Добірка наукової літератури з теми "Intersubband absorption"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Intersubband absorption".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Intersubband absorption"

1

OZTURK, E., H. SARI, and I. SOKMEN. "INTERSUBBAND OPTICAL ABSORPTION IN QUANTUM WELLS UNDER APPLIED ELECTRIC AND INTENSE LASER FIELDS." Surface Review and Letters 11, no. 03 (June 2004): 297–303. http://dx.doi.org/10.1142/s0218625x04006219.

Повний текст джерела
Анотація:
Within the framework of the effective mass approximation, we have theoretically investigated the linear intersubband optical absorption in a quantum well under external electric and intense laser field. Results obtained show that intersubband optical transition and energy levels in quantum wells can significantly be modified and controlled by the electric field and intense laser field. Generally there is a distinct feature for the case of the intersubband absorption compared with intersubband optical absorption in a quantum well with an applied electric field.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

SEILMEIER, A., S. HANNA, V. A. SHALYGIN, D. A. FIRSOV, L. E. VOROBJEV, V. M. USTINOV, and A. E. ZHUKOV. "INTERSUBBAND SPECTROSCOPY IN QUANTUM WELL STRUCTURES AT HIGH NONEQUILIBRIUM CARRIER DENSITIES." International Journal of Nanoscience 02, no. 06 (December 2003): 445–51. http://dx.doi.org/10.1142/s0219581x03001541.

Повний текст джерела
Анотація:
In the present paper, the electronic intersubband transitions in semiconductor quantum well structures are investigated using transient mid infrared absorption spectroscopy after interband photoexcitation with intense picosecond pulses in the visible spectral range. The focus of our investigations is on the e2–e3 intersubband transition in an asymmetric undoped GaAs / AlGaAs quantum well (QW) structure at room temperature. At injected nonequilibrium carrier densities of 1×1013 cm -2 per QW, an e2–e3 absorption band at 99 meV is found which is blue-shifted with increasing carrier density. Intersubband absorption signals are distinguished from free-carrier absorption signals in the mid infrared (MIR) by their characteristic time behavior.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

TAKAHASHI, YUTAKA, TADASHI KAWAZOE, HITOSHI KAWAGUCHI, and YUICHI KAWAMURA. "INTERSUBBAND TRANSITIONS IN DOPED AND UNDOPED QUANTUM WELL STRUCTURES OF In0.53Ga0.47As/In0.52Al0.48As." Journal of Nonlinear Optical Physics & Materials 10, no. 03 (September 2001): 337–44. http://dx.doi.org/10.1142/s0218863501000681.

Повний текст джерела
Анотація:
We have successfully observed the intersubband absorption in doped as well as in undoped, unstrained quantum well structures of In0.53Ga0.47As/In0.52Al0.48As . The absorption is well resolved near the short-wavelength limit in this structure. Within the accuracy of our measurements, the intersubband transition is observed only in TM mode polarizations in both doped and undoped structures.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yao, J., W. Zheng, H. Opper, J. Cai, and G. W. Taylor. "Intersubband absorption in modulation doped heterostructures." Journal of Applied Physics 108, no. 1 (July 2010): 013104. http://dx.doi.org/10.1063/1.3436595.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Crnjanski, J. V., and D. M. Gvozdić. "Intersubband Absorption in Quantum Dash Nanostructures." Acta Physica Polonica A 116, no. 4 (October 2009): 668–71. http://dx.doi.org/10.12693/aphyspola.116.668.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Faist, Jérome, Carlo Sirtori, Federico Capasso, Sung-Nee G. Chu, Loren N. Pfeiffer, and Ken W. West. "Tunable Fano interference in intersubband absorption." Optics Letters 21, no. 13 (July 1, 1996): 985. http://dx.doi.org/10.1364/ol.21.000985.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pan, Dong, Y. P. Zeng, J. M. Li, C. H. Zhang, M. Y. Kong, H. M. Wang, C. Y. Wang, and J. Wu. "Intersubband absorption from quantum dot superlattice." Journal of Crystal Growth 175-176 (May 1997): 760–64. http://dx.doi.org/10.1016/s0022-0248(96)01010-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

REZAEI, G., M. R. K. VAHDANI, and M. BARATI. "INTERSUBBAND OPTICAL ABSORPTION COEFFICIENTS AND REFRACTIVE INDEX CHANGES OF AN ELLIPSOIDAL FINITE POTENTIAL QUANTUM DOT." Journal of Nonlinear Optical Physics & Materials 19, no. 01 (March 2010): 131–43. http://dx.doi.org/10.1142/s021886351000511x.

