Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Interface turbulent.

Статті в журналах з теми "Interface turbulent"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Interface turbulent".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Teixeira, M. A. C., and C. B. da Silva. "Turbulence dynamics near a turbulent/non-turbulent interface." Journal of Fluid Mechanics 695 (February 13, 2012): 257–87. http://dx.doi.org/10.1017/jfm.2012.17.

Повний текст джерела
Анотація:
AbstractThe characteristics of the boundary layer separating a turbulence region from an irrotational (or non-turbulent) flow region are investigated using rapid distortion theory (RDT). The turbulence region is approximated as homogeneous and isotropic far away from the bounding turbulent/non-turbulent (T/NT) interface, which is assumed to remain approximately flat. Inviscid effects resulting from the continuity of the normal velocity and pressure at the interface, in addition to viscous effects resulting from the continuity of the tangential velocity and shear stress, are taken into account
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hannoun, Imad A., Harindra J. S. Fernando, and E. John List. "Turbulence structure near a sharp density interface." Journal of Fluid Mechanics 189 (April 1988): 189–209. http://dx.doi.org/10.1017/s0022112088000965.

Повний текст джерела
Анотація:
The effects of a sharp density interface and a rigid flat plate on oscillating-grid induced shear-free turbulence were investigated experimentally. A two-component laser-Doppler velocimeter was used to measure turbulence intensities in and above the density interface (with matched refractive indices) and near the rigid flat plate. Energy spectra, velocity correlations, and kinetic energy fluxes were also measured. Amplification of the horizontal turbulent velocity, coupled with a sharp reduction in the vertical turbulent velocity, was observed near both the density interface and the flat plate
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Popot, Jean-Lue. "Turbulent interface." Biochimie 80, no. 5-6 (1998): 355–56. http://dx.doi.org/10.1016/s0300-9084(00)80002-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Elsinga, G. E., and C. B. da Silva. "How the turbulent/non-turbulent interface is different from internal turbulence." Journal of Fluid Mechanics 866 (March 5, 2019): 216–38. http://dx.doi.org/10.1017/jfm.2019.85.

Повний текст джерела
Анотація:
The average patterns of the velocity and scalar fields near turbulent/non-turbulent interfaces (TNTI), obtained from direct numerical simulations (DNS) of planar turbulent jets and shear free turbulence, are assessed in the strain eigenframe. These flow patterns help to clarify many aspects of the flow dynamics, including a passive scalar, near a TNTI layer, that are otherwise not easily and clearly assessed. The averaged flow field near the TNTI layer exhibits a saddle-node flow topology associated with a vortex in one half of the interface, while the other half of the interface consists of a
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Li, Sicheng, Yanguang Long, and Jinjun Wang. "Turbulent/non-turbulent interface for laminar boundary flow over a wall-mounted fence." Physics of Fluids 34, no. 12 (2022): 125113. http://dx.doi.org/10.1063/5.0128609.

Повний текст джерела
Анотація:
The turbulent/non-turbulent interface plays an important role in the exchange of mass, momentum, and energy between turbulent and nonturbulent flows. However, the role played by the interface in the separation and reattachment flow remains poorly understood. This study, thus, investigates the geometrical and dynamic properties of the interface in the separation and reattachment flow induced by a wall-mounted fence by using particle image velocimetry in a water tunnel. The flow undergoes laminar separation, reattachment, and the recovery of the boundary layer. Finally, the fully developed turbu
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lee, Jin, Hyung Jin Sung, and Tamer A. Zaki. "Signature of large-scale motions on turbulent/non-turbulent interface in boundary layers." Journal of Fluid Mechanics 819 (April 18, 2017): 165–87. http://dx.doi.org/10.1017/jfm.2017.170.

Повний текст джерела
Анотація:
The effect of large-scale motions (LSMs) on the turbulent/non-turbulent (T/NT) interface is examined in a turbulent boundary layer. Using flow fields from direct numerical simulation, the shape of the interface and near-interface statistics are evaluated conditional on the position of the LSM. The T/NT interface is identified using the vorticity magnitude and a streak detection algorithm is adopted to identify and track the LSMs. Two-point correlation and spectral analysis of variations in the interface height show that the spatial undulation of the interface is longer in streamwise wavelength
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Borrell, Guillem, and Javier Jiménez. "Properties of the turbulent/non-turbulent interface in boundary layers." Journal of Fluid Mechanics 801 (July 26, 2016): 554–96. http://dx.doi.org/10.1017/jfm.2016.430.

Повний текст джерела
Анотація:
The turbulent/non-turbulent interface is analysed in a direct numerical simulation of a boundary layer in the Reynolds number range$Re_{{\it\theta}}=2800{-}6600$, with emphasis on the behaviour of the relatively large-scale fractal intermittent region. This requires the introduction of a new definition of the distance between a point and a general surface, which is compared with the more usual vertical distance to the top of the layer. Interfaces are obtained by thresholding the enstrophy field and the magnitude of the rate-of-strain tensor, and it is concluded that, while the former are physi
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ferrey, P., and B. Aupoix. "Behaviour of turbulence models near a turbulent/non-turbulent interface revisited." International Journal of Heat and Fluid Flow 27, no. 5 (2006): 831–37. http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.03.022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Moeng, C.-H., B. Stevens, and P. P. Sullivan. "Where is the Interface of the Stratocumulus-Topped PBL?" Journal of the Atmospheric Sciences 62, no. 7 (2005): 2626–31. http://dx.doi.org/10.1175/jas3470.1.

