Дисертації з теми "Invariant pattern recognition"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Invariant pattern recognition".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Elliffe, Martin C. M. "Neural networks for Invariant pattern recognition." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302530.
Повний текст джерелаReed, Stuart. "Cascaded linear shift invariant processing in pattern recognition." Thesis, Loughborough University, 2000. https://dspace.lboro.ac.uk/2134/7481.
Повний текст джерелаChan, Lai-Wan. "Adaptive and invariant connectionist models for pattern recognition." Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.238206.
Повний текст джерелаLi, Duwang. "Invariant pattern recognition algorithm using the Hough Transform." PDXScholar, 1989. https://pdxscholar.library.pdx.edu/open_access_etds/3899.
Повний текст джерелаTonge, Ashwini Kishor. "Object Recognition Using Scale-Invariant Chordiogram." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc984116/.
Повний текст джерелаOjansivu, V. (Ville). "Blur invariant pattern recognition and registration in the Fourier domain." Doctoral thesis, University of Oulu, 2009. http://urn.fi/urn:isbn:9789514292552.
Повний текст джерелаRahtu, E. (Esa). "A multiscale framework for affine invariant pattern recognition and registration." Doctoral thesis, University of Oulu, 2007. http://urn.fi/urn:isbn:9789514286018.
Повний текст джерелаWoo, Myung Chul. "Biologically-inspired translation, scale, and rotation invariant object recognition models /." Online version of thesis, 2007. http://hdl.handle.net/1850/3933.
Повний текст джерелаMertzanis, Emmanouel Christopher. "A new neural network based approach to position and scale invariant pattern recognition." Thesis, University of York, 1992. http://etheses.whiterose.ac.uk/10897/.
Повний текст джерелаHeck, Larry Paul. "A subspace approach to the auomatic design of pattern recognition systems for mechanical system monitoring." Diss., Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/15016.
Повний текст джерела陳浩邦 and Hau-bang Bernard Chan. "Matching patterns of line segments by affine-invariant area features." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B31225652.
Повний текст джерелаChan, Hau-bang Bernard. "Matching patterns of line segments by affine-invariant area features /." Hong Kong : University of Hong Kong, 2002. http://sunzi.lib.hku.hk/hkuto/record.jsp?B25151319.
Повний текст джерелаLi, Yue. "Active Vision through Invariant Representations and Saccade Movements." Ohio University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1149389174.
Повний текст джерелаCui, Chen. "Adaptive weighted local textural features for illumination, expression and occlusion invariant face recognition." University of Dayton / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1374782158.
Повний текст джерелаPratt, John Graham le Maistre. "Application of the Fourier-Mellin transform to translation-, rotation- and scale-invariant plant leaf identification." Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=33440.
Повний текст джерелаNelson, Eric D. "Zoom techniques for achieving scale invariant object tracking in real-time active vision systems /." Online version of the thesis, 2006. https://ritdml.rit.edu/dspace/handle/1850/2620.
Повний текст джерелаHeywood, M. I. "A practical framework for training sigma-pi neural networks with an application in rotation invariant pattern recognition." Thesis, University of Essex, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241204.
Повний текст джерелаVoils, Danny. "Scale Invariant Object Recognition Using Cortical Computational Models and a Robotic Platform." PDXScholar, 2012. https://pdxscholar.library.pdx.edu/open_access_etds/632.
Повний текст джерелаKrasilenko, V. G., O. I. Nikolskyy, A. A. Lazarev, D. V. Nikitovich, В. Г. Красіленко, О. І. Нікольський, О. О. Лазарєв, and Д. В. Нікітович. "Simulating optical pattern recognition algorithms for object tracking based on nonlinear models and subtraction of frames." Thesis, Український державний хіміко-технологічний університет, 2015. http://ir.lib.vntu.edu.ua//handle/123456789/23850.
Повний текст джерелаMathew, Alex. "Rotation Invariant Histogram Features for Object Detection and Tracking in Aerial Imagery." University of Dayton / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1397662849.
Повний текст джерелаФенько, Альона Дмитрівна. "Web-система аналізу медичних зображень". Bachelor's thesis, КПІ ім. Ігоря Сікорського, 2021. https://ela.kpi.ua/handle/123456789/44037.
Повний текст джерелаThis thesis is devoted to the development of a web-system for the processing of medical images. The purpose of the work is to create a web-system for processing medical images and to identify and classify breast cancer metastases in full slide-image of histological sections of the lymph nodes. To achieve the goal, the following tasks were solved: 1. An analysis of new and existing algorithms for the automatic detection and classification of breast cancer metastases is performed on complete slide images of histological sections of lymph nodes. 2.A comparative analysis of the basic architectures of neural networks is carried out. 3.Teaching the neural network. 4.Development of the interface. 5.Testing the operation of the web system.