Повний текст джерела
Анотація:
Intersubband optical absorption coefficient and refractive index changes of a weakly prolate ellipsoidal quantum dot, using the compact-density matrix formalism and iterative method, are investigated. In this regard, the linear and nonlinear intersubband optical absorption coefficient and refractive index changes of a GaAs / Al x Ga 1-x As ellipsoidal quantum dot, as functions of the dot radius, ellipticity constant, stoichiometric ratio and incident light intensity are calculated. The results indicate that absorption coefficient and refractive index changes strongly depend on the light intensity, size and geometry of the dot and structure parameters such as aluminium concentration in GaAs / Al x Ga 1-x As structures.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

ZAŁUŻNY, M., and W. ZIETKOWSKI. "ELECTRODYNAMIC RESPONSE OF MULTIPLE QUANTUM WELLS: THE INTERSUBBAND RESONANCE REGION." International Journal of High Speed Electronics and Systems 12, no. 03 (September 2002): 907–24. http://dx.doi.org/10.1142/s0129156402001745.

Повний текст джерела
Анотація:
The electrodynamic properties of multiple quantum wells (MQWs) associated with intersubband transitions are discussed in context of infrared detectors. The effective medium approach is used for modeling of MQW structures. The usefulness of the concept of the radiative intersubband plasmon-polaritons in the description of the complex behavior of grazing-angle absorption spectra is also demonstrated.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

ZHAO, Y., D. HUANG, and C. WU. "FIELD-INDUCED QUANTUM INTERFERENCE IN SEMICONDUCTOR QUANTUM WELLS FOR LASING WITHOUT POPULATION INVERSION AND ELECTROMAGNETICALLY INDUCED TRANSPARENCY." Journal of Nonlinear Optical Physics & Materials 04, no. 02 (April 1995): 261–82. http://dx.doi.org/10.1142/s0218863595000112.

Повний текст джерела
Анотація:
This paper presents the current results of field-induced quantum interference in semiconductor quantum wells. Three-level systems with two conduction subbands in single and double quantum wells coupled by a resonant field are studied. We investigate effects of the Coulomb and field-induced electronic renormalizations of the energy subbands and steady eigenstates of electrons. The random-phase and ladder approximations have been used to calculate the linear interband and intersubband optical absorptions and refractive indices. The effect of collective dipole moment on the nonlinear susceptibility has been incorporated into the study by using a local-field approach. Lasing without population inversion, electromagnetically induced transparency, and enhanced nonlinearity with reduced absorption inside the intersubband-coupled single quantum well and dc-field coupled double quantum wells are found.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Intersubband absorption"

1

Kainz, Josef. "Theorie der Spinrelaxation und Intersubband-Absorption in Halbleiter-Quantenstrukturen." [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=97143591X.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hebb, Jeffrey Paul. "Infrared absorption in doped semiconductors due to direct intersubband transitions." Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/49584.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wong, KuanMeng. "Modelling of intersubband absorption in modulation doped deep quantum wells." Thesis, University of Bath, 2007. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.438621.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Machhadani, Houssaine, M. Beeler, S. Sakr, E. Warde, Y. Kotsar, M. Tchernycheva, M. P. Chauvat, et al. "Systematic study of near-infrared intersubband absorption of polar and semipolar GaN/AlN quantum well." Linköpings universitet, Halvledarmaterial, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-93977.

Повний текст джерела
Анотація:
We report on the observation of intersubband absorption in GaN/AlN quantum well superlattices grown on (112)-oriented GaN. The absorption is tuned in the 1.5–4.5 μm wavelength range by adjusting the well thickness. The semipolar samples are compared with polar samples with identical well thickness grown during the same run. The intersubband absorption of semipolar samples shows a significant red shift with respect to the polar ones due to the reduction of the internal electric field in the quantum wells. The experimental results are compared with simulations and confirm the reduction of the polarization discontinuity along the growth axis in the semipolar case. The absorption spectral shape depends on the sample growth direction: for polar quantum wells the intersubband spectrum is a sum of Lorentzian resonances, whereas a Gaussian shape is observed in the semipolar case. This dissimilarity is explained by different carrier localization in these two cases.

Funding Agencies|EC FET-OPEN project Unitride|233950|EU ERC-StG under project TeraGaN|278428|French National Research Agency under project COSNI|ANR-08-BLAN-0298-01|

Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kainz, Josef [Verfasser]. "Theorie der Spinrelaxation und Intersubband-Absorption in Halbleiter-Quantenstrukturen / vorgelegt von Josef Kainz." 2004. http://d-nb.info/97143591X/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Juang, Feng-Rurng, and 莊豐榮. "Theoretical Investigation of Infrared Intersubband Absorption Spectra in Semiconductor Quantum Wells and Superlattices." Thesis, 1997. http://ndltd.ncl.edu.tw/handle/28984400982468940446.

Повний текст джерела
Анотація:
碩士
國立交通大學
電子工程學系
85
In this thesis, three main topics related to intersubband absorptionspectra in semiconductor quantum wells and superlattices are studied: (1) Comparison of TE amd TM absorption spectra in N-type superlattices.We have calculated explicitly the TE and TM intersubband absorption in N-typeGaAs/ Al0.3Ga0.7As and In0.4Ga0.6As/GaAs superlattices by using 8x8 super-lattices K-center-dot-p theory. The origin of TE absorption at K=0 resultsfrom the mixing of s and p states in the conduction subbands. Due to the cancellation resulting from opposite signs of some bulk momentum matrix elements, the zone- center TE momentum matrix elements are small quantities.Away from the zone center, the enhancement of TE momentum matrix elementsindicates that the higher doping concentration produces the larger TEabsorption. Nevertheless, TE absorption is negligible compared to TM absorption. (2) Strain effects on TE absorption of P-type superlattices. We usethe 8x8 superlattice K-center-dot-p theory for P-type non-strained GaAs/ Al0.3Ga0.7As and strained In0.4Ga0.6As/GaAs superlattices to calculate thevalence subband structures, envelope wave functions, momentum matrix elements, and absorption spectra. The biaxial compressive strain in the welllayer of In0.4Ga0.6As/GaAs superlattice enlarges the energy-level separationbetween HH1 and LH1 subbands. We find that the peak of bound-to- continuumabsorption coefficient is enhanced in strained superlattice. Therefore, thestrain effects are useful for the device application of quantum well infraredphotodetectors. (3) Analysis of the orientational effects on TE absorption spectra inP-type quantum wells. We calculated the valence subband structures in (100),(111), and (112) oriented GaAs/Al0.3 Ga0.7As quantum wells, by solving the 4x4Luttinger-Kohn Hamiltonian with axial approximation. It is found that theorientational effects significantly influence the heavy-hole effective mass.Therefore, energy-level position and subband dispersion of heavy- and light-hole are largely changed with respect to different orientations. The TE intervalence subband absorption spectra are calculated and compared, demonstrating the larger absorption coefficient in (100)-oriented quantumwells. According to the theoretical analysis of zone- center momentum matrixelements we design a narrow-well structure of (112) quantum well to improvethe bound-to-quasi-bound and bound-to-continuum absorption spectra. However,our calculations show the general (100) quantum wells still have largerabsorption coefficient.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Κοσιώνης, Σπυρίδων. "Θεωρητική μελέτη μη-γραμμικών οπτικών διαδικασιών σε ημιαγώγιμα κβαντικά πηγάδια". Thesis, 2012. http://hdl.handle.net/10889/6187.

