Добірка наукової літератури з теми "Interpolation-Based data augmentation"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Interpolation-Based data augmentation".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Interpolation-Based data augmentation"
Oh, Cheolhwan, Seungmin Han, and Jongpil Jeong. "Time-Series Data Augmentation based on Interpolation." Procedia Computer Science 175 (2020): 64–71. http://dx.doi.org/10.1016/j.procs.2020.07.012.
Повний текст джерелаLi, Yuliang, Xiaolan Wang, Zhengjie Miao, and Wang-Chiew Tan. "Data augmentation for ML-driven data preparation and integration." Proceedings of the VLDB Endowment 14, no. 12 (July 2021): 3182–85. http://dx.doi.org/10.14778/3476311.3476403.
Повний текст джерелаHuang, Chenhui, and Akinobu Shibuya. "High Accuracy Geochemical Map Generation Method by a Spatial Autocorrelation-Based Mixture Interpolation Using Remote Sensing Data." Remote Sensing 12, no. 12 (June 21, 2020): 1991. http://dx.doi.org/10.3390/rs12121991.
Повний текст джерелаTsourtis, Anastasios, Georgios Papoutsoglou, and Yannis Pantazis. "GAN-Based Training of Semi-Interpretable Generators for Biological Data Interpolation and Augmentation." Applied Sciences 12, no. 11 (May 27, 2022): 5434. http://dx.doi.org/10.3390/app12115434.
Повний текст джерелаBi, Xiao-ying, Bo Li, Wen-long Lu, and Xin-zhi Zhou. "Daily runoff forecasting based on data-augmented neural network model." Journal of Hydroinformatics 22, no. 4 (May 16, 2020): 900–915. http://dx.doi.org/10.2166/hydro.2020.017.
Повний текст джерелаde Rojas, Ana Lazcano. "Data augmentation in economic time series: Behavior and improvements in predictions." AIMS Mathematics 8, no. 10 (2023): 24528–44. http://dx.doi.org/10.3934/math.20231251.
Повний текст джерелаXie, Xiangjin, Li Yangning, Wang Chen, Kai Ouyang, Zuotong Xie, and Hai-Tao Zheng. "Global Mixup: Eliminating Ambiguity with Clustering." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 11 (June 26, 2023): 13798–806. http://dx.doi.org/10.1609/aaai.v37i11.26616.
Повний текст джерелаGuo, Hongyu. "Nonlinear Mixup: Out-Of-Manifold Data Augmentation for Text Classification." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 4044–51. http://dx.doi.org/10.1609/aaai.v34i04.5822.
Повний текст джерелаLim, Seong-Su, and Oh-Wook Kwon. "FrameAugment: A Simple Data Augmentation Method for Encoder–Decoder Speech Recognition." Applied Sciences 12, no. 15 (July 28, 2022): 7619. http://dx.doi.org/10.3390/app12157619.
Повний текст джерелаXie, Kai, Yuxuan Gao, Yadang Chen, and Xun Che. "Mask Mixup Model: Enhanced Contrastive Learning for Few-Shot Learning." Applied Sciences 14, no. 14 (July 11, 2024): 6063. http://dx.doi.org/10.3390/app14146063.
Повний текст джерелаДисертації з теми "Interpolation-Based data augmentation"
Venkataramanan, Shashanka. "Metric learning for instance and category-level visual representation." Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. http://www.theses.fr/2024URENS022.
Повний текст джерелаThe primary goal in computer vision is to enable machines to extract meaningful information from visual data, such as images and videos, and leverage this information to perform a wide range of tasks. To this end, substantial research has focused on developing deep learning models capable of encoding comprehensive and robust visual representations. A prominent strategy in this context involves pretraining models on large-scale datasets, such as ImageNet, to learn representations that can exhibit cross-task applicability and facilitate the successful handling of diverse downstream tasks with minimal effort. To facilitate learning on these large-scale datasets and encode good representations, com- plex data augmentation strategies have been used. However, these augmentations can be limited in their scope, either being hand-crafted and lacking diversity, or generating images that appear unnatural. Moreover, the focus of these augmentation techniques has primarily been on the ImageNet dataset and its downstream tasks, limiting their applicability to a broader range of computer vision problems. In this thesis, we aim to tackle these limitations by exploring different approaches to en- hance the efficiency and effectiveness in representation learning. The common thread across the works presented is the use of interpolation-based techniques, such as mixup, to generate diverse and informative training examples beyond the original dataset. In the first work, we are motivated by the idea of deformation as a natural way of interpolating images rather than using a convex combination. We show that geometrically aligning the two images in the fea- ture space, allows for more natural interpolation that retains the geometry of one image and the texture of the other, connecting it to style transfer. Drawing from these observations, we explore the combination of mixup and deep metric learning. We develop a generalized formu- lation that accommodates mixup in metric learning, leading to improved representations that explore areas of the embedding space beyond the training classes. Building on these insights, we revisit the original motivation of mixup and generate a larger number of interpolated examples beyond the mini-batch size by interpolating in the embedding space. This approach allows us to sample on the entire convex hull of the mini-batch, rather than just along lin- ear segments between pairs of examples. Finally, we investigate the potential of using natural augmentations of objects from videos. We introduce a "Walking Tours" dataset of first-person egocentric videos, which capture a diverse range of objects and actions in natural scene transi- tions. We then propose a novel self-supervised pretraining method called DoRA, which detects and tracks objects in video frames, deriving multiple views from the tracks and using them in a self-supervised manner
Частини книг з теми "Interpolation-Based data augmentation"
Rabah, Mohamed Louay, Nedra Mellouli, and Imed Riadh Farah. "Interpolation and Prediction of Piezometric Multivariate Time Series Based on Data Augmentation and Transformers." In Lecture Notes in Networks and Systems, 327–44. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-47724-9_22.
Повний текст джерелаТези доповідей конференцій з теми "Interpolation-Based data augmentation"
Ye, Mao, Haitao Wang, and Zheqian Chen. "MSMix: An Interpolation-Based Text Data Augmentation Method Manifold Swap Mixup." In 4th International Conference on Natural Language Processing and Machine Learning. Academy and Industry Research Collaboration Center (AIRCC), 2023. http://dx.doi.org/10.5121/csit.2023.130806.
Повний текст джерелаHeo, Jaeseung, Seungbeom Lee, Sungsoo Ahn, and Dongwoo Kim. "EPIC: Graph Augmentation with Edit Path Interpolation via Learnable Cost." In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/455.
Повний текст джерелаLi, Chen, Xutan Peng, Hao Peng, Jianxin Li, and Lihong Wang. "TextGTL: Graph-based Transductive Learning for Semi-supervised Text Classification via Structure-Sensitive Interpolation." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/369.
Повний текст джерела