Данная дипломная работа посвящена разработке web-системы по обработке медицинских изображений. Целью работы является создание web-системы для обработки медицинских изображений и обнаружения и классификация метастазов рака молочной железы на полных слайд-изображениях гистологических срезов лимфатических узлов. Для достижения цели были решены следующие задачи: 1. Проведен анализ новых и уже существующих алгоритмов для автоматического обнаружения и классификации метастазов рака молочной железы на полных слайд-изображениях гистологических срезов лимфатических узлов. 2.Проведен сравнительный анализ основных архитектур нейронных сетей. 3.Обучение нейронной сети. 4.Разработка интерфейса. 5.Тестирование работы веб-системы.
Shao, Yuan. "Higher order spectra invariants for shape pattern recognition." Ohio : Ohio University, 2000. http://www.ohiolink.edu/etd/view.cgi?ohiou1179949998.
Повний текст джерелаHanson, Adam. "Character recognition of optically blurred textual images using moment invariants /." Online version of thesis, 1993. http://hdl.handle.net/1850/11748.
Повний текст джерелаYuen, P. C. "Multi-scale representation and recognition of three dimensional surfaces using geometric invariants." Thesis, University of Surrey, 2001. http://epubs.surrey.ac.uk/979/.
Повний текст джерелаHoang, Thai V. "Image Representations for Pattern Recognition." Phd thesis, Université Nancy II, 2011. http://tel.archives-ouvertes.fr/tel-00714651.
Повний текст джерелаMazetti, Cristina Mônica Dornelas. "Metodologia para extração de características invariantes à rotação em imagens de impressões digitais." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/18/18133/tde-03032007-085126/.
Повний текст джерелаThe objective of this research is to present algorithms that can be applied in fingerprints images in order to extract certain features, which are invariant to an likely rotation in the given image. In the preprocessing stage, the Canny border detector is used, resulting in a binary, fine tuned image. For the minutiae extraction, the crossing number method is used, which extracts local aspects such as minutiae endings and bifurcations. The direction of local ridges is ignored because, in rotated images, the permanence conditions of the biometric attributes are not fulfilled. The process of matching fingerprints uses two arrays (one for ridge endings and the other for bifurcations), which are generated by the extraction of the minutiae, considering the (x,y) coordinate of the given minutiae stored in the arrays, and calculating its Euclidian distance relating to the center of mass of the minutiae distribution, for each of its types (ending or bifurcation). Thus, both images are similar when the Euclidian distance between the arrays of each image, distinct by the type of each minutiae, is minimal. The limitations of other pieces of research works concerning fingerprint image rotation, translation and distortion are discussed, indicating that the only few ones that deal with these kinds of problems give unsatisfactory results.
Koukoulas, Triantafillos. "Invariance analysis and performance assessment of pattern recognition filters for hybrid optical/digital correlator configurations." Thesis, University of Sussex, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271772.
Повний текст джерелаBatog, Guillaume. "Problèmes classiques en vision par ordinateur et en géométrie algorithmique revisités via la géométrie des droites." Phd thesis, Université Nancy II, 2011. http://tel.archives-ouvertes.fr/tel-00653043.
Повний текст джерелаMaceček, Aleš. "Umělá neuronová síť RCE." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2013. http://www.nusl.cz/ntk/nusl-220065.
Повний текст джерелаgundam, madhuri, and Madhuri Gundam. "Automatic Classification of Fish in Underwater Video; Pattern Matching - Affine Invariance and Beyond." ScholarWorks@UNO, 2015. http://scholarworks.uno.edu/td/1976.
Повний текст джерелаCosta, José Alfredo Ferreira. "Sistema de reconhecimento de padrões visuais invariante a transformações geométricas utilizando redes neurais artificiais de múltiplas camadas." Universidade de São Paulo, 1996. http://www.teses.usp.br/teses/disponiveis/18/18133/tde-23012018-135451/.
Повний текст джерелаComputer vision (CV) and artificial neural networks (ANN) are important research fields of artificial intelligence. Visual pattern recognition (VPR) and object recognition (2 or 3-D) are central tasks in a high level computer vision system. Despite the great development in the recent years, most of the current automatic visual inspection systems work with only one kind of pattern at time which has pose highly restricted. This dissertation describes a system designed to recognize patterns and objects in a digital image which have unknown number object types and poses. Such image, which is also degraded by noise, serve as input for the system. After gray level change and filtering, the pixel connected regions (CR) are codified, and the remained noise is eliminated. lnvariant features, i.e., moment invariants, serve as inputs for artificial neural networks that perform pattern classification. An interpretation module decode the net\'s outputs and increases the correct assignment by testing the net\'s higher outputs values. After all identified patterns were classified, we have an object listing of the scene, their positions and other information, which can be the input for a higher level scene understanding system, that may check for objects relations and could send information for humans or for other machines. Two ANN learning methods were adopted for training the networks, the conjugate gradient and the Levenberg-Marquardt Algoritms, both in conjuction with siumlated annealing, for different error conditions and feature sets. Sinthetic and real images were utilized for testing the net\'s correct class assignments and rejections. Results are presented as well as comments focusing the system\'s generalization capability despite noise, geometrical transformations, object shadows and other degradations over the images. One of the advantages of the ANN employed is the low execution time allowing the system to be integrated to an assembly industry line. The system runs on low cost personal computers, therefore it can be easily adapted for the Brazilian reality and can even be used by little companies and industries.
Vass, György. "Réseaux de neurones multicouches appliqués à la reconnaissance invariante des formes planes." Valenciennes, 1998. https://ged.uphf.fr/nuxeo/site/esupversions/2a32a089-db0c-4e22-8403-0399fd02eb59.
Повний текст джерелаIn this thesis we propose the use of invariant descriptors and multilayer neural networks for the recognition of planar contour patterns. The neural network architecture may contain one or more layers. For training, the back-propagation algorithm is used. We have shown that in case of a single hidden layer work, the choice of the number of neurons can be realized by using a criterion where the only parameters involved are the hidden neuron outputs and the correct classes of the observations. In function of the planar shapes considered we propose different kind of invariant descriptors having the properties of stability and completeness. For applications like recognition of star-shaped patterns, the use of Fourier descriptors based on a radial representation permit the neural network to learn the patterns independently of the transformations they could undergo. Furthermore, we have shown that a complete and stable set of invariant descriptors can be effectively used in a nonsupervised, auto-associative type of training procedure. The obtained results are encouraging and allowed us to reveal the capability of the neural network to generate an internal coding scheme. However, for the case of contours only known partially we propose a local description technique which is invariant with the respect to the group of similarities, together with a modular neural architecture. The obtained results are encouraging. We believe that they can be improved by choosing a different polygonal approximation algorithm
Ernst, Jan [Verfasser]. "The Trace Model for Spatial Invariance with Applications in Structured Pattern Recognition, Image Patch Matching and Incremental Visual Tracking / Jan Ernst." Aachen : Shaker, 2014. http://d-nb.info/1060622025/34.
Повний текст джерелаHorák, Karel. "Aplikace metod rozpoznávání obrazu v defektoskopii." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2008. http://www.nusl.cz/ntk/nusl-233438.
Повний текст джерелаLópez, Guillermo Ángel Pérez. "AFORAPRO: reconhecimento de objetos invariante sob transformações afins." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/3/3142/tde-31052011-155411/.
Повний текст джерелаObject recognition is a basic application from the domain of image processing and computer vision. The common process recognition consists of finding occurrences of an image query in another image to be analyzed A. Consequently, if the images changes viewpoint in the camera it will normally result in the algorithm failure. The invariance viewpoints are qualities that permit recognition of an object, even if this present distortion resultant of a transformation of perspective is caused by the change in viewpoint. An approach based on viewpoint simulation, called ASIFT, has recently been proposed surrounding this issue. The ASIFT algorithm is invariant viewpoints; however there are flaws in the presence of repetitive patterns and low contrast. The objective of our work is to use a variant of this technique of viewpoint simulating, in combination with the technique of extraction of the Coefficients of Fourier Projections Radials and Circulars (FORAPRO), and to propose an algorithm of invariant viewpoints and robust repetitive patterns and low contrast. In general, our proposal summarizes the following stages: (a) We distort the image, varying the parameters of inclination and rotation of the camera, to produce some models and achieve perspective invariance deformation, (b) use as the model to be search in the image, to choose the that match best, (c) realize the template matching. The two last stages of process are based on invariant features by images rotation, scale, brightness and contrast extracted by Fourier coefficients. Our approach, that we call AFORAPRO, was tested with 350 images that contained diversity in applications, and demonstrated to have invariant viewpoints, and to have excellent performance in the presence of patterns repetitive and low contrast.
MATOS, Caio Eduardo Falcão. "Diagnóstico de câncer de mama em imagens mamográficas através de características locais e invariantes." Universidade Federal do Maranhão, 2017. http://tedebc.ufma.br:8080/jspui/handle/tede/1324.