Повний текст джерела
Анотація:
Στην εργασία αυτή, μελετάμε, τόσο με αναλυτικό όσο και με υπολογιστικό τρόπο, γραμμικά και μη γραμμικά οπτικά φαινόμενα σε συστήματα ημιαγώγιμων κβαντικών πηγαδιών GaAs/AlGaAs δύο ενεργειακών υποζωνών, όπου επάγονται διαϋποζωνικές μεταβάσεις, υπό την επίδραση ηλεκτρομαγνητικών πεδίων. Στο πρώτο κεφάλαιο, γίνεται μια θεωρητική περιγραφή των ημιαγώγιμων ετεροεπαφών. Ακολουθούν βασικά στοιχεία της στατιστικής και κβαντικής μηχανικής. Στο δεύτερο κεφάλαιο, εξάγονται οι γενικευμένες εξισώσεις Bloch για τις διαϋποζωνικές μεταβάσεις σε ημιαγώγιμα κβαντικά πηγάδια, στις οποίες ενυπάρχουν όροι που υπεισάγουν τις μη αμελητέες, λόγω εμπλουτισμού, αλληλεπιδράσεις μεταξύ των ηλεκτρονίων. Οι εξισώσεις αυτές αποτελούν τη βάση της μελέτης που ακολουθεί. Στα δύο επόμενα κεφάλαια, μελετούμε την αλληλεπίδραση μιας δομής διπλών συζευγμένων ημιαγώγιμων κβαντικών πηγαδιών με ένα ηλεκτρομαγνητικό πεδίο μεταβλητής γωνιακής συχνότητας, καταλήγουμε σε αναλυτικές εκφράσεις για τη οπτική επιδεκτικότητα πρώτης, τρίτης και πέμπτης τάξεως και αναλύουμε τα φάσματα διαφόρων οπτικών φαινομένων, ως προς τη γωνιακή συχνότητα του εξωτερικού πεδίου, για διάφορες τιμές της επιφανειακής ηλεκτρονιακής πυκνότητας της κβαντικής δομής. Επιπλέον, προσδιορίζουμε τις περιοχές όπου λαμβάνουν τιμή οι διάφορες παράμετροι, ούτος ώστε στο σύστημά μας να αναδυθεί η οπτική διστάθεια. Στα τρία τελευταία κεφάλαια, θεωρούμε ότι η ημιαγώγιμη κβαντική δομή αλληλεπιδρά ταυτόχρονα με ένα ισχυρό ηλεκτρομαγνητικό πεδίο (πεδίο άντλησης) καθορισμένης γωνιακής συχνότητας και ένα ασθενές (πεδίο ανίχνευσης) μεταβλητής συχνότητας και μελετούμε τα φάσματα γραμμικών και μη γραμμικών φαινομένων του πεδίου ανίχνευσης (μίξη τεσσάρων κυμάτων, απορρόφηση, διασπορά, μη γραμμικό οπτικό φαινόμενο Kerr), σε στάσιμη κατάσταση, καθώς και τη χρονική εξέλιξη αυτών. Περιγράφουμε τα φαινόμενα τόσο με αναλυτικές εκφράσεις που εξάγουμε, όσο και με την αριθμητική επίλυση των μη-γραμμικών διαφορικών εξισώσεων του πίνακα πυκνότητας που διέπουν τη δυναμική. Στη μελέτη των φαινομένων αυτών, εξετάζεται η επίδραση της επιφανειακής ηλεκτρονιακής πυκνότητας της κβαντικής δομής στις οπτικές ιδιότητες των κβαντικών πηγαδιών.
In this PhD thesis, we study analytically and numerically linear and nonlinear optical phenomena in intersubband transitions of a symmetric GaAs/AlGaAs double quantum well structure, with two energy subbands. In the first chapter, a theoretical description of the semiconductor heterostructures is presented. This is accompanied with a brief analysis of the basic elements of statistical and quantum mechanics follows, as far as this kind of structures is concerned. In the second chapter, we derive the generalised optical Bloch equations in intersubband transitions of semiconductor quantum well structures, which constitute the basis of the analysis that follows. These equations contain terms which owe their presence to the electron-electron interactions, because the quantum structure is doped with electron carriers. In the two following chapters, we consider the interaction of intersubband transitions of a double quantum well structure with an electromagnetic field of varying frequency, we derive analytical expressions for the first, third and fifth order optical susceptibility and, at last, we analyze the corresponding spectra, with respect to the frequency of the external field, for different values of electron sheet density of the structure. Furthermore, we identify the areas of values of the parameters used, in which the phenomenon of optical bistability arises. In the last three chapters, we consider the two quantum well subbands to be coupled to a strong pump electromagnetic field with fixed frequency and a weak probe electromagnetic field of varying frequency and study the spectra of various linear and nonlinear optical phenomena, which are due to the existence of the probe field. More specifically, we examine the spectra of four-wave mixing, absorption, dispersion and the nonlinear optical Kerr effect of the probe field as they evolve in time and in the steady state. Both analytical expressions are derived and numerical results are presented by solving the nonlinear differential density matrix equations that govern the dynamics of the system. In the study of the different kinds of optical phenomena, the influence of the electron sheet density on the spectral shapes is carefully examined.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Intersubband absorption"

1

Towe, E., and D. Pal. Intersublevel quantum-dot infrared photodetectors. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.7.

Повний текст джерела
Анотація:
This article describes the basic principles of semiconductor quantum-dot infrared photodetectors based on conduction-band intersublevel transitions. Sufficient background material is discussed to enable an appreciation of the subtle differences between quantum-well and quantum-dot devices. The article first considers infrared photon absorption and photon detection, along with some metrics for photon detectors and the detection of infrared radiation by semiconductors. It then examines the optical matrix element for interband, intersubband and intersublevel transitions before turning to experimental single-pixel quantum-dot infrared photodetectors. In particular, it explains the epitaxial synthesis of quantum dots and looks at mid-wave and long-wave quantum-dot infrared photodetectors. It also evaluates the characteristics of quantum-dot detectors and possible development of quantum-dot focal plane array imagers. The article concludes with an assessment of the challenges and prospects for high-performance detectors and arrays.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Intersubband absorption"

1

Julien, F. H., and P. Boucaud. "Optical Intersubband Absorption and Emission in Quantum Structures." In Optical Spectroscopy of Low Dimensional Semiconductors, 41–61. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5578-6_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Boucaud, P., S. Sauvage, F. H. Julien, J. M. Gérard, and V. Thierry-Mieg. "Intraband Absorption Spectroscopy of Self-Assembled Quantum Dots." In Intersubband Transitions in Quantum Wells: Physics and Devices, 141–46. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5759-3_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wang, Kang L., Chanho Lee, and S. K. Chun. "Intersubband Absorption in N - type Si and Ge Quantum Wells." In Quantum Well Intersubband Transition Physics and Devices, 221–35. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1144-7_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ikonić, Z., and V. Milanović. "On Some Peculiarities of Intersubband Absorption in Semiconductor Quantum Wells." In Quantum Well Intersubband Transition Physics and Devices, 389–97. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1144-7_32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dupont, E., P. B. Corkum, P. W. Dooley, H. C. Liu, P. H. Wilson, M. Lamm, M. Buchanan, and Z. R. Wasilewski. "Non-Resonant Two-Photon Absorption in Quantum Well Infrared Detectors." In Quantum Well Intersubband Transition Physics and Devices, 493–500. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1144-7_42.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Helm, M., W. Hilber, T. Fromherz, F. M. Peeters, K. Alavi, and R. N. Pathak. "Intersubband Absorption in Strongly Coupled Superlattices: Miniband Dispersion, Critical Points, and Oscillator Strengths." In Quantum Well Intersubband Transition Physics and Devices, 291–300. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1144-7_23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Seto, M., and M. Helm. "Optical Bistability Related to Intersubband Absorption in Asymmetric Quantum Wells." In NATO ASI Series, 209–17. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3346-7_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Manasreh, M. O., F. Szmulowicz, T. Vaughan, K. R. Evans, C. E. Stutz, and D. W. Fischer. "Intersubband Infrared Absorption in a GaAs/Al0.3Ga0.7As Multiple Quantum Well." In NATO ASI Series, 287–97. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3346-7_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Faist, Jérôme, Federico Capasso, Albert L. Hutchinson, Loren Pfeiffer, Ken W. West, Deborah L. Sivco, and Alfred Y. Cho. "Modulation of the Optical Absorption by Electric-Field-Induced Quantum Interference in Coupled Quantum Wells." In Quantum Well Intersubband Transition Physics and Devices, 313–19. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1144-7_25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gorfinkel, Vera B., and Serge Luryi. "Fast Data Coding Using Modulation of Interband Optical Properties by Intersubband Absorption in Quantum Wells." In Quantum Well Intersubband Transition Physics and Devices, 533–45. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1144-7_46.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Intersubband absorption"

1

Zaluzny, Miroslaw, and C. Nalewajko. "Intersubband absorption in multiple quantum wells." In XII Conference on Solid State Crystals: Materials Science and Applications, edited by Antoni Rogalski, Jaroslaw Rutkowski, Andrzej Majchrowski, and Jerzy Zielinski. SPIE, 1997. http://dx.doi.org/10.1117/12.276228.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hoffman, Erik H., and Shun-Lien Chuang. "Theory for intersubband absorption in quantum dots." In Integrated Optoelectronic Devices 2004, edited by Marek Osinski, Hiroshi Amano, and Fritz Henneberger. SPIE, 2004. http://dx.doi.org/10.1117/12.537982.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Guin, Shampa, and N. R. Das. "Intersubband absorption in core shell quantum dot." In 2013 International Conference on Microwave and Photonics (ICMAP). IEEE, 2013. http://dx.doi.org/10.1109/icmap.2013.6733544.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gallacher, K., A. Ballabio, R. W. Millar, J. Frigerio, A. Bashir, I. MacLaren, Giovanni Isella, Michele Ortolani, and Douglas J. Paul. "Intersubband absorption in p-Ge QWs on Si." In 2016 IEEE 13th International Conference on Group IV Photonics (GFP). IEEE, 2016. http://dx.doi.org/10.1109/group4.2016.7739130.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Montes Bajo, Miguel, Julen Tamayo-Arriola, Arnaud Jollivet, Maria Tchernycheva, François H. Julien, Romain Peretti, Jérôme Faist, Maxime Hugues, Jean-Michel Chauveau, and Adrian Hierro. "Intersubband absorption in m-plane ZnO/ZnMgO MQWs." In SPIE OPTO, edited by Ferechteh H. Teherani, David C. Look, and David J. Rogers. SPIE, 2017. http://dx.doi.org/10.1117/12.2252056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yao, J., W. Zheng, H. Opper, J. Cai, and G. W. Taylor. "Intersubband absorption based upon modulation doped transistor heterostructures." In SPIE Optical Engineering + Applications, edited by Edward W. Taylor and David A. Cardimona. SPIE, 2010. http://dx.doi.org/10.1117/12.859744.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Brown, Elliott R., K. A. McIntosh, and Kirby B. Nichols. "Strong intersubband absorption by photogenerated carriers in quantum wells." In Semiconductors '92, edited by Gottfried H. Doehler and Emil S. Koteles. SPIE, 1992. http://dx.doi.org/10.1117/12.137616.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shen, Yue, Anthony D. Kim, Mohammad Shahili, Christopher A. Curwen, Sadhvikas Addamane, John L. Reno, and Benjamin S. Williams. "Observation of intersubband polaritonic coupling in a quantum-cascade metasurface." In CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_si.2022.sw4g.2.

Повний текст джерела
Анотація:
An amplifying quantum-cascade (QC) metasurface – the key component of the QC vertical-external-cavity surface-emitting-laser (VECSEL) – is studied as a function of current density using reflection-mode terahertz time domain spectroscopy. Nearly perfect absorption and an anomalous reflection phase characteristic is measured at zero bias, which disappears as the device is biased to provide gain. This is attributed to critical coupling between a lossy intersubband transition within the active material and the metasurface resonance. These results provide insight into the interaction between the intersubband QC-gain material and the metasurface and modify the design rules for QC-VECSELs for both biased and unbiased regions.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sippel, P., K. Schwarzburg, M. Borgwardt, M. Elagin, S. Heitz, M. P. Semtsiv, W. T. Masselink, T. Hannappel, and R. Eichberger. "Dynamics and two photon intersubband absorption of photovoltaic quantum structures." In 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC). IEEE, 2014. http://dx.doi.org/10.1109/pvsc.2014.6925630.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tadic, Milan, and Zoran Ikonic. "Electronic structure and intersubband absorption in p-doped twinning superlattices." In Optoelectronics '99 - Integrated Optoelectronic Devices, edited by Gail J. Brown and Manijeh Razeghi. SPIE, 1999. http://dx.doi.org/10.1117/12.344583.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії