Добірка наукової літератури з теми "Interneurone cortical"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Interneurone cortical".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Interneurone cortical"
Somogyi, Peter, and Thomas Klausberger. "Defined types of cortical interneurone structure space and spike timing in the hippocampus." Journal of Physiology 562, no. 1 (December 22, 2004): 9–26. http://dx.doi.org/10.1113/jphysiol.2004.078915.
Повний текст джерелаYang, Panzao, Joanne O. Davidson, Tania M. Fowke, Robert Galinsky, Guido Wassink, Rashika N. Karunasinghe, Jaya D. Prasad, et al. "Connexin Hemichannel Mimetic Peptide Attenuates Cortical Interneuron Loss and Perineuronal Net Disruption Following Cerebral Ischemia in Near-Term Fetal Sheep." International Journal of Molecular Sciences 21, no. 18 (September 4, 2020): 6475. http://dx.doi.org/10.3390/ijms21186475.
Повний текст джерелаQiu, Fang, Xingfeng Mao, Penglai Liu, Jinyun Wu, Yuan Zhang, Daijing Sun, Yueyan Zhu, et al. "microRNA Deficiency in VIP+ Interneurons Leads to Cortical Circuit Dysfunction." Cerebral Cortex 30, no. 4 (November 4, 2019): 2229–49. http://dx.doi.org/10.1093/cercor/bhz236.
Повний текст джерелаFishell, Gord, and Adam Kepecs. "Interneuron Types as Attractors and Controllers." Annual Review of Neuroscience 43, no. 1 (July 8, 2020): 1–30. http://dx.doi.org/10.1146/annurev-neuro-070918-050421.
Повний текст джерелаLukomska, Agnieszka, Grzegorz Dobrzanski, Monika Liguz-Lecznar, and Malgorzata Kossut. "Somatostatin receptors (SSTR1-5) on inhibitory interneurons in the barrel cortex." Brain Structure and Function 225, no. 1 (December 23, 2019): 387–401. http://dx.doi.org/10.1007/s00429-019-02011-7.
Повний текст джерелаYing, Guoxin, Sen Wu, Ruiqing Hou, Wei Huang, Mario R. Capecchi, and Qiang Wu. "The Protocadherin Gene Celsr3 Is Required for Interneuron Migration in the Mouse Forebrain." Molecular and Cellular Biology 29, no. 11 (March 30, 2009): 3045–61. http://dx.doi.org/10.1128/mcb.00011-09.
Повний текст джерелаLamsa, Karri, and Tomi Taira. "Use-Dependent Shift From Inhibitory to Excitatory GABAA Receptor Action in SP-O Interneurons in the Rat Hippocampal CA3 Area." Journal of Neurophysiology 90, no. 3 (September 2003): 1983–95. http://dx.doi.org/10.1152/jn.00060.2003.
Повний текст джерелаHoward, MacKenzie A., and Scott C. Baraban. "Synaptic integration of transplanted interneuron progenitor cells into native cortical networks." Journal of Neurophysiology 116, no. 2 (August 1, 2016): 472–78. http://dx.doi.org/10.1152/jn.00321.2016.
Повний текст джерелаCruz-Santos, Maria, Lucia Fernandez Cardo, and Meng Li. "A Novel LHX6 Reporter Cell Line for Tracking Human iPSC-Derived Cortical Interneurons." Cells 11, no. 5 (March 1, 2022): 853. http://dx.doi.org/10.3390/cells11050853.
Повний текст джерелаNestor, Michael W., Samson Jacob, Bruce Sun, Deborah Prè, Andrew A. Sproul, Seong Im Hong, Chris Woodard, et al. "Characterization of a subpopulation of developing cortical interneurons from human iPSCs within serum-free embryoid bodies." American Journal of Physiology-Cell Physiology 308, no. 3 (February 1, 2015): C209—C219. http://dx.doi.org/10.1152/ajpcell.00263.2014.
Повний текст джерелаДисертації з теми "Interneurone cortical"
Touzot, Audrey. "Migration et spécification des interneurones GABAergiques corticaux issus de la CGE au cours du développement chez la souris." Thesis, Nice, 2014. http://www.theses.fr/2014NICE4089/document.
Повний текст джерелаIn rodents, cortical interneurons (INs) originate from the medial (MGE) and caudal ganglionic eminence (CGE) according to precise temporal schedules, express a defined combination of factors, and reach their final laminar position through tangential and radial cell migration. The diversity and fate-specification of MGE-derived interneuron subtypes are well characterized however the molecular mechanisms controlling the migration and specification of CGE-derived INs are still vague. In this study, I have first investigated the migratory paths of cortical INs using a reporter line specific to the CGE, and then I have assessed the involvement of COUP-TFI and COUP-TFII, which are highly expressed in the embryonic CGE during development, in these paths. My data unravelled two major previously non-characterized migratory streams from the subpallium to the pallium: a dorsal stream (CLMS) in which CGE-derived cells migrate to the lateral GE (LGE), and a ventral one (CMMS) in which CGE-derived cells migrate to the MGE. I have characterized both streams and the already well-described caudal stream (CMS) during different stages of development and identified a series of genes expressed in the migrating cells. By inactivating COUP-TFI and/or COUP-TFII in the developing INs, these streams together with their molecular marker expression are perturbed. As a consequence, adult mutant mice have an altered distribution of interneuron subpopulations, particularly the ones derived from the CGE. Taken together, my study identified and characterized two novel CGE-derived interneuron migratory routes to the cortex and showed that COUP-TFs contribute in modulating these paths
Wilmet, Baptiste. "Analyses des dysfonctions neuronales d’un modèle murin de Paraplégie Spastique Héréditaire." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEP045.
Повний текст джерелаHereditary Spastic Paraplegia is a group of Motor Neuron Disease characterized by the degeneration of cortico-spinal tract leading to a progressive spasticity and paralysis of lower limbs sometimes associated with cognitive deficits. Mutations in SPG11 gene coding for Spatacsin are a major cause of these complex forms. For a better understanding of SPG11-related HSP mechanisms, our team generated a Knock-Out mouse model (spg11-/-) mimicking the cognitive and motor deficits correlated with histological alterations (J.Branchu & al.; 2017). As motor impairments precede the first neuronal losses, we hypothesized that there may exist some neuronal dysfunctions primary to neuronal death observable with electrophysiological methods. In Vivo EEG recordings of spg11-/- motor cortex highlighted the emergence of spike and wave discharges events (SWD), occurring before the cortical NeuN+ cells loss and suggesting a disturbance of excitability of cortical networks. No propagation to thalamus was found, but these SWLD seems to response in a dose dependent manner to pro and anti-Absence Epilepsy drugs. With our IHC experiments, we didn’t observe any change in GABAergic interneurons number, suggesting no change in cortical inhibition mediated by interneurons. Ex vivo Electrophysiological recordings of adult spg11-/- hippocampi displayed reduced short and long-term potentiation, correlated with a loss of spatial and fear-related memories, suggesting an impairment in synaptic elements. We did not observe those alterations during development although there seem to be a shift from mature to immature dendritic spines. mRNA quantification couldn’t highlight any modification in epilepsy-related gene expression. However, in vitro intracellular recordings of embryonic cortical neurons revealed impairments in sodic current density and excitability in Spg11-/- neurons. Altogether, the results of these experiments will decipher the roles of Spatacsin in the pathogenesis of Motorneurons Diseases and give us a useful and non-invasive read-out for the evaluation of therapeutical assays
Fleitas, Pérez Catherine. "FLRT proteins act as guidance cues for migrating cortical interneurons." Doctoral thesis, Universitat de Lleida, 2015. http://hdl.handle.net/10803/378646.
Повний текст джерелаL’establiment de les connectivitats neuronals a l’escorça en desenvolupament depèn de la migració i del correcte posicionament de les noves neurones que integren específicament les diferents capes corticals. Les proteïnes transmembrana riques en fibronectina i leucina (FLRT) han estat identificades com a nous reguladors de diversos aspectes en el desenvolupament del sistema nerviós, incloent la migració neuronal. El present treball de tesi està centrat en l’estudi in vivo de la implicació dels FLRTs en la migració tangencial de les interneurones. Amb aquest propòsit, hem analitzat animals knockout de FLRT2 i FLRT3, específics de sistema nerviós, com a mutants simples i també, com a dobles mutants. La supressió simultània de FLRT2 i FLRT3, produeix diversos defectes relacionats amb la migració de les interneurones. Finalment, es van abordar els mecanismes intracel•lulars implicats en la funció de FLRT, descrivint la relació entre FLRT3 i RhoGTPase Rnd3. Això suggereix una interacció funcional entre els FLRTs i els Rnds en el sistema nerviós.
El establecimiento de las conectividad neuronal comienza durante el desarrollo y depende de la migración neuronal y del correcto posicionamiento de las nuevas neuronas, las cuales se integran dentro de capas específicas de la corteza. Las proteínas transmembrana ricas en fibronectina y leucina (FLRT) han evolucionado como nuevos reguladores de varios aspectos durante el desarrollo del sistema nervioso, incluyendo la migración neuronal. Este trabajo se centra en el estudio de la implicación in vivo de FLRTs en la migración tangencial de las interneuronas. Para ello, hemos analizado animales knockout (KO) específicos del sistema nervioso para FLRT2 y FLRT3, simples mutantes y dobles KOs (DKO). La supresión simultánea de FLRT2 y FLRT3, resultó en la aparición de varios defectos relacionados con la migración de las interneuronas. Por último, se abordaron los mecanismos intracelulares implicados en la función de FLRT y se evaluó la relación entre FLRT3 y Rho GTPase Rnd3. Los resultados sugieren una posible interacción funcional entre FLRTs y Rnds en este sistema.
Leclech, Claire. "Etude de l'influence de la topographie du microenvironnement sur la migration des interneurones corticaux par l'utilisation de substrats microstructurés." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS245/document.
Повний текст джерелаIn the developing brain, cortical interneurons undergo a long distance migration to reach the cortex where they integrate into cortical networks and regulate their activity in the adult. Different chemical factors have been involved in the guidance of these cells, but the influence of the physical parameters of the environment in which they navigate remains unclear. It has been shown that topographical cues are able to influence and guide the migration of several cell types, a process called contact guidance. This work therefore aimed at testing and understanding the influence of the topography of the environment in the migration of cortical interneurons. By using an experimental system of microstructured substrates, we demonstrated for the first time the existence of contact guidance for these cells. By testing two types of micron-sized pillars, we showed that a change in the shape of the structures could greatly impact cell orientation, morphology, cytoskeleton organization and dynamic behavior. In particular, most interneurons migrating in between square pillars adopt an elongated, unbranched morphology associated with a slow and directed movement, whereas the majority of cells among round pillars exhibit a short and branched morphology associated with a dynamic but wandering movement. Overall, we show that micron-sized topography provides global spatial constraints promoting the establishment of different morphological and migratory states in vitro, highlighting the potential importance of these types of cues in vivo
Skowronski-Lutz, Ethan M. (Ethan Mikael). "Interneuron networks and cortical dynamics : emulated whisking drives SOM interneurons in the ketamine anesthetized mouse SI neocortex." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/95858.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references.
In the core of this thesis I test and confirm the hypothesis that separate classes of interneurons respond differentially to sensory stimulation independent of volitional or other top-down control on the part of the animal. I also test and confirm the hypothesis that, based only on bottom-up sensory stimulation the activity of two major classes of interneurons (adapting Parvalbumin positive and facilitating Somatostatin positive interneurons) predominates during different phases of what corresponds to natural sensing cycles in a behaving rodent. These questions are addressed using an in vivo mouse model with intrinsically fluorescent, but differentiable, interneuron populations combined with 2-photon imaging, Ca²+-sensitive dyes. Anesthesia and electrical control of facial muscles allowed for naturalistic stimulation without the confounds presented by volitional whisking and unknown top-down or behavioral states. Additional chapters in this thesis focus on ancillary work related to computational modeling of neural systems and systems' level perspectives on maturation and disease.
by Ethan M. Skowronski-Lutz.
Ph. D.
Courtin, Julien. "Role of cortical parvalbumin interneurons in fear behaviour." Thesis, Bordeaux 2, 2013. http://www.theses.fr/2013BOR22045/document.
Повний текст джерелаLearning and memory processes are controlled by specific neuronal circuits and elements. Numerous recent reports highlighted the important role of cortical circuits in the regulation of fear behaviour, however, the anatomical and functional characteristics of their neuronal components remain largely unknown. During my thesis, we used single unit recordings and optogenetic manipulations of specific neuronal elements in behaving mice, to show that both the auditory cortex and the medial prefrontal cortex contain a disinhibitory microcircuit required respectively for the acquisition and the expression of conditioned fear memory. In both cases, parvalbumin-expressing interneurons constitute the central element of the circuit and are phasically inhibited during the presentation of the conditioned tone. From a functional point of view, we demonstrated that this inhibition induced the disinhibition of cortical pyramidal neurons by releasing the ongoing perisomatic inhibition mediated by parvalbumin-expressing interneurons onto pyramidal neurons. Thereby, this disinhibition allows the precise temporal regulation of pyramidal neurons excitability. In particular, we showed that the acquisition of associative fear memories depend on the recruitment of a disinhibitory microcircuit in the auditory cortex. Fear-conditioning-associated disinhibition in auditory cortex is driven by foot-shock-mediated inhibition of parvalbumin-expressing interneurons. Importantly, pharmacological or optogenetic blockade of pyramidal neuron disinhibition abolishes fear learning. Together, these data suggest that disinhibition is an important mechanism underlying learning and information processing in cortical circuits. Secondly, in the medial prefrontal cortex, we demonstrated that expression of fear behaviour is causally related to the phasic inhibition of prefrontal parvalbumin-expressing interneurons. Inhibition of parvalbumin-expressing interneuron activity disinhibits prefrontal pyramidal neurons and synchronizes their firing by resetting local theta oscillations, leading to fear expression. These results identify two complementary neuronal mechanisms both mediated by prefrontal parvalbumin-expressing interneurons that precisely coordinate and enhance the neuronal efficiency of prefrontal pyramidal neurons to drive fear expression. Together these data highlighted the important role played by neuronal disinhibition in fear behaviour by binding behavioural relevant information, selecting specific circuit elements and orchestrating pyramidal neurons activity
Chang, Melissa McKenzie. "Secreted factors FGF and WNT in cortical interneuron specification." Thesis, New York University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3665119.
Повний текст джерелаCortical Interneurons are an incredibly diverse population of locally connecting GABAergic inhibitory neurons. In rodents, cortical interneurons originate from the ventral telencephalon during embryogenesis, and migrate tangentially into the neocortex following their specification. Despite our understanding of the early patterning of the telencephalon, established through sonic hedgehog (SHH), fibroblast growth factor (FGF) signaling, and wingless-int (WNT) we still know very little about the downstream effectors responsible for establishing interneuron diversity. This work has aimed to elucidate the role of secreted morphogens in interneuron specification, specifically FGF and WNT.
I began by investigating the role of FGF signaling in the specification of cortical interneurons by targeting downstream effectors, a critical adaptor protein, and receptors for FGF signaling. In particular, I examined the role of two candidate transcription factors classically found downstream of FGF: Ets1 and Ets2. Previously identified by microarray as enriched in cortical interneurons at developmental timepoints, Ets1 and Ets2 single and double mutants had no obvious defects in interneuron specification as assessed by immunohistochemistry. Using both forebrain and interneuron specific Cre recombinase drivers, I also generated conditional knockouts of the adaptor protein FRS2α, which is critical for FGF signaling through the MAP kinase and PI3 kinase signaling pathways (Hadari et al, 2001). Interestingly, pan-forebrain loss of FRS2α, failed to replicate the phenotype of forebrain removal of FGF receptors 1, 2 and 3. Similarly, interneuron specific removal of FRS2α, did not affect interneuron migration or fate. Additionally, through a complex set of genetic crosses, I generated an interneuron specific triple knockout of FGFRs 1, 2, and 3; this animal also did not exhibit any gross interneuron specification defects. These results together suggest that the development of cortical interneurons is likely not regulated by FGF signaling, at least not after their initial specification.
Previous work in the developing spinal cord has shown that cell identity can be conferred by exposure to diffusible morphogen gradients. Despite previous attempts, delineation of cell types by morphogen gradient in a "spinal cord" fashion has not yet been discovered in the forebrain. We have discovered a novel rostral-caudal regionality within the medial ganglionic eminence (MGE) that delineates the specification of the two main classes of cortical interneuron subtypes based on their exposure to a non-canonical WNT signaling gradient. Caudally located MGE progenitors receiving high levels of WNT signaling give rise to cortical interneurons labeled by somatostatin (SST). Parvalbumin (PV) expressing basket cells, in contrast, originate primarily from the most rostral region of the MGE, and do not signal highly through WNT pathways. Interestingly, canonical WNT signaling through β-catenin is not required for this process. WNT signals transmitted via cleavage of the intracellular domain of the non-canonical WNT receptor RYK, however, are sufficient to drive interneuron progenitors to a SST fate.
Dupper, Amy Contole. "Altered cortical calbindin-immunoreactive interneuron populations associated with schizophrenia." Kent State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=kent1381416068.
Повний текст джерелаJin, Xiaoming. "Dendritic development of GABAergic cortical interneurons revealed by biolistic transfection with GFP." Morgantown, W. Va. : [West Virginia University Libraries], 2002. http://etd.wvu.edu/templates/showETD.cfm?recnum=2626.
Повний текст джерелаTitle from document title page. Document formatted into pages; contains vii, 218 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.
Leclerq, Pascale. "Quantitative post-mortem study of cortical interneurons in chronic schizophrenia." Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300445.
Повний текст джерелаКниги з теми "Interneurone cortical"
Gallerani, Nicholas Edmund. The spatial distribution of cortical interneurons: The role of clustered protocadherins. [New York, N.Y.?]: [publisher not identified], 2021.
Знайти повний текст джерелаR, Jefferys John G., and Whittington Miles A, eds. Fast oscillations in cortical circuits. Cambridge, Mass: MIT Press, 1999.
Знайти повний текст джерелаZecevic, Nada, Zsófia Maglóczky, and Filip Barinka, eds. At The Top of the Interneuronal Pyramid – Calretinin Expressing Cortical Interneurons. Frontiers Media SA, 2016. http://dx.doi.org/10.3389/978-2-88919-708-8.
Повний текст джерелаCauli, Bruno, Yoshiyuki Kubota, and Ludovic Tricoire, eds. Cortical NO interneurons: from embryogenesis to functions. Frontiers Media SA, 2014. http://dx.doi.org/10.3389/978-2-88919-175-8.
Повний текст джерелаTraub, Roger D., John G. R. Jefferys, and Miles A. Whittington. Fast Oscillations in Cortical Circuits. MIT Press, 1999.
Знайти повний текст джерелаZiemann, Ulf. Pharmacology of TMS measures. Edited by Charles M. Epstein, Eric M. Wassermann, and Ulf Ziemann. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780198568926.013.0013.
Повний текст джерелаMason, Peggy. From Movement to Action. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190237493.003.0023.
Повний текст джерелаЧастини книг з теми "Interneurone cortical"
Miyoshi, Goichi, Robert P. Machold, and Gord Fishell. "Specification of GABAergic Neocortical Interneurons." In Cortical Development, 89–126. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54496-8_5.
Повний текст джерелаMurakami, Fujio, Daisuke Tanaka, Mitsutoshi Yanagida, and Emi Yamazaki. "Intracortical Multidirectional Migration of Cortical Interneurons." In Cortical Development: Genes and Genetic Abnormalities, 116–29. Chichester, UK: John Wiley & Sons, Ltd, 2008. http://dx.doi.org/10.1002/9780470994030.ch9.
Повний текст джерелаCuomo, Dario, Paola Platania, Giuseppina Martella, Graziella Madeo, Giuseppe Sciamanna, Annalisa Tassone, and Antonio Pisani. "Cholinergic Interneuron and Parkinsonism." In Cortico-Subcortical Dynamics in Parkinson¿s Disease, 1–11. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-60327-252-0_7.
Повний текст джерелаFishell, Gordon. "Perspectives on the Developmental Origins of Cortical Interneuron Diversity." In Cortical Development: Genes and Genetic Abnormalities, 21–44. Chichester, UK: John Wiley & Sons, Ltd, 2008. http://dx.doi.org/10.1002/9780470994030.ch3.
Повний текст джерелаGeiger, J. R. P., A. Roth, B. Taskin, and P. Jonas. "Glutamate-Mediated Synaptic Excitation of Cortical Interneurons." In Ionotropic Glutamate Receptors in the CNS, 363–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-08022-1_11.
Повний текст джерелаMaroof, Asif, and Stewart Anderson. "The Origins and Specification of Cortical Interneurons." In Developmental Plasticity of Inhibitory Circuitry, 13–26. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-1243-5_2.
Повний текст джерелаMurakami, Fujio. "Cell Migration Analysis of Cortical Interneurons After Electroporation." In Electroporation Methods in Neuroscience, 81–92. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2459-2_6.
Повний текст джерелаCook, Kieona, and Stewart A. Anderson. "Genesis and Migration of Cerebral Cortical Inhibitory Interneurons: An Overview." In Neuroscience in the 21st Century, 291–305. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-88832-9_186.
Повний текст джерелаCook, Kieona, and Stewart A. Anderson. "Genesis and Migration of Cerebral Cortical Inhibitory Interneurons: An Overview." In Neuroscience in the 21st Century, 1–15. New York, NY: Springer New York, 2022. http://dx.doi.org/10.1007/978-1-4614-6434-1_186-1.
Повний текст джерелаBraz, João M., and Allan I. Basbaum. "Intraspinal Transplantation of Precursors of Cortical GABAergic Interneurons to Treat Neuropathic Pain." In Neuromethods, 159–70. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2039-7_9.
Повний текст джерелаТези доповідей конференцій з теми "Interneurone cortical"
Pendyam, Sandeep, Dongbeom Kim, Gregory J. Quirk, and Satish S. Nair. "Acquisition of Fear and Extinction in Lateral Amygdala: A Modeling Study." In ASME 2010 Dynamic Systems and Control Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/dscc2010-4218.
Повний текст джерелаMartini, Lorenzo, Roberta Bardini, and Stefano Di Carlo. "Meta-Analysis of cortical inhibitory interneurons markers landscape and their performances in scRNA-seq studies." In 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2021. http://dx.doi.org/10.1109/bibm52615.2021.9669888.
Повний текст джерела