar, F. Plazaola, and F. Tuomisto. "Radiation-induced alloy rearrangement in InxGa1−xN." Applied Physics Letters 110, no. 13 (March 27, 2017): 132104. http://dx.doi.org/10.1063/1.4979410.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Katsikini, M., E. C. Paloura, F. Boscherini, F. D’Acapito, C. B. Lioutas, and D. Doppalapudi. "Microstructural characterization of InxGa1−xN MBE samples." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 200 (January 2003): 114–19. http://dx.doi.org/10.1016/s0168-583x(02)01706-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Elyukhin, V. A. "Order–disorder transition in wurtzite InxGa1−xN." Journal of Crystal Growth 356 (October 2012): 53–57. http://dx.doi.org/10.1016/j.jcrysgro.2012.07.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Oh, Eunsoon, Myoung Hee Lee, Kwang Joo Kim, M. Y. Ryu, J. H. Song, S. W. Park, P. W. Yu, H. Park, and Y. Park. "Cathodoluminescence study of InxGa1−xN quantum wells." Journal of Applied Physics 89, no. 5 (March 2001): 2839–42. http://dx.doi.org/10.1063/1.1345849.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Teles, L. K., L. G. Ferreira, J. R. Leite, L. M. R. Scolfaro, A. Kharchenko, O. Husberg, D. J. As, D. Schikora, and K. Lischka. "Strain-induced ordering in InxGa1−xN alloys." Applied Physics Letters 82, no. 24 (June 16, 2003): 4274–76. http://dx.doi.org/10.1063/1.1583854.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Alshehri, Bandar, Karim Dogheche, Sofiane Belahsene, Bilal Janjua, Abderrahim Ramdane, Gilles Patriarche, Tien-Khee Ng, Boon S-Ooi, Didier Decoster, and Elhadj Dogheche. "Synthesis of In0.1Ga0.9N/GaN structures grown by MOCVD and MBE for high speed optoelectronics." MRS Advances 1, no. 23 (2016): 1735–42. http://dx.doi.org/10.1557/adv.2016.417.

Повний текст джерела
Анотація:
ABSTRACTIn this work, we report a comparative investigation of InxGa1-xN (SL) and InxGa1-xN/GaN (MQW) structures with an indium content equivalent to x=10%. Both structures are grown on (0001) sapphire substrates using MOCVD and MBE growth techniques. Optical properties are evaluated for samples using PL characteristics. Critical differences between the resulting epitaxy are observed. Microstructures have been assessed in terms of crystalline quality, density of dislocations and surface morphology. We have focused our study towards the fabrication of vertical PIN photodiodes. The technological process has been optimized as a function of the material structure. From the optical and electrical characteristics, this study demonstrates the benefit of InGaN/GaN MQW grown by MOCVD in comparison with MBE for high speed optoelectronic applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Suzuki, Toshimasa, Ruichi Katayama, Shun Hibino, Yoshinori Kato, Fumitaka Ohashi, Takashi Itoh, and Shuichi Nonomura. "Effect of thermal annealing in a-InxGa1–xN films prepared by reactive RF-sputtering." Canadian Journal of Physics 92, no. 7/8 (July 2014): 943–46. http://dx.doi.org/10.1139/cjp-2013-0565.

Повний текст джерела
Анотація:
We deposited amorphous indium gallium nitride (a-InxGa1–xN) films at room temperature by reactive radio frequency sputtering with GaN and InN targets and investigated the change of their properties from thermal annealing at annealing temperatures, Ta, below 200 °C. A large change in the indium and nitrogen composition ratios was not observed by thermal annealing at a Ta below 200 °C. In the X-ray diffraction patterns of the films annealed at a Ta below 200 °C, no perceivable peaks assigned to crystalline InxGa1–xN were found. The photoconductivty, σp, increased with an increase in Ta. On the other hand, the increase of the dark conductivity, σd, was very small with an increase in Ta below 200 °C. As a result, the photosensitivity, σp/σd, increased from 252 to 2500 by thermal annealing at a Ta of 200 °C.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Gorczyca, I., N. E. Christensen, A. Svane, K. Laaksonen, and R. M. Nieminen. "Electronic Band Structure of InxGa1-xN under Pressure." Acta Physica Polonica A 112, no. 2 (August 2007): 203–8. http://dx.doi.org/10.12693/aphyspola.112.203.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Gauthier-Brun, A., J. H. Teng, E. Dogheche, W. Liu, A. Gokarna, M. Tonouchi, S. J. Chua, and D. Decoster. "Properties of InxGa1−xN films in terahertz range." Applied Physics Letters 100, no. 7 (February 13, 2012): 071913. http://dx.doi.org/10.1063/1.3684836.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

McCluskey, M. D., C. G. Van de Walle, C. P. Master, L. T. Romano, and N. M. Johnson. "Large band gap bowing of InxGa1−xN alloys." Applied Physics Letters 72, no. 21 (May 25, 1998): 2725–26. http://dx.doi.org/10.1063/1.121072.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Durbha, A. "Microstructural stability of ohmic contacts to InxGa1−xN." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 14, no. 4 (July 1996): 2582. http://dx.doi.org/10.1116/1.588771.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії