Статті в журналах з теми "Intracontinental"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Intracontinental.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Intracontinental".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Fitzgerald, Richard J. "Interpreting intracontinental earthquakes." Physics Today 63, no. 1 (January 2010): 17. http://dx.doi.org/10.1063/1.4797231.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Xu, Wen-Liang, Jia-Hui Chen, Ai-Hua Weng, Jie Tang, Feng Wang, Chun-Guang Wang, Peng Guo, Yi-Ni Wang, Hao Yang, and Andrey A. Sorokin. "Stagnant slab front within the mantle transition zone controls the formation of Cenozoic intracontinental high-Mg andesites in northeast Asia." Geology 49, no. 1 (August 25, 2020): 19–24. http://dx.doi.org/10.1130/g47917.1.

Повний текст джерела
Анотація:
Abstract The geochemistry of Cenozoic intracontinental high-Mg andesites (HMAs) in northeast Asia, together with regional geophysical data, offers an opportunity to explore the genetic relationship between the formation of intracontinental HMAs and subduction of the Pacific plate. Compared with primary HMAs in arcs, Cenozoic intracontinental HMAs in northeast Asia have lower Mg# [100 × Mg/(Mg + Fe2+)] values (53–56) and CaO contents (5.8–6.6 wt%), higher alkali (Na2O + K2O) contents (5.15–6.45 wt%), and enriched Sr-Nd-Hf isotopic compositions (87Sr/86Sr = 0.7056–0.7059; εNd = −4.9 to −3.4; εHf = −4.7 to −2.6) as well as lower Pb isotope ratios (206Pb/204Pb = 16.76–19.19; 207Pb/204Pb = 15.42–15.45; 208Pb/204Pb = 36.71–37.11). These Cenozoic intracontinental HMAs are similar to Cenozoic potassic basalts in northeast China with respect to their Sr-Nd-Pb-Hf isotopic compositions but have higher SiO2 and Al2O3 contents and lower K2O, MgO, and light rare earth element contents. These features indicate that these Cenozoic intracontinental HMAs originated from the mantle, where recycled ancient sediments and water contributed to partial melting of peridotite. Combined with the presence of a large low-resistivity anomaly derived from the mantle transition zone (MTZ) near these intracontinental HMAs, and their occurrence above the stagnant slab front within the MTZ (at 600 km depth) in northeast Asia, we conclude that the stagnant slab front, with high contents of recycled ancient sediments and water, has controlled the formation of Cenozoic intracontinental HMAs in northeast Asia.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Raimondo, Tom, Alan S. Collins, Martin Hand, Althea Walker-Hallam, R. Hugh Smithies, Paul M. Evins, and Heather M. Howard. "Ediacaran intracontinental channel flow." Geology 37, no. 4 (April 2009): 291–94. http://dx.doi.org/10.1130/g25452a.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ma, Huimin, Yu Wang, Yajuan Huang, and Yueting Xie. "Three-stage Mesozoic intracontinental tectonic evolution of South China recorded in an overprinted basin: evidence from stratigraphy and detrital zircon U–Pb dating." Geological Magazine 156, no. 12 (June 6, 2019): 2085–103. http://dx.doi.org/10.1017/s0016756819000451.

Повний текст джерела
Анотація:
AbstractThe NE–NNE-trending Yuan-Ma Basin in central South China, an overprinted basin, is important for understanding the transition in Mesozoic intracontinental deformation in South China from compressional to extensional settings. A detailed sedimentary and structural cross-section across the basin reveals the Upper Triassic – Lower Jurassic black coal-bearing shale, greyish-green sandstone and brick-red claystone, and the Middle Jurassic brick-red sandstone, pebbly sandstone and conglomerate in the eastern segment of the basin. The Lower Cretaceous brick-red coarse sandstone, pebbly sandstone and siltstone occurred in the western and central segments, as well as fault breccia and Lower Cretaceous sandstone at the western margin of the basin. Detrital zircon U–Pb dating by laser ablation inductively coupled plasma mass spectrometry shows that the magmatic and metamorphic zircons yield significant age clusters at 900–700, 500–350 and 300–150 Ma, as well a minor age cluster at 120–100 Ma. Synthesizing the stratigraphic sequences, structures, isotopic dating results and palaeocurrent data, we infer that the Yuan-Ma Basin experienced three evolutionary stages and tectonic settings: (1) during Late Triassic – Early Jurassic time, the Yuan-Ma Basin was related to the diachronous progressive intracontinental deformation as a result of the early Mesozoic Xuefeng intracontinental orogeny in South China; (2) during Middle–Late Jurassic time, the Yuan-Ma Basin was related to intracontinental compression in South China; and (3) during late Early Cretaceous time, the Yuan-Ma Basin was constrained by the intracontinental extension that occurred in eastern China. These three stages, a result of various tectonic regimes, caused the intracontinental deformation that was controlled by the evolution of the continents and their margins.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Piazolo, Sandra, Nathan R. Daczko, David Silva, and Tom Raimondo. "Melt-present shear zones enable intracontinental orogenesis." Geology 48, no. 7 (April 13, 2020): 643–48. http://dx.doi.org/10.1130/g47126.1.

Повний текст джерела
Анотація:
Abstract Localized rheological weakening is required to initiate and sustain intracontinental orogenesis, but the reasons for weakening remain debated. The intracontinental Alice Springs orogen dominates the lithospheric architecture of central Australia and involved prolonged (450–300 Ma) but episodic mountain building. The mid-crustal core of the orogen is exposed at its eastern margin, where field relationships and microstructures demonstrate that deformation was accommodated in biotite-rich shear zones. Rheological weakening was caused by localized melt-present deformation coupled with melt-induced reaction softening. This interpretation is supported by the coeval and episodic nature of melt-present deformation, igneous activity, and sediment shed from the developing orogen. This study identifies localized melt availability as an important ingredient enabling intracontinental orogenesis.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wencai, Yang. "Analysis of deep intracontinental subduction." Episodes 23, no. 1 (March 1, 2000): 20–24. http://dx.doi.org/10.18814/epiiugs/2000/v23i1/004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Deng, Qi-dong, Meng-tan Gao, Xin-ping Zhao, and Jian-chun Wu. "Intracontinental basins and strong earthquakes." Acta Seismologica Sinica 17, no. 4 (July 2004): 377–80. http://dx.doi.org/10.1007/s11589-004-0016-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Artemjev, M. E., and M. K. Kaban. "Isostatic processes and intracontinental orogenesis." Journal of Geodynamics 13, no. 1 (January 1991): 77–86. http://dx.doi.org/10.1016/0264-3707(91)90031-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Engel, Charles, Michael K. Hendrickson, and John H. Rogers. "Intranational, Intracontinental, and Intraplanetary PPP." Journal of the Japanese and International Economies 11, no. 4 (December 1997): 480–501. http://dx.doi.org/10.1006/jjie.1997.0388.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chakraborty, Chandan. "Proterozoic intracontinental basin: The Vindhyan example." Journal of Earth System Science 115, no. 1 (February 2006): 3–22. http://dx.doi.org/10.1007/bf02703022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Catalano, Stefano, Giuseppe Grasso, Paolo Mazzoleni, Carmelo Monaco, and Luigi Tortorici. "Intracontinental tectonic melange in Southern Apennines." Terra Nova 19, no. 4 (August 2007): 287–93. http://dx.doi.org/10.1111/j.1365-3121.2007.00749.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Tsalolikhin, S. Ya. "Identification Key to the Intracontinental Species of the Genus Diaptonema (Nematoda: Monhysterida: Xyalidae) with a Description of New Species D. borkini sp. nov." Proceedings of the Zoological Institute RAS 321, no. 1 (March 24, 2017): 89–97. http://dx.doi.org/10.31610/trudyzin/2017.321.1.89.

Повний текст джерела
Анотація:
Until recently, the system of the family Xyalidae was extremely complicated. The characters of the genera Theristus, Cylindrotheristus, Mesotheristus, Pseudotheristus, Mongolotheristus, and others were mixed up. Many species changed their generic assignment more than once. The most recent revision (Venekey et al. 2014) resulted in the fact that in intracontinental water bodies two species only preserved their independence: Daptonema and Sacrimarinema. Genera Cylindrotheristus, Mesotheristus, Mongolotheristus, Penzancia were partially reduced to synonyms of Daptonema. The basic character in taxonomy of genera is terminal setae. This cannot be used in some cases as some individuals in some populations lack terminal setae. Development of the system of the family Xyalidae and genus Daptonema, in particular, is possible under consideration of such characteristic as spicule form and presence of tail papillae. The hermaphrodite specimen of D. borkini sp. n. is discussed separately. The article provides an identification key to intracontinental species of the genus Daptonema. The key shows the species to be found in intracontinental water bodies. The species recorded in rivers (as a rule, in estuaries and lower parts of rivers) are not taken into account, as they seem to be the marine species which are capable to survive in significantly desalinated water. The article provides the description of new species D. borkini sp. n., which is similar in morphology to D. salinae Gagarin et Gusacov, 2014 and D. limnobia Wu et Liang, 2000. The key is supplemented with the Table of the main characteristics of all intracontinental species (males) of the genus Daptonema.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Office, Editorial. "Die Kruidfontein Karbonatietkompleks, Suid-Afrika: geologic, petrologie, geochemie en ekonomiese potensiaal." Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie 18, no. 1 (July 12, 1999): 29. http://dx.doi.org/10.4102/satnt.v18i1.715.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

McCaffrey, Robert, and Joanne Fredrich. "Source Parameters of Large Australian Intracontinental Earthquakes." Seismological Research Letters 59, no. 4 (October 1, 1988): 315. http://dx.doi.org/10.1785/gssrl.59.4.315.

Повний текст джерела
Анотація:
Abstract We have examined the largest earthquakes in the Australian continent over the past 20 years by modeling their teleseismic long-period P and SH and short-period P waveforms. Eight earthquakes beneath the continent show thrust faulting at depths shallower than 10 km. Three (1, 2, 4 below) produced surface faulting and their waveforms indicate centroid depths of 3 km or less. The P-axes in the southwestern half of the continent have easterly trends. Preliminary examination of the 3 large earthquakes near Tennant Creek on 22 January, 1988, (7–9) indicate thrusting at less than 10 km depth, but with N-trending P-axes. The largest event (9), at 12:06 GMT, had a seismic moment of roughly 1019 Nm, which makes it comparable in size to the 1968 Meckering event (1). One event (6) beneath the continental margin indicates strike-slip at 26 km depth.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Chan, K. "Migratory Fattening in an Australian Intracontinental Migrant." Condor 96, no. 1 (February 1994): 211–14. http://dx.doi.org/10.2307/1369081.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Raimondo, Tom, Alan S. Collins, Martin Hand, Althea Walker-Hallam, R. Hugh Smithies, Paul M. Evins, and Heather M. Howard. "The anatomy of a deep intracontinental orogen." Tectonics 29, no. 4 (August 2010): n/a. http://dx.doi.org/10.1029/2009tc002504.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