Повний текст джерелаMade available in DSpace on 2017-04-27T13:46:48Z (GMT). No. of bitstreams: 1 Caio Eduardo Falcão Matos.pdf: 1884390 bytes, checksum: a5489f8f52a87e6c5958458ed5470488 (MD5) Previous issue date: 2017-02-08
Breast cancer is one of the leading causes of death among women over the world. The high mortality rates that cancers achieves across the world highlight the importance of developing and investigating the means for the early detection and diagnosis of this disease. Computer Detection and Diagnosis Systems (Computer Assisted Detection / Diagnosis) have been used and proposed as a way to help health professionals. This work proposes a new methodology for discriminating patterns of malignancy and benignity of masses in mammography images by analysis of local characteristics. To do so, it is proposed a combined methodology of feature detectors and descriptors with a model of data representation for an analysis. The goal is to capture both texture and geometry in areas of mammograms. We use the SIFT, SURF and ORB detectors, and the descriptors HOG, LBP, BRIEF and Haar Wavelet. The generated characteristics are coded by a bag of features model to provide a new representation of the data and therefore decrease a dimensionality of the space of characteristics. Finally, this new representation is classified using three approaches: Support Vector Machine, Random Forest, and Adaptive Boosting to differentiate as malignant and benign masses. The methodology provides promising results for the diagnosis of malignant and benign mass encouraging that as local characteristics generated by descriptors and detectors produce a satisfactory a discriminating set.
O câncer de mama é apontado como uma das principais causas de morte entre as mulheres. As altas taxas de mortalidade e registros de ocorrência desse câncer em todo o mundo evidenciam a importância do desenvolvimento e investigação de meios para a detecção e diagnóstico precoce dessa doença. Sistemas de Detecção e Diagnóstico auxiliados por computador (Computer Aided Detection/Diagnosis) vêm sendo usados e propostos como forma de auxílio aos profissionais de saúde. Este trabalho propõe uma metodologia para discriminação de padrões de malignidade e benignidade de massas em imagens de mamografia através da análise de características locais. Para tanto, a metodologia combina detectores e descritores de características locais com um modelo de representação de dados para a análise, tanto de textura quanto de geometria em regiões extraídas das mamografias. São utilizados os detectores SIFT, SURF e ORB, e descritores HOG, LBP, BRIEF e Haar Wavelet. Com as características geradas é aplicado o modelo Bag of Features em uma etapa de representação que objetiva prover nova representação dos dados e por conseguinte diminuir a dimensionalidade do espaço de características. Por fim, esta nova representação é classificada utilizando três abordagens: Máquina de Vetores de Suporte, Random Forests e Adaptive Boosting visando diferenciar as massas malignas e benignas. A metodologia contém resultados promissores para o diagnóstico de massas malignas e benignas fomentando que as características locais geradas pelos descritores e detectores produzem um conjunto descriminate satisfatório.
Bruna, Joan. "Representations en Scattering pour la Reconaissance." Phd thesis, Ecole Polytechnique X, 2013. http://pastel.archives-ouvertes.fr/pastel-00905109.
Повний текст джерелаMinařík, Martin. "Strukturální metody identifikace objektů pro řízení průmyslového robotu." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2009. http://www.nusl.cz/ntk/nusl-233840.
Повний текст джерелаZhang, David Xin. "Invariant pattern recognition and neural networks." 1997. http://catalog.hathitrust.org/api/volumes/oclc/37622254.html.
Повний текст джерелаChen, Zhi Cheng, and 陳志誠. "Invariant pattern recognition based on bispectra." Thesis, 1995. http://ndltd.ncl.edu.tw/handle/54169092849596588885.
Повний текст джерелаSun, Pei-Chin, and 孫珮琴. "Pattern recognition by invariant morphological feature extraction." Thesis, 1996. http://ndltd.ncl.edu.tw/handle/00438398059753139881.
Повний текст джерела大同工學院
電機工程學系
84
Pattern recognition plays an important role in many applications. Many methods about how to extract features of an object in scence regardless of itspositions, rotations, and scales have been proposed in the literature. In thisthesis, we develop a feature extraction method based on mathematical morphology. At first, the concepts of multiscale decomposition andpecstrum(pattern spectrum) has been received. Then, a new feature extraction method called multiscale pecstrum is developed. By investigating the noiseimmunity of the multiscalepecstrum, we extend the proposed method of multiscale pecstrum in spatial domain to frequency domain. Finally, experimental results are given to show thehigh performance.
Sun, Pei-Qin, and 孫珮琴. "Pattern recognition by invariant morphological feature extraction." Thesis, 1996. http://ndltd.ncl.edu.tw/handle/75658801283038613422.