Повний текст джерела
Анотація:
Abstract Various locally defined (not horizontal mean) interfaces between the stratocumulus-topped PBL and the free atmosphere are investigated using a fine-resolution large-eddy simulation with a vertical grid spacing of about 4 m. The local cloud-top height is found to be always below the height where the maximum gradient of the local sounding occurs, and the maximum-gradient height is always below the interface where PBL air can reach via turbulent motions. The distances between these local interfaces are of significant amount, a few tens of meters on average. Air between the cloud-top and
Стилі APA, Harvard, Vancouver, ISO та ін.
10

KIT, E. L. G., E. J. STRANG, and H. J. S. FERNANDO. "Measurement of turbulence near shear-free density interfaces." Journal of Fluid Mechanics 334 (March 10, 1997): 293–314. http://dx.doi.org/10.1017/s0022112096004442.

Повний текст джерела
Анотація:
The results of an experimental study carried out to investigate the structure of turbulence near a shear-free density interface are presented. The experimental configuration consisted of a two-layer fluid medium in which the lower layer was maintained in a turbulent state by an oscillating grid. The measurements included the root-mean-square (r.m.s.) turbulent velocities, wavenumber spectra, dissipation of turbulent kinetic energy and integral lengthscales. It was found that the introduction of a density interface to a turbulent flow can strongly distort the structure of turbulence near the in
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Wang, T., P. Li, J. S. Bai, G. Tao, B. Wang, and L. Y. Zou. "Large-eddy simulation of the Richtmyer–Meshkov instability." Canadian Journal of Physics 93, no. 10 (2015): 1124–30. http://dx.doi.org/10.1139/cjp-2014-0652.

Повний текст джерела
Анотація:
The subgrid-scale (SGS) terms of turbulence transport are modelled by the stretched-vortex SGS stress model, and a large-eddy simulation code multi-viscous fluid and turbulence (MVFT) is developed to investigate the MVFT problems. Then one AWE shock tube experiment of interface instability is simulated numerically by MVFT code, which reproduces the development process of the interface. The obtained numerical images of interface evolution and wave structures in flow field are consistent with the experimental results. The evolution of perturbed interface and propagation of shock waves in flow fi
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Gampert, Markus, Jonas Boschung, Fabian Hennig, Michael Gauding, and Norbert Peters. "The vorticity versus the scalar criterion for the detection of the turbulent/non-turbulent interface." Journal of Fluid Mechanics 750 (June 10, 2014): 578–96. http://dx.doi.org/10.1017/jfm.2014.280.

Повний текст джерела
Анотація:
AbstractBased on a direct numerical simulation (DNS) of a temporally evolving mixing layer, we present a detailed study of the turbulent/non-turbulent (T/NT) interface that is defined using the two most common procedures in the literature, namely either a vorticity or a scalar criterion. The different detection approaches are examined qualitatively and quantitatively in terms of the interface position, conditional statistics and orientation of streamlines and vortex lines at the interface. Computing the probability density function (p.d.f.) of the mean location of the T/NT interface from vorti
Стилі APA, Harvard, Vancouver, ISO та ін.
13

da Silva, Carlos Bettencourt, and Ricardo José Nunes dos Reis. "The role of coherent vortices near the turbulent/non-turbulent interface in a planar jet." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, no. 1937 (2011): 738–53. http://dx.doi.org/10.1098/rsta.2010.0300.

Повний текст джерела
Анотація:
The role of coherent vortices near the turbulent/non-turbulent (T/NT) interface in a turbulent plane jet is analysed by a direct numerical simulation (DNS). The coherent vortices near the jet edge consist of large-scale vortical structures (LSVSs) maintained by the mean shear and intense vorticity structures (IVSs) created by the background fluctuating turbulence field. The radius of the LSVS is equal to the Taylor micro-scale R lsvs ≈ λ , while the radius of the IVS is of the order of the Kolmogorov micro-scale R ivs ∼ η . The LSVSs are responsible for the observed vorticity jump at the T/NT
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Zhou, Y., and J. C. Vassilicos. "Related self-similar statistics of the turbulent/non-turbulent interface and the turbulence dissipation." Journal of Fluid Mechanics 821 (May 25, 2017): 440–57. http://dx.doi.org/10.1017/jfm.2017.262.