WEN, Jun, Qiu-Yun Jenny XIANG, Hong QIAN, Jianhua LI, Xiao-Quan WANG, and Stefanie M. ICKERT-BOND. "Intercontinental and intracontinental biogeography-patterns and methods." Journal of Systematics and Evolution 47, no. 5 (September 2009): 327–30. http://dx.doi.org/10.1111/j.1759-6831.2009.00052.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Zhang, Guowei, Liwen Xiang, and Qingren Meng. "The Qinling orogen and intracontinental orogen mechanisms." Episodes 18, no. 1-2 (June 1, 1995): 36–40. http://dx.doi.org/10.18814/epiiugs/1995/v18i1.2/008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Raimondo, Tom, Martin Hand, and William J. Collins. "Compressional intracontinental orogens: Ancient and modern perspectives." Earth-Science Reviews 130 (March 2014): 128–53. http://dx.doi.org/10.1016/j.earscirev.2013.11.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Lavin, Matt, Brian P. Schrire, Gwilym Lewis, R. Toby Pennington, Alfonso Delgado–Salinas, Mats Thulin, Colin E. Hughes, Angela Beyra Matos, and Martin F. Wojciechowski. "Metacommunity process rather than continental tectonic history better explains geographically structured phylogenies in legumes." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 359, no. 1450 (October 29, 2004): 1509–22. http://dx.doi.org/10.1098/rstb.2004.1536.

Повний текст джерела
Анотація:
Penalized likelihood estimated ages of both densely sampled intracontinental and sparsely sampled transcontinental crown clades in the legume family show a mostly Quaternary to Neogene age distribution. The mode ages of the intracontinental crown clades range from 4–6 Myr ago, whereas those of the transcontinental crown clades range from 8–16 Myr ago. Both of these young age estimates are detected despite methodological approaches that bias results toward older ages. Hypotheses that resort to vicariance or continental history to explain continental disjunct distributions are dismissed because they require mostly Palaeogene and older tectonic events. An alternative explanation centring on dispersal that may well explain the geographical as well as the ecological phylogenetic structure of legume phylogenies is Hubbell's unified neutral theory of biodiversity and biogeography. This is the only dispersalist theory that encompasses evolutionary time and makes predictions about phylogenetic structure.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Heine, Christian, R. Dietmar Müller, Bernhard Steinberger, and Trond H. Torsvik. "Subsidence in intracontinental basins due to dynamic topography." Physics of the Earth and Planetary Interiors 171, no. 1-4 (December 2008): 252–64. http://dx.doi.org/10.1016/j.pepi.2008.05.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Pirajno, Franco, and M. Santosh. "Mantle plumes, supercontinents, intracontinental rifting and mineral systems." Precambrian Research 259 (April 2015): 243–61. http://dx.doi.org/10.1016/j.precamres.2014.12.016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Gorczyk, Weronika, Hugh Smithies, Fawna Korhonen, Heather Howard, and Raphael Quentin De Gromard. "Ultra-hot Mesoproterozoic evolution of intracontinental central Australia." Geoscience Frontiers 6, no. 1 (January 2015): 23–37. http://dx.doi.org/10.1016/j.gsf.2014.03.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Rapalini, A. E., A. L. Abdeldayem, and D. H. Tarling. "Intracontinental movements in Western Gondwanaland: a palaeomagnetic test." Tectonophysics 220, no. 1-4 (April 1993): 127–39. http://dx.doi.org/10.1016/0040-1951(93)90227-b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Leonov, M. G. "MORPHOSTRUCTURE OF INTRACONTINENTAL SEDIMENTARY BASINS AND FRACTAL GEOMETRY." Dynamic Processes in Geospheres 14, no. 1 (2022): 3–16. http://dx.doi.org/10.26006/22228535_2022_14_1_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Huo, Hailong, Da Zhang, Zhengle Chen, Yongjun Di, Xiaolong He, Ning Li, and Bojie Hu. "Geochemistry and Zircon U–Pb Geochronology of the Zhuxi Granites in the Jingdezhen Area, Jiangxi Province, China: Implications for the Mesozoic Tectonic Development of South China." Minerals 12, no. 3 (February 24, 2022): 283. http://dx.doi.org/10.3390/min12030283.