Повний текст джерелаWU, WEN-JIE, and 吳文傑. "Invariant pattern recognition using higher-order neural networks." Thesis, 1993. http://ndltd.ncl.edu.tw/handle/04087011820093994541.
Повний текст джерелаZENG, YUAN-XIAN, and 曾元顯. "Associative mapping and translation, rotation, scale-invariant pattern recognition." Thesis, 1989. http://ndltd.ncl.edu.tw/handle/11872579950912127601.
Повний текст джерелаShun-ching, Ke, and 柯順清. "Development of Position and Scale-invariant Pattern Recognition Systems." Thesis, 1999. http://ndltd.ncl.edu.tw/handle/39950137540155197392.
Повний текст джерела國立臺灣科技大學
機械工程系
87
The purpose of this thesis is to develop a position/scaling-invariant pattern recognition system. Two basic methods are proposed based on global features and local features. Both methods are embedded in the traditional Hamming network where pattern recognition activities are performed. For the first method, the global feature of the pattern is input into a feature extraction network to calculate its exact position. An associate memory network is employed to perform static mapping of the input feature position and the weighting matrix of the Hamming network so that a proper position/scaling-invariant property can be obtained. For the second method, local features of the input pattern are assumed to be available for the proposed system. Three schemes are suggested for the encoding of the input local features. Each one of which utilizes properties such as feature contribution and weights on feature connectivity. Simulation results show that both methods give position/scaling-invariant properties with reasonable complexity in terms of the encoding date size, feature order, and robustness.
CHEN, PO-CHENG, and 陳柏誠. "Two-dimensional pattern recognition by invariant algebraic feature extraction." Thesis, 1992. http://ndltd.ncl.edu.tw/handle/91022547792968596635.
Повний текст джерелаLee, Cheng-Long, and 李錦榮. "Translation, Rotation, and Scaling Invariant Pattern Recognition by Fuzzy Neural Networks." Thesis, 1994. http://ndltd.ncl.edu.tw/handle/73768232434002506852.
Повний текст джерела國立交通大學
控制工程系
82
A hybrid pattern recognition system is described in this study which can recognize patterns with translation, rotation, scaling, and a combination of them. The system consists of two parts, i.e., the preprocessor and the fuzzy neuron classifier. The preprocessor, implemented by simple mapping techniques, generates the normalized input image. Next, the fuzzy neuron classifier associates the normalized input patterns with prototype patterns by making an optimal match of the weighted grade membership functions. A single layer gradient type algorithm is used to adapt the membership functions to the patterns to be recognized. Some numerical examples are provided to demonstrate the performance of the proposed technique.
Li, Jin Rong, and 李錦榮. "Translation, rotation, and scaling invariant pattern recognition by fuzzy neural networks." Thesis, 1994. http://ndltd.ncl.edu.tw/handle/01702677518212263247.
Повний текст джерелаShih, Jau-Ling, and 石昭玲. "2-D Invariant Pattern Recognition Using a Backpropogation Network Improved by Distributed Associative Memory." Thesis, 1994. http://ndltd.ncl.edu.tw/handle/47410554866730966852.
Повний текст джерела國立成功大學
電機工程研究所
82
In this paper, a system included image preprocessing and neural networks is proposed. The various function units of the image processing are used to obtain an invariant image representation in the beginning of the system. The space of the neural networks weights can be reduced by using the reduction of the feature dimension before the preprocessed feature applied to the networks.Then, several kinds of the neural models are proposed for pattern recognition : (1) distributed associative memory (DAM), (2) backpropagation network(BPN), (3)DAM combined with BPN, and(4)BPN with the associative memory as initial weights. In the case of (3), this hierarchical networks consist of two levels of neural networks. In the low level, a DAM receives the output vectors of image preprocessing functions to create a system which recognizes pattern regardless of changes in scale or rotation. The higher level is a two- layers BPN which recives the recalled information from the memorized database of the lower level. This neural networks use a BPN after the DAM can raise the recognition ratio in comparison with a DAM, and be faster than a BPN.In the case of (4), the training of the BPN speeds up much because this neural networks use a associative memory of a DAM as initial weights of the first layer of te BPN. Experiment results show that the system can recognize all the patterns correctly when the percentage of the white noises is under under 20% for the case (3) and (4).
Wang, Sha-Wei, and 王學偉. "Investigation on shift-, rotational- and size-invariant opti- cal pattern recognition and related filters." Thesis, 1993. http://ndltd.ncl.edu.tw/handle/54676972990248223030.
Повний текст джерела