Повний текст джерела
Анотація:
The scalings of the local entrainment velocity$v_{n}$of the turbulent/non-turbulent interface and of the turbulence dissipation rate are closely related to each other in an axisymmetric and self-similar turbulent wake. The turbulence dissipation scaling implied by the Kolmogorov equilibrium cascade phenomenology is consistent with a Kolmogorov scaling of$v_{n}$whereas the non-equilibrium dissipation scaling reported for various turbulent flows in Vassilicos (Annu. Rev. Fluid Mech., vol. 47, 2015, pp. 95–114), Dairayet al.(J. Fluid Mech., vol. 781, 2015, pp. 166–195), Goto & Vassilicos (Phy
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Dessler, A. J. "Editorial: A turbulent interface." Geophysical Research Letters 13, no. 1 (1986): 1. http://dx.doi.org/10.1029/gl013i001p00001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Yu, R., X. S. Bai, and A. N. Lipatnikov. "A direct numerical simulation study of interface propagation in homogeneous turbulence." Journal of Fluid Mechanics 772 (April 29, 2015): 127–64. http://dx.doi.org/10.1017/jfm.2015.211.

Повний текст джерела
Анотація:
A 3D direct numerical simulation (DNS) study of the evolution of a self-propagating interface in forced constant-density statistically stationary homogeneous isotropic turbulence was performed by solving Navier–Stokes and level-set equations under a wide range of conditions that cover various (from 0.1 to 2.0) ratios of the interface speed $S_{L}$ to the r.m.s. turbulent velocity $U^{\prime }$ and various (50, 100 and 200) turbulent Reynolds numbers $\mathit{Re}$. By analysing computed data, the following issues were addressed: (i) dependence of the speed and thickness of the fully developed s
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Breda, M., and O. R. H. Buxton. "Behaviour of small-scale turbulence in the turbulent/non-turbulent interface region of developing turbulent jets." Journal of Fluid Mechanics 879 (September 20, 2019): 187–216. http://dx.doi.org/10.1017/jfm.2019.676.

Повний текст джерела
Анотація:
Tomographic particle image velocimetry experiments were conducted in the near and intermediate fields of two different types of jet, one fitted with a circular orifice and another fitted with a repeating-fractal-pattern orifice. Breda & Buxton (J. Vis., vol. 21 (4), 2018, pp. 525–532; Phys. Fluids, vol. 30, 2018, 035109) showed that this fractal geometry suppressed the large-scale coherent structures present in the near field and affected the rate of entrainment of background fluid into, and subsequent development of, the fractal jet, relative to the round jet. In light of these findings w
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Wu, Xiaohua, James M. Wallace, and Jean-Pierre Hickey. "Boundary layer turbulence and freestream turbulence interface, turbulent spot and freestream turbulence interface, laminar boundary layer and freestream turbulence interface." Physics of Fluids 31, no. 4 (2019): 045104. http://dx.doi.org/10.1063/1.5093040.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Norscini, Claudia, Thomas Cartier-Michaud, Guilhem Dif-Pradalier, et al. "Interface transport barriers in magnetized plasmas." Plasma Physics and Controlled Fusion 64, no. 5 (2022): 055007. http://dx.doi.org/10.1088/1361-6587/ac5a07.

Повний текст джерела
Анотація:
Abstract We address the formation of Interface Transport Barriers using a generic turbulent transport model, reduced to 2D, and used to investigate interchange turbulence in magnetized plasmas. The generation of a transport barrier at the edge-scrape off layer (SOL) plasma interface is governed by a zonation regime in the edge region with closed-field lines. The barrier is triggered by a gap in the turbulent spectrum between zero, the zonal flow wave vector, and the wave vector of the spectrum maximum. This gap is controlled by the energy injection wave vector of the interchange instability an
Стилі APA, Harvard, Vancouver, ISO та ін.
20

BISSET, DAVID K., JULIAN C. R. HUNT, and MICHAEL M. ROGERS. "The turbulent/non-turbulent interface bounding a far wake." Journal of Fluid Mechanics 451 (January 25, 2002): 383–410. http://dx.doi.org/10.1017/s0022112001006759.

Повний текст джерела
Анотація:
The velocity fields of a turbulent wake behind a flat plate obtained from the direct numerical simulations of Moser et al. (1998) are used to study the structure of the flow in the intermittent zone where there are, alternately, regions of fully turbulent flow and non-turbulent velocity fluctuations on either side of a thin randomly moving interface. Comparisons are made with a wake that is ‘forced’ by amplifying initial velocity fluctuations. A temperature field T, with constant values of 1.0 and 0 above and below the wake, is transported across the wake as a passive scalar. The value of the
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Shrinivas, Ajay B., and Gary R. Hunt. "Confined turbulent entrainment across density interfaces." Journal of Fluid Mechanics 779 (August 14, 2015): 116–43. http://dx.doi.org/10.1017/jfm.2015.366.

Повний текст джерела
Анотація:
In pursuit of a universal law for the rate of entrainment across a density interface driven by the impingement of a localised turbulent flow, the role of the confinement, wherein the environment is within the confines of a box, has to date been overlooked. Seeking to unravel the effects of confinement, we develop a phenomenological model describing the quasi-steady rate at which buoyant fluid is turbulently entrained across a density interface separating two uniform layers within the confines of a box. The upper layer is maintained by a turbulent plume, and the localised impingement of a turbu
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Lorke, Andreas, and Frank Peeters. "Toward a