Повний текст джерела
Анотація:
Mesozoic granitic magmatism in Northeastern Jiangxi, China is of tectonic significance for the evolution of the South China Block. Whole-rock geochemical and zircon U–Pb geochronological and Lu–Hf isotopic data for Mesozoic Zhuxi granites in the Jingdezhen area of Northeastern Jiangxi were presented. The Zhuxi granites are composed of granodiorite, biotite granite, and two-mica granite. Zircon LA–ICP–MS U–Pb isotopic analyses indicated emplacement at 159–147 Ma. The granites are characterized by a strongly peraluminous nature with high A/CNK values (>1.1), high SiO2 (66.09–74.46 wt.%) and K2O (3.50–5.52 wt.%) contents, depletion in Ba, Nb, Ce, Sr, and Ti, moderately negative Eu anomalies (Eu/Eu* = 0.40–0.63), enrichment in LREE, and depletion in HREE ((La/Yb)N > 7.43). The A/CNK > 1.1, widespread aluminum-rich minerals (e.g., muscovite and tourmaline), indicating they are S–type granites and belong to muscovite–bearing peraluminous granites (MPG). The Zhuxi granites exhibited negative εHf(t) values (−9.9 to −3.7) and the TDM2 model ages of 1840–1442 Ma indicated derivation from ancient crustal sources. The magma is possibly caused by the subsequent process of intracontinental subduction. It is inferred that the Mesozoic magmatism in Northeastern Jiangxi was associated with oceanic–continental convergence of the Paleo–Pacific and Eurasian plates as well as the intracontinental subduction of the Yangtze and Cathaysia blocks. The Zhuxi granites highlight the primary role of oceanic–continental convergence and intracontinental subduction in early Yanshanian granitoid magmatism in South China.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Yin, An, Günther Brandl, and Alfred Kröner. "Plate-tectonic processes at ca. 2.0 Ga: Evidence from >600 km of plate convergence." Geology 48, no. 2 (November 19, 2019): 103–7. http://dx.doi.org/10.1130/g47070.1.

Повний текст джерела
Анотація:
Abstract We addressed when plate-tectonic processes first started on Earth by examining the ca. 2.0 Ga Limpopo orogenic belt in southern Africa. We show through palinspastic reconstruction that the Limpopo orogen originated from >600 km of west-directed thrusting, and the thrust sheet was subsequently folded by north-south compression. The common 2.7–2.6 Ga felsic plutons in the Limpopo thrust sheet and the absence of an arc immediately predating the 2.0 Ga Limpopo thrusting require the Limpopo belt to be an intracontinental structure. The similar duration (∼40 m.y.), slip magnitude (>600 km), slip rate (>15 mm/yr), tectonic setting (intracontinental), and widespread anatexis to those of the Himalayan orogen lead us to propose the Limpopo belt to have developed by continent-continent collision. Specifically, the combined Zimbabwe-Kaapvaal craton (ZKC, named in this study) in the west (present coordinates) was subducting eastward below an outboard craton (OC), which carried an arc equivalent to the Gangdese batholith in southern Tibet prior to the India-Asia collision. The ZKC-OC collision at ca. 2.0 Ga triggered a westward jump in the plate convergence boundary, from the initial suture zone to the Limpopo thrust within the ZKC. Subsequent thrusting accommodated >600 km of plate convergence, possibly driven by ridge push from the west side of the ZKC. As intracontinental plate convergence is a key modern plate-tectonic process, the development of the Limpopo belt implies that the operation of plate tectonics, at least at a local scale, was ongoing by ca. 2.0 Ga on Earth.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

