Добірка наукової літератури з теми "Interpretable deep learning"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Interpretable deep learning".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Interpretable deep learning"
Gangopadhyay, Tryambak, Sin Yong Tan, Anthony LoCurto, James B. Michael, and Soumik Sarkar. "Interpretable Deep Learning for Monitoring Combustion Instability." IFAC-PapersOnLine 53, no. 2 (2020): 832–37. http://dx.doi.org/10.1016/j.ifacol.2020.12.839.
Повний текст джерелаZheng, Hong, Yinglong Dai, Fumin Yu, and Yuezhen Hu. "Interpretable Saliency Map for Deep Reinforcement Learning." Journal of Physics: Conference Series 1757, no. 1 (2021): 012075. http://dx.doi.org/10.1088/1742-6596/1757/1/012075.
Повний текст джерелаRuffolo, Jeffrey A., Jeremias Sulam, and Jeffrey J. Gray. "Antibody structure prediction using interpretable deep learning." Patterns 3, no. 2 (2022): 100406. http://dx.doi.org/10.1016/j.patter.2021.100406.
Повний текст джерелаArik, Sercan Ö., and Tomas Pfister. "TabNet: Attentive Interpretable Tabular Learning." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 8 (2021): 6679–87. http://dx.doi.org/10.1609/aaai.v35i8.16826.
Повний текст джерелаBhambhoria, Rohan, Hui Liu, Samuel Dahan, and Xiaodan Zhu. "Interpretable Low-Resource Legal Decision Making." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (2022): 11819–27. http://dx.doi.org/10.1609/aaai.v36i11.21438.
Повний текст джерелаLin, Chih-Hsu, and Olivier Lichtarge. "Using interpretable deep learning to model cancer dependencies." Bioinformatics 37, no. 17 (2021): 2675–81. http://dx.doi.org/10.1093/bioinformatics/btab137.
Повний текст джерелаLiao, WangMin, BeiJi Zou, RongChang Zhao, YuanQiong Chen, ZhiYou He, and MengJie Zhou. "Clinical Interpretable Deep Learning Model for Glaucoma Diagnosis." IEEE Journal of Biomedical and Health Informatics 24, no. 5 (2020): 1405–12. http://dx.doi.org/10.1109/jbhi.2019.2949075.
Повний текст джерелаMatsubara, Takashi. "Bayesian deep learning: A model-based interpretable approach." Nonlinear Theory and Its Applications, IEICE 11, no. 1 (2020): 16–35. http://dx.doi.org/10.1587/nolta.11.16.
Повний текст джерелаLiu, Yi, Kenneth Barr, and John Reinitz. "Fully interpretable deep learning model of transcriptional control." Bioinformatics 36, Supplement_1 (2020): i499—i507. http://dx.doi.org/10.1093/bioinformatics/btaa506.
Повний текст джерелаBrinkrolf, Johannes, and Barbara Hammer. "Interpretable machine learning with reject option." at - Automatisierungstechnik 66, no. 4 (2018): 283–90. http://dx.doi.org/10.1515/auto-2017-0123.
Повний текст джерелаДисертації з теми "Interpretable deep learning"
FERRONE, LORENZO. "On interpretable information in deep learning: encoding and decoding of distributed structures." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2016. http://hdl.handle.net/2108/202245.
Повний текст джерелаXie, Ning. "Towards Interpretable and Reliable Deep Neural Networks for Visual Intelligence." Wright State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wright1596208422672732.
Повний текст джерелаEmschwiller, Matt V. "Understanding neural network sample complexity and interpretable convergence-guaranteed deep learning with polynomial regression." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/127290.
Повний текст джерелаTerzi, Matteo. "Learning interpretable representations for classification, anomaly detection, human gesture and action recognition." Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3423183.
Повний текст джерелаREPETTO, MARCO. "Black-box supervised learning and empirical assessment: new perspectives in credit risk modeling." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2023. https://hdl.handle.net/10281/402366.
Повний текст джерелаSheikhalishahi, Seyedmostafa. "Machine learning applications in Intensive Care Unit." Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/339274.
Повний текст джерелаjui, mao wen, and 毛文瑞. "Towards Interpretable Deep Extreme Multi-label Learning." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/t7hq7r.
Повний текст джерелаKuo, Bo-Wen, and 郭博文. "Interpretable representation learning based on Deep Rule Forests." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/7wqrk4.
Повний текст джерелаWürfel, Max. "Online advertising revenue forecasting: an interpretable deep learning approach." Master's thesis, 2021. http://hdl.handle.net/10362/122676.
Повний текст джерелаHuang, Sheng-Tai, and 黃升泰. "Interpretable Logic Representation Learning based on Deep Rule Forest." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/hybs2q.
Повний текст джерелаКниги з теми "Interpretable deep learning"
Thakoor, Kaveri Anil. Robust, Interpretable, and Portable Deep Learning Systems for Detection of Ophthalmic Diseases. [publisher not identified], 2022.
Знайти повний текст джерелаЧастини книг з теми "Interpretable deep learning"
Kamath, Uday, and John Liu. "Explainable Deep Learning." In Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83356-5_6.
Повний текст джерелаPreuer, Kristina, Günter Klambauer, Friedrich Rippmann, Sepp Hochreiter, and Thomas Unterthiner. "Interpretable Deep Learning in Drug Discovery." In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28954-6_18.
Повний текст джерелаWüthrich, Mario V., and Michael Merz. "Selected Topics in Deep Learning." In Springer Actuarial. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12409-9_11.
