Зміст
Добірка наукової літератури з теми "Interfaces non-Linéaires"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Interfaces non-Linéaires".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Interfaces non-Linéaires"
Megnassan, Sassou, and Koffi Jondo. "Oxydation à haute température de l’alliage Cu54Ni45Mn1 : analyse isotherme." International Journal of Biological and Chemical Sciences 14, no. 3 (June 19, 2020): 1144–52. http://dx.doi.org/10.4314/ijbcs.v14i3.39.
Повний текст джерелаAmmouche, Sélim. "Jouable, injouable." Questionner le jouable ? 4, no. 1 (December 11, 2017). http://dx.doi.org/10.25965/interfaces-numeriques.795.
Повний текст джерелаДисертації з теми "Interfaces non-Linéaires"
Jaumouillé, Vincent. "Dynamique des structures à interfaces non linéaires : Extension des techniques de balance harmonique." Phd thesis, Ecole Centrale de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00670283.
Повний текст джерелаBenoît-Marand, François. "Modélisation et identification des systèmes non linéaires par réseaux de neurones à temps continu : application à la modélisation des interfaces de diffusion non linéaires." Poitiers, 2007. http://www.theses.fr/2007POIT2274.
Повний текст джерелаThis thesis presents a new model for the identification of nonlinear systems : continuous time neural networks (RNTC). These structures employ networks of formal neurons to approach the nonlinear laws that control the system but, contrary to the neural networks models presented in the literature, our model deals the problem in continuous time. Whatever, through various applications, we show that the model allows us to identify various nonlinear processes with a high accuracy. Moreover, in using a model reduction stage, it is possible to revert, from the neural network model, to the characteristic values of the system. Finally, we indicate how to adapt the continuous time neural network model to the case of fractionnal systems and we consider the problem of identification of diffusive nonlinear interfaces. By introducing a new operator of fractional integration, and by integrating it into the continuous time neural network model, we show how to approach the temporal behavior of these particular systems
Duchemin, Laurent. "Quelques problèmes fortement non-linéaires de surface libre et leur résolution numérique." Phd thesis, Université de la Méditerranée - Aix-Marseille II, 2001. http://tel.archives-ouvertes.fr/tel-00084132.
Повний текст джерелаLa seconde partie traite de la résolution d'écoulements potentiels en géométrie
axisymétrique. A ces fins, une méthode d'intégrales de frontières est développée. Elle est d'abord validée à l'aide de la connaissance théorique des modes d'oscillations d'une goutte en apesanteur. Elle est ensuite appliquée à deux problèmes distincts : l'impact d'une goutte sur une surface hydrophobe et la coalescence de deux gouttes en apesanteur. Ce dernier problème présentant deux échelles spatiales très différentes, un raffinement inhomogène du maillage de la surface est opéré. En outre, une comparaison entre les simulations et certains
résultats expérimentaux est effectuée.
Chan-Hong, Jean-Riccel. "Sur quelques problèmes à frontière libre en hydrologie." Ecully, Ecole centrale de Lyon, 1987. http://www.theses.fr/1987ECDL0021.
Повний текст джерелаVallino, Nicolas. "Modèle thermo-mécanique pour l'analyse du comportement des interfaces métal-oxyde : étude du phénomène de fissuration périodique." Compiègne, 2000. http://www.theses.fr/2000COMP1278.
Повний текст джерелаKarami, Armine. "Study of electrical interfaces for electrostatic vibration energy harvesting." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS134/document.
Повний текст джерелаElectrostatic vibration energy harvesters (e-VEHs) are systems that convert part of their surroundings' kinetic energy into electrical energy, in order to supply small-scale electronic systems. Inertial E-VEHs are comprised of a mechanical subsystem that revolves around a mobile mass, and of an electrical interface. The mechanical and electrical parts are coupled by an electrostatic transducer. This thesis is focused on improving the performances of e-VEHs by the design of their electrical interface. The first part of this thesis consists in the study of a family of electrical interfaces called charge-pumps conditioning circuits (CPCC). It starts by building a formal theory of CPCCs. State-of-the-art reported conditioning circuits are shown to belong to this family. This family is then completed by a new CPCC topology. An electrical domain comparison of different CPCCs is then reported. Next, a semi-analytical tool allowing for the comparison of CPCC-based e-VEHs accounting for electromechanical effects is reported. The first part of the thesis ends by presenting a novel method for the measurement of e-VEHs' built-in electret potential. The second part of the thesis presents a radically different design approach than what is followed in most of state-of-the-art works on e-VEHs. It advocates for e-VEHs that actively synthesize the dynamics of their mobile mass through their electrical interface. We first show that this enables to convert energy in amounts approaching the physical limits, and from arbitrary types of input vibrations. Then, a complete architecture such an e-VEH is proposed and tested in simulations submitted to human body vibrations
Larrea, Juan Carlos. "Étude par simulation numérique de l'hydrodynamique au voisinage d'une interface poreuse." Toulouse, INPT, 1991. http://www.theses.fr/1991INPT104H.
Повний текст джерелаMorel, Adrien. "Interfaces électriques adaptatives dynamiquement au spectre fréquentiel pour la récupération d'énergie vibratoire large bande." Electronic Thesis or Diss., Chambéry, 2020. http://www.theses.fr/2020CHAMA035.
Повний текст джерелаEnergy harvesting is an emerging field whose main aim is the development of autonomous sensor nodes that do not require maintenance. Scavenging the energy contained in ambient vibrations is of particular interest when the sensor lies in a closed and confined environment, where there are few solar radiations or thermal gradients. However, a massive industrialization of vibration energy harvesters is currently hindered by their low robustness. Indeed, aging of the energy harvester, temperature drifts, or variations of the vibrating source might deviate the vibration frequency away from the energy harvester’s resonant frequency, drastically reducing the harvested energy. This thesis studies approaches allowing to electrically tune the resonant frequency of a piezoelectric vibration energy harvester, in order to monitor its dynamics in real-time. After establishing the background of this thesis, we develop an electromechanical model of the piezoelectric energy harvester coupled to the electrical interface. A normalized analysis of this model allows us to reduce all the influences of the electrical interface on the dynamics of the system to two physically meaningful variables: the electrical damping and the electrical stiffness. The adjustment of these two parameters is first analyzed, then achieved through combinations of resistive, capacitive and inductive linear loads. Extending this analysis to non-linear electrical interfaces has enabled the development of several innovative energy extraction strategies. The experimental validations of these strategies with energy harvesters made with strongly coupled piezoelectric materials are in great agreement with our model and demonstrate the value of our approach. The quantitative comparison of these strategies is made possible thanks to the development of several analysis tools and a figure of merit taking into account the frequency behavior of the harvester associated with a given electrical strategy. This comparison allows us to determine and justify which strategy to implement thanks to a dedicated integrated circuit. The microelectronic integration of this energy extraction strategy is the last step of this thesis. Our integrated circuit includes a power path, a cold-start, self-powered sensors and a low-power algorithm allowing real-time monitoring of the harvester’s resonant frequency. The maximum efficiency reached by our circuit is 94%. In addition to its performance, this circuit is the first self-powered solution that adjusts the resonant frequency of the harvester without any prior calibration and with a sub-microwatt power consumption. Finally, the favorable comparison between our approach and state-of-the-art solutions (based on magnetic, piezoelectric or mechanical frequency adjustment) confirms the potential of electrically-based frequency tuning
Bao, Bin. "Distributed, broadband vibration control devices using nonlinear approaches." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI086/document.
Повний текст джерелаFor ameliorating vibration reduction systems in engineering applications, miscellaneous vibration control methods, including vibration damping systems, have been developed in recent years. As one of intelligent vibration damping systems, nonlinear electronic damping system using smart materials (e.g., piezoelectric materials), is more likely to achieve multimodal vibration control. With the development of meta-structures (a structure based upon metamaterial concepts), electronic vibration damping shunts, such as linear resonant damping or negative capacitance shunts, have been introduced and integrated abundantly in the electromechanical meta-structure design for wave attenuation and vibration reduction control. Herein, semi-passive Synchronized Switch Damping on the Inductor (SSDI) technique (which belongs to nonlinear electronic damping techniques), is combined with smart meta-structure (also called smart periodic structure) concept for broadband wave attenuation and vibration reduction control, especially for low frequency applications. More precisely, smart periodic structure with nonlinear SSDI electrical networks is investigated from the following four aspects, including three new techniques for limiting vibrations: First, in order to dispose of a tool allowing the evaluation of the proposed approaches, previous finite element (FE) modeling methods for piezoelectric beam structures are summarized and a new voltage-based FE modeling method, based on Timoshenko beam theory, is proposed for investigating smart beam structure with complex interconnected electrical networks; then, the first developed technique lies in smart periodic structure with nonlinear SSDI interconnected electrical networks, which involves wave propagation interaction between continuous mechanical and continuous nonlinear electrical media; the second proposed topology lies in smart periodic structures with nonlinear SSDI interleaved / Tri-interleaved electrical networks involving wave propagation interaction between the continuous mechanical medium and the discrete nonlinear electrical medium. Due to unique electrical interleaved configuration and nonlinear SSDI electrical features, electrical irregularities are induced and simultaneously mechanical irregularities are also generated within an investigated periodic cell; the last architecture consists in smart periodic structures with SSDI multilevel interleaved-interconnected electrical networks, involving wave propagation interaction between the continuous mechanical medium and the multilevel continuous nonlinear electrical medium. Compared with the SSDI interconnected case, more resonant-type band gaps in the primitive pass bands of purely mechanical periodic structures can be induced, and the number of such band-gaps are closely related to the interconnection / interleaved level. Finally, the main works and perspectives of the thesis are summarized in the last chapter
Corradi, Grégoire. "Approches numérique et expérimentale pour des structures à interfaces frottantes : Application au crissement de frein." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEC044.
Повний текст джерелаBrake systems are sometimes prone to squeal noise, which is due to friction-induced self-sustained vibrations, characterized by a set of frequencies above 1kHz. Those vibrations and resulting noises are a source of perturbations for car occupants, which can be nowadays considered as a health issue.This thesis deals with a global strategy to better understand this phenomenon from an experimental point of view and to propose the prediction of squeal noise by numerical approaches. Moreover, experimental observations of squeal occurrences are analyzed to lead to assumptions about the modelisation of numerical finite element models for squeal prediction. A Double Modal Synthesis is also applied to reduce the size of the discrete finite element model of brake system and to save computational time and ressources. The proposed numerical approach starts with a stability analysis with the classical CEA method. Then the determination of nonlinear self-excited vibrations are performed for the unstable cases detected via the CEA method. Finally the acoustic field emitted by the brake system is computed to predict squeal noise.Specific tools are applied for each computational step to assess the efficiency of reduced model versus the reference model: criteria based on the mean error on eigenvalues and the Modal Assurance Criterion analysis (MAC) are used for the stability analysis; comparisons of the limit cycles, spectrograms and the modal contributions of unstable modes are undertaken for the transient responses; patterns of the acoustic intensity are computed on several observations surfaces and a decomposition based on the theory of 2D wavelets is introduced and applied to assess the convergence of patterns