ChangHong, JIANG, DU DeHong, and WANG XiaoLei. "Degassing and environmental effect of intracontinental transcrustal magmatic system." Acta Petrologica Sinica 38, no. 5 (2022): 1360–74. http://dx.doi.org/10.18654/1000-0569/2022.05.06.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Mints, M. V. "Meso-Neoproterozoic Grenville-Sveconorwegian intracontinental orogen: history, tectonics, geodynamics." Geodynamics & Tectonophysics 8, no. 3 (2017): 619–42. http://dx.doi.org/10.5800/gt-2017-8-3-0309.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Hamdani, Yvette, Jean-Claude Mareschal, and Jafar Arkani-Hamed. "Phase changes and thermal subsidence in intracontinental sedimentary basins." Geophysical Journal International 106, no. 3 (September 1991): 657–65. http://dx.doi.org/10.1111/j.1365-246x.1991.tb06337.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Migachev, I. F., and A. G. Volchkov. "GEODYNAMICS AND METALLOGENIC ZONING OF PHANEROZOIC INTRACONTINENTAL MOBILE BELTS." International Geology Review 30, no. 6 (June 1988): 642–49. http://dx.doi.org/10.1080/00206818809466044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Avouac, J. P., and E. B. Burov. "Erosion as a driving mechanism of intracontinental mountain growth." Journal of Geophysical Research: Solid Earth 101, B8 (August 10, 1996): 17747–69. http://dx.doi.org/10.1029/96jb01344.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Friedmann, S. JULIO, and DOUGLAS W. Burbank. "Rift basins and supradetachment basins: intracontinental extensional end-members." Basin Research 7, no. 2 (June 1995): 109–27. http://dx.doi.org/10.1111/j.1365-2117.1995.tb00099.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Zappettini, Eduardo O., Nora Rubinstein, Sabrina Crosta, and Susana J. Segal. "Intracontinental rift-related deposits: A review of key models." Ore Geology Reviews 89 (October 2017): 594–608. http://dx.doi.org/10.1016/j.oregeorev.2017.06.019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Dong, Yunpeng, Zhao Yang, Xiaoming Liu, Shengsi Sun, Wei Li, Bin Cheng, Feifei Zhang, Xiaoning Zhang, Dengfeng He, and Guowei Zhang. "Mesozoic intracontinental orogeny in the Qinling Mountains, central China." Gondwana Research 30 (February 2016): 144–58. http://dx.doi.org/10.1016/j.gr.2015.05.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Lipman, P. W., N. A. Logatchev, Y. A. Zorin, C. E. Chapman, V. Kovalenko, and P. Morgan. "Intracontinental rift comparisons: Baikal and Rio Grande Rift Systems." Eos, Transactions American Geophysical Union 70, no. 19 (1989): 578. http://dx.doi.org/10.1029/89eo00148.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

ELISON, MARK W. "Intracontinental contraction in western North America: Continuity and episodicity." Geological Society of America Bulletin 103, no. 9 (September 1991): 1226–38. http://dx.doi.org/10.1130/0016-7606(1991)103<1226:iciwna>2.3.co;2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Brown, Roderick, Michael Summerfield, Andrew Gleadow, Kerry Gallagher, Andrew Carter, Romain Beucher, and Mark Wildman. "Intracontinental deformation in southern Africa during the Late Cretaceous." Journal of African Earth Sciences 100 (December 2014): 20–41. http://dx.doi.org/10.1016/j.jafrearsci.2014.05.014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Chen, Wang-Ping. "A Brief Update on the Focal Depths of Intracontinental Earthquakes and their Correlations with Heat Flow and Tectonic Age." Seismological Research Letters 59, no. 4 (October 1, 1988): 263–72. http://dx.doi.org/10.1785/gssrl.59.4.263.