Повний текст джерелаRodrigues, Mark, Michael Mayo, and Panos Patros. "Interpretable Deep Learning for Surgical Tool Management." In Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87444-5_1.
Повний текст джерелаBatra, Reenu, and Manish Mahajan. "Deep Learning Models: An Understandable Interpretable Approach." In Deep Learning for Security and Privacy Preservation in IoT. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6186-0_10.
Повний текст джерелаLu, Yu, Deliang Wang, Qinggang Meng, and Penghe Chen. "Towards Interpretable Deep Learning Models for Knowledge Tracing." In Lecture Notes in Computer Science. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52240-7_34.
Повний текст джерелаPasquini, Dario, Giuseppe Ateniese, and Massimo Bernaschi. "Interpretable Probabilistic Password Strength Meters via Deep Learning." In Computer Security – ESORICS 2020. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58951-6_25.
Повний текст джерелаAbdukhamidov, Eldor, Mohammed Abuhamad, Firuz Juraev, Eric Chan-Tin, and Tamer AbuHmed. "AdvEdge: Optimizing Adversarial Perturbations Against Interpretable Deep Learning." In Computational Data and Social Networks. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-91434-9_9.
Повний текст джерелаShinde, Swati V., and Sagar Lahade. "Deep Learning for Tea Leaf Disease Classification." In Applied Computer Vision and Soft Computing with Interpretable AI. Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003359456-20.
Повний текст джерелаSchütt, Kristof T., Michael Gastegger, Alexandre Tkatchenko, and Klaus-Robert Müller. "Quantum-Chemical Insights from Interpretable Atomistic Neural Networks." In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28954-6_17.
Повний текст джерелаТези доповідей конференцій з теми "Interpretable deep learning"
Ouzounis, Athanasios, George Sidiropoulos, George Papakostas, Ilias Sarafis, Andreas Stamkos, and George Solakis. "Interpretable Deep Learning for Marble Tiles Sorting." In 2nd International Conference on Deep Learning Theory and Applications. SCITEPRESS - Science and Technology Publications, 2021. http://dx.doi.org/10.5220/0010517001010108.
Повний текст джерелаOuzounis, Athanasios, George Sidiropoulos, George Papakostas, Ilias Sarafis, Andreas Stamkos, and George Solakis. "Interpretable Deep Learning for Marble Tiles Sorting." In 2nd International Conference on Deep Learning Theory and Applications. SCITEPRESS - Science and Technology Publications, 2021. http://dx.doi.org/10.5220/0010517000002996.
Повний текст джерелаDo, Cuong M., and Cory Wang. "Interpretable deep learning-based risk evaluation approach." In Artificial Intelligence and Machine Learning in Defense Applications II, edited by Judith Dijk. SPIE, 2020. http://dx.doi.org/10.1117/12.2583972.
Повний текст джерелаKaratekin, Tamer, Selim Sancak, Gokhan Celik, et al. "Interpretable Machine Learning in Healthcare through Generalized Additive Model with Pairwise Interactions (GA2M): Predicting Severe Retinopathy of Prematurity." In 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML). IEEE, 2019. http://dx.doi.org/10.1109/deep-ml.2019.00020.
Повний текст джерелаKang, Yihuang, I.-Ling Cheng, Wenjui Mao, Bowen Kuo, and Pei-Ju Lee. "Towards Interpretable Deep Extreme Multi-Label Learning." In 2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI). IEEE, 2019. http://dx.doi.org/10.1109/iri.2019.00024.
Повний текст джерелаBaranyi, Máté, Marcell Nagy, and Roland Molontay. "Interpretable Deep Learning for University Dropout Prediction." In SIGITE '20: The 21st Annual Conference on Information Technology Education. ACM, 2020. http://dx.doi.org/10.1145/3368308.3415382.
Повний текст джерелаWhite, Andrew. "INTERPRETABLE DEEP LEARNING FOR MOLECULES AND MATERIALS." In 2022 International Symposium on Molecular Spectroscopy. University of Illinois at Urbana-Champaign, 2022. http://dx.doi.org/10.15278/isms.2022.wk01.
Повний текст джерелаYao, Liuyi, Zijun Yao, Jianying Hu, Jing Gao, and Zhaonan Sun. "Deep Staging: An Interpretable Deep Learning Framework for Disease Staging." In 2021 IEEE 9th International Conference on Healthcare Informatics (ICHI). IEEE, 2021. http://dx.doi.org/10.1109/ichi52183.2021.00030.
Повний текст джерелаJang, Hyeju, Seojin Bang, Wen Xiao, Giuseppe Carenini, Raymond Ng, and Young ji Lee. "KW-ATTN: Knowledge Infused Attention for Accurate and Interpretable Text Classification." In Proceedings of Deep Learning Inside Out (DeeLIO): The 2nd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures. Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.deelio-1.10.
Повний текст джерелаLiu, Xuan, Xiaoguang Wang, and Stan Matwin. "Interpretable Deep Convolutional Neural Networks via Meta-learning." In 2018 International Joint Conference on Neural Networks (IJCNN). IEEE, 2018. http://dx.doi.org/10.1109/ijcnn.2018.8489172.
Повний текст джерелаЗвіти організацій з теми "Interpretable deep learning"
Jiang, Peishi, Xingyuan Chen, Maruti Mudunuru, et al. Towards Trustworthy and Interpretable Deep Learning-assisted Ecohydrological Models. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1769787.
Повний текст джерелаBegeman, Carolyn, Marian Anghel, and Ishanu Chattopadhyay. Interpretable Deep Learning for the Earth System with Fractal Nets. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1769730.
Повний текст джерела