Добірка наукової літератури з теми "Interpretable deep learning"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Interpretable deep learning".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Interpretable deep learning"
Gangopadhyay, Tryambak, Sin Yong Tan, Anthony LoCurto, James B. Michael, and Soumik Sarkar. "Interpretable Deep Learning for Monitoring Combustion Instability." IFAC-PapersOnLine 53, no. 2 (2020): 832–37. http://dx.doi.org/10.1016/j.ifacol.2020.12.839.
Повний текст джерелаZheng, Hong, Yinglong Dai, Fumin Yu, and Yuezhen Hu. "Interpretable Saliency Map for Deep Reinforcement Learning." Journal of Physics: Conference Series 1757, no. 1 (2021): 012075. http://dx.doi.org/10.1088/1742-6596/1757/1/012075.
Повний текст джерелаRuffolo, Jeffrey A., Jeremias Sulam, and Jeffrey J. Gray. "Antibody structure prediction using interpretable deep learning." Patterns 3, no. 2 (2022): 100406. http://dx.doi.org/10.1016/j.patter.2021.100406.
Повний текст джерелаBhambhoria, Rohan, Hui Liu, Samuel Dahan, and Xiaodan Zhu. "Interpretable Low-Resource Legal Decision Making." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (2022): 11819–27. http://dx.doi.org/10.1609/aaai.v36i11.21438.
Повний текст джерелаArik, Sercan Ö., and Tomas Pfister. "TabNet: Attentive Interpretable Tabular Learning." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 8 (2021): 6679–87. http://dx.doi.org/10.1609/aaai.v35i8.16826.
Повний текст джерелаLin, Chih-Hsu, and Olivier Lichtarge. "Using interpretable deep learning to model cancer dependencies." Bioinformatics 37, no. 17 (2021): 2675–81. http://dx.doi.org/10.1093/bioinformatics/btab137.
Повний текст джерелаLiao, WangMin, BeiJi Zou, RongChang Zhao, YuanQiong Chen, ZhiYou He, and MengJie Zhou. "Clinical Interpretable Deep Learning Model for Glaucoma Diagnosis." IEEE Journal of Biomedical and Health Informatics 24, no. 5 (2020): 1405–12. http://dx.doi.org/10.1109/jbhi.2019.2949075.
Повний текст джерелаMatsubara, Takashi. "Bayesian deep learning: A model-based interpretable approach." Nonlinear Theory and Its Applications, IEICE 11, no. 1 (2020): 16–35. http://dx.doi.org/10.1587/nolta.11.16.
Повний текст джерелаLiu, Yi, Kenneth Barr, and John Reinitz. "Fully interpretable deep learning model of transcriptional control." Bioinformatics 36, Supplement_1 (2020): i499—i507. http://dx.doi.org/10.1093/bioinformatics/btaa506.
Повний текст джерелаYamuna, Vadada. "Interpretable Deep Learning Models for Improved Diabetes Diagnosis." INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 06 (2025): 1–9. https://doi.org/10.55041/ijsrem50834.
Повний текст джерелаДисертації з теми "Interpretable deep learning"
FERRONE, LORENZO. "On interpretable information in deep learning: encoding and decoding of distributed structures." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2016. http://hdl.handle.net/2108/202245.
Повний текст джерелаXie, Ning. "Towards Interpretable and Reliable Deep Neural Networks for Visual Intelligence." Wright State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wright1596208422672732.
Повний текст джерелаEmschwiller, Matt V. "Understanding neural network sample complexity and interpretable convergence-guaranteed deep learning with polynomial regression." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/127290.
Повний текст джерелаTerzi, Matteo. "Learning interpretable representations for classification, anomaly detection, human gesture and action recognition." Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3423183.
Повний текст джерелаREPETTO, MARCO. "Black-box supervised learning and empirical assessment: new perspectives in credit risk modeling." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2023. https://hdl.handle.net/10281/402366.
Повний текст джерелаThibeau-Sutre, Elina. "Reproducible and interpretable deep learning for the diagnosis, prognosis and subtyping of Alzheimer’s disease from neuroimaging data." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS495.
Повний текст джерелаParekh, Jayneel. "A Flexible Framework for Interpretable Machine Learning : application to image and audio classification." Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAT032.
Повний текст джерелаBennetot, Adrien. "A Neural-Symbolic learning framework to produce interpretable predictions for image classification." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS418.
Повний текст джерелаSheikhalishahi, Seyedmostafa. "Machine learning applications in Intensive Care Unit." Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/339274.
Повний текст джерелаLoiseau, Romain. "Real-World 3D Data Analysis : Toward Efficiency and Interpretability." Electronic Thesis or Diss., Marne-la-vallée, ENPC, 2023. http://www.theses.fr/2023ENPC0028.
Повний текст джерелаКниги з теми "Interpretable deep learning"
Thakoor, Kaveri Anil. Robust, Interpretable, and Portable Deep Learning Systems for Detection of Ophthalmic Diseases. [publisher not identified], 2022.
Знайти повний текст джерелаЧастини книг з теми "Interpretable deep learning"
Kamath, Uday, and John Liu. "Explainable Deep Learning." In Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83356-5_6.
Повний текст джерелаPreuer, Kristina, Günter Klambauer, Friedrich Rippmann, Sepp Hochreiter, and Thomas Unterthiner. "Interpretable Deep Learning in Drug Discovery." In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28954-6_18.
Повний текст джерелаPerumal, Boominathan, Swathi Jamjala Narayanan, and Sangeetha Saman. "Explainable Deep Learning Architectures for Product Recommendations." In Explainable, Interpretable, and Transparent AI Systems. CRC Press, 2024. http://dx.doi.org/10.1201/9781003442509-13.
Повний текст джерелаWüthrich, Mario V., and Michael Merz. "Selected Topics in Deep Learning." In Springer Actuarial. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12409-9_11.
Повний текст джерелаRodrigues, Mark, Michael Mayo, and Panos Patros. "Interpretable Deep Learning for Surgical Tool Management." In Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87444-5_1.
Повний текст джерелаBatra, Reenu, and Manish Mahajan. "Deep Learning Models: An Understandable Interpretable Approach." In Deep Learning for Security and Privacy Preservation in IoT. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6186-0_10.
Повний текст джерелаShinde, Swati V., and Sagar Lahade. "Deep Learning for Tea Leaf Disease Classification." In Applied Computer Vision and Soft Computing with Interpretable AI. Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003359456-20.
Повний текст джерелаLu, Yu, Deliang Wang, Qinggang Meng, and Penghe Chen. "Towards Interpretable Deep Learning Models for Knowledge Tracing." In Lecture Notes in Computer Science. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52240-7_34.
Повний текст джерелаPasquini, Dario, Giuseppe Ateniese, and Massimo Bernaschi. "Interpretable Probabilistic Password Strength Meters via Deep Learning." In Computer Security – ESORICS 2020. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58951-6_25.
Повний текст джерелаKontogiannis, Andreas, and George A. Vouros. "Inherently Interpretable Deep Reinforcement Learning Through Online Mimicking." In Explainable and Transparent AI and Multi-Agent Systems. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-40878-6_10.
Повний текст джерелаТези доповідей конференцій з теми "Interpretable deep learning"
Gazula, Vinay Ram, Katherine G. Herbert, Yasser Abduallah, and Jason T. L. Wang. "Interpretable Deep Learning for Solar Flare Prediction." In 2024 IEEE 36th International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2024. https://doi.org/10.1109/ictai62512.2024.00078.
Повний текст джерелаTasnim, Raihana, Kaushik Roy, and Madhuri Siddula. "Interpretable Deep Learning Model for Multiclass Brain Tumor Classification." In 2024 International Conference on Machine Learning and Applications (ICMLA). IEEE, 2024. https://doi.org/10.1109/icmla61862.2024.00219.
Повний текст джерелаLi, Yizhen, Yang Zhang, and Xiao Yao. "Towards Self-Interpretable Graph Neural Networks via Augmentation-Contrastive Learning." In 2025 6th International Conference on Computer Vision, Image and Deep Learning (CVIDL). IEEE, 2025. https://doi.org/10.1109/cvidl65390.2025.11086007.
Повний текст джерелаChisty, Tanjir Alam, and Md Mahbubur Rahman Rahman. "Ransomware Detection Utilizing Ensemble Based Interpretable Deep Learning Model." In 2024 IEEE International Conference on Power, Electrical, Electronics and Industrial Applications (PEEIACON). IEEE, 2024. https://doi.org/10.1109/peeiacon63629.2024.10800005.
Повний текст джерелаBhatti, Uzair Aslam, Yang Ke Yu, O. Zh Mamyrbayev, A. A. Aitkazina, Tang Hao, and N. O. Zhumazhan. "Recommendations for Healthcare: An Interpretable Approach Using Deep Learning." In 2024 7th International Conference on Pattern Recognition and Artificial Intelligence (PRAI). IEEE, 2024. https://doi.org/10.1109/prai62207.2024.10827288.
Повний текст джерелаHu, Shulin, Cao Zeng, Minti Liu, and Guisheng Liao. "Learning Interpretable Phase Difference Mapping for Scalable DOA Estimation via Deep Learning." In 2024 IEEE/CIC International Conference on Communications in China (ICCC Workshops). IEEE, 2024. http://dx.doi.org/10.1109/icccworkshops62562.2024.10693687.
Повний текст джерелаTemenos, Anastasios, Nikos Temenos, Ioannis Rallis, Margarita Skamantzari, Anastasios Doulamis, and Nikolaos Doulamis. "Identifying False Negative Flood Events Using Interpretable Deep Learning Framework." In IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2024. http://dx.doi.org/10.1109/igarss53475.2024.10642460.
Повний текст джерелаSoelistyo, Christopher J., and Alan R. Lowe. "Discovering interpretable models of scientific image data with deep learning." In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2024. http://dx.doi.org/10.1109/cvprw63382.2024.00682.
Повний текст джерелаB, Srinithi, Sruthi Nirmala S. R, Senthil Kumar Thangavel, Somasundaram K, and M. Ramasamy. "Enhancing Milk Yield Forecasting in Dairy Farming Using an Interpretable Machine Learning Framework." In 2025 4th International Conference on Sentiment Analysis and Deep Learning (ICSADL). IEEE, 2025. https://doi.org/10.1109/icsadl65848.2025.10933035.
Повний текст джерелаSah, Nabin Kumar, M. Vivek Srikar Reddy, Karthik Ullas, Tripty Singh, Adhirath Mandal, and Suman Chatterji. "Interpretable Deep Learning for Skin Cancer Detection: Exploring LIME and SHAP." In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT). IEEE, 2024. http://dx.doi.org/10.1109/icccnt61001.2024.10723848.
Повний текст джерелаЗвіти організацій з теми "Interpretable deep learning"
Jiang, Peishi, Xingyuan Chen, Maruti Mudunuru, et al. Towards Trustworthy and Interpretable Deep Learning-assisted Ecohydrological Models. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1769787.
Повний текст джерелаBegeman, Carolyn, Marian Anghel, and Ishanu Chattopadhyay. Interpretable Deep Learning for the Earth System with Fractal Nets. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1769730.
Повний текст джерелаPasupuleti, Murali Krishna. Decision Theory and Model-Based AI: Probabilistic Learning, Inference, and Explainability. National Education Services, 2025. https://doi.org/10.62311/nesx/rriv525.
Повний текст джерелаPasupuleti, Murali Krishna. Stochastic Computation for AI: Bayesian Inference, Uncertainty, and Optimization. National Education Services, 2025. https://doi.org/10.62311/nesx/rriv325.
Повний текст джерелаPasupuleti, Murali Krishna. Neural Computation and Learning Theory: Expressivity, Dynamics, and Biologically Inspired AI. National Education Services, 2025. https://doi.org/10.62311/nesx/rriv425.
Повний текст джерела