Повний текст джерела
Анотація:
Abstract This paper summarizes the characteristics of focal depths of intracontinental earthquakes based on a compilation of reliably determined depths reported in the past five years. Since the study of Chen and Molnar (1983), several additional moderate-sized sub-crustal events (mb ≥ 5) have occurred in southern Tibet, the Tien Shan, and the Karakorum where such events are known to exist. Furthermore, three events have been identified near the Moho beneath the Brazilian shield, the coldest part of the Baltic shield, and the passive margin of Newfoundland. Since these events took place in stable parts of the continent, they must be an integrated part of the deformation of the intracontinental lithosphere at depth, not that of subducted material. Therefore there seems to be little doubt that earthquakes near the Moho is an incessant element of intracontinental seismicity. Due to the lack of detailed information on the crustal and mantle structures in the source regions, many of the events near the Moho seem to be located in the uppermost mantle but some might have occurred in the lowermost crust. In any case, the events near the Moho in most regions seem to be separated from the familiar seismicity in the upper part of the crust, forming a pattern of two seismogenic zones straddling an aseismic region in the lower crust. With data from South America and the Baltic shield, the maximum depth of earthquakes in cratons can be correlated with tectonic age within a single continent, and with low heat flow of the source region in a given tectonic province, respectively. These observations reinforce the view point that to a first approximation, the distribution of focal depth serves as an indicator of temperature or mechanical strength of the lithosphere, a result consistent with extrapolation of data from experimental rock mechanics. The aseismic zone in the lower crust is interpreted as a relatively weak region of the lithosphere sandwiched between two layers of more competent material where sufficient strain can accumulate to produce earthquakes.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Zhang, Xiaoning, and Yunpeng Dong. "The geological and geodynamic condition on the formation of the Dabashan thrust nappe structure: Based on FLAC numerical modelling." Earth Sciences Research Journal 20, no. 4 (October 1, 2016): 1. http://dx.doi.org/10.15446/esrj.v20n4.38666.

Повний текст джерела
Анотація:
The Dabashan thrust nappe structure at the southern margin of the Qinling orogenic belt suffered at least two stages of evolution which are Late Triassic plate subduction collisional orogeny between North China block, Qinling micro-plate and Yangtze block followed by intracontinental orogeny since the Meso-Cenozoic. A prominent topography characteristic within the Dabashan area is a southwestward extrusive arc (Bashan Arc fault) that is one of key factors to understand the geodynamic condition of the Dabashan thrust nappe structure. In this work, two-dimensional plan-view models are constructed to simulate the collisional and intracontinental orogenic movements, and the factors that may control the formation of the Bashan Arc fault are analysed. The modelling results show that the compressive stress produced by the plates collision along both north and south boundaries is the main driving force. The dextral shearing derived from the inconsistent shape on the block margins is the main controller. Rigid tectonic units such as Bikou and Hanan-Micangshan terranes, Foping and Wudang domes, as well as Shennongjia-Huangling anticline also contribute as “anchor” effects. Additionally, the rheology properties of rock material in the Dabashan area affect the shape of the arc. Condición geológica y geodinámica para la formación estructural de la falla de cabalgamiento en las montañas Dabashan basada en el modelo numérico del software FLAC ResumenLa estructura de la falla de cabalgamiento de las montañas Dabashan en el margen sur del cinturón orogénico de Qinling sufrió por lo menos dos etapas de evolución, la colisión orogénica del Triásico Superior entre el bloque de la China del Norte, la microplaca de Qinling y el bloque Yangtze, y la orogénesis intracontinental desde el Meso-Cenozoico. Una característica topográfica prominente del área de Dabashan es un arco extrusivo (falla Arco de Bashan) hacia el suroeste, que es un factor determinante para entender la condición geodinámica de la falla de cabalgamiento en las montañas Dabashan. En este trabajo se construyeron modelos bidimensionales planos para simular los movimientos de colisión e intracontinental orogénicos y se analizaron los factores que podrían controlar la formación de la falla del Arco de Bashan. Los resultados del modelado muestran que el esfuerzo de compresión producido por las placas de colisión en los límites norte y sur es la principal fuerza impulsora de la falla. La principal controladora es la fuerza de cizallamiento dextral derivada de la forma inconsistente en los margenes del bloque. Las unidades tectónicas rígidas como los terrenos Bikou y Hanan- Micangshan, el domo Foping y Wudang, al igual que el anticlinal Shennongjia-Huangling tienen funciones de ancla. Adicionalmente, las propiedades reológicas del material rocoso en el área Dabashan afectan la forma del arco.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Wernicke, B., and J. L. Davis. "Detecting Large-scale Intracontinental Slow-slip Events (SSEs) Using Geodograms." Seismological Research Letters 81, no. 5 (August 31, 2010): 694–98. http://dx.doi.org/10.1785/gssrl.81.5.694.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Parphenuk, O. "Postcollisional evolution features of the intracontinental structures formed by overthrusting." Georesursy 20, no. 4 (November 30, 2018): 377–85. http://dx.doi.org/10.18599/grs.2018.4.377-385.

Повний текст джерела
Анотація:
The investigation of intracontinental collision structures is conducted based on the complex model of the thermal and mechanical evolution of overthrusting process for the rheologically layered lithosphere, which includes brittle upper crust, the lower crust and lithospheric upper mantle with different effective viscosity values. Finite element models with Lagrangian approach were used for the problem simulation. It was shown that thermal evolution of continental orogens essentially results from the geometry and topography due to thrusting and postcollision stage. This work concentrates on the thermal parameters influence on the evolution of collision zones aimed to the study of possibility of granite melt formation. Calculations for mean continental initial temperature distribution lead to the conclusion of possibility of granite melt formation for the case of “wet” granite solidus. The horizon of temperatures higher than “wet” granite solidus appears at the level of 30-40 km, moving upward to the depth 15-20 km at postcollision stage. The early postcollision evolution shows some heat flow increase due to the thickening of the upper crust with maximum heat generation rate. Further history leads to the stable heat flow values because additional loading redistribution resulting from the denudation of surface uplift and corresponding sedimentation is small due to the local erosion in our model. It was shown that surface heat losses after the termination of horizontal shortening depend to a greater extent on radiogenic heat generation rather than thermal conductivity value in the upper crust.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Doutsos, T., J. Koukouvelas, A. Zelilidas, and N. Kontopoulos. "Intracontinental wedging and post-orogenic collapse in the mesohellenic trough." Geologische Rundschau 83, no. 2 (July 1994): 257–75. http://dx.doi.org/10.1007/bf00210544.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Rebetsky, Yu L. "On the specific state of crustal stresses in intracontinental orogens." Geodynamics & Tectonophysics 6, no. 4 (2015): 437–66. http://dx.doi.org/10.5800/gt-2015-6-4-0189.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Liu, Mian, Seth Stein, Yuxuan Chen, and Gang Luo. "Intracontinental Earthquakes: Complex Spatio‐temporal Patterns and Implications for Hazards." Acta Geologica Sinica - English Edition 93, S1 (May 2019): 265. http://dx.doi.org/10.1111/1755-6724.14076.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Taboada, Alfredo, Luis A. Rivera, Andrés Fuenzalida, Armando Cisternas, Hervé Philip, Harmen Bijwaard, José Olaya, and Clara Rivera. "Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia)." Tectonics 19, no. 5 (October 2000): 787–813. http://dx.doi.org/10.1029/2000tc900004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Mao, Jianren, Kuiyuan Tao, Zhuliang Yang, Yunhe Zhu, and Huaimin Xue. "Geodynamic background of the mesozoic intracontinental magmatism in Southeast China." Chinese Journal of Geochemistry 16, no. 3 (July 1997): 230–39. http://dx.doi.org/10.1007/bf02870906.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Molnar, P., and K. E. Dayem. "Major intracontinental strike-slip faults and contrasts in lithospheric strength." Geosphere 6, no. 4 (August 1, 2010): 444–67. http://dx.doi.org/10.1130/ges00519.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Gvirtzman, Zohar, and Zvi Garfunkel. "Vertical movements following intracontinental magmatism: An example from southern Israel." Journal of Geophysical Research: Solid Earth 102, B2 (February 10, 1997): 2645–58. http://dx.doi.org/10.1029/96jb02567.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Jolivet, Laurent, Marc Fournier, Philippe Huchon, Vitali S. Rozhdestvenskiy, Konstantin F. Sergeyev, and Leonid S. Oscorbin. "Cenozoic intracontinental dextral motion in the Okhotsk-Japan Sea Region." Tectonics 11, no. 5 (October 1992): 968–77. http://dx.doi.org/10.1029/92tc00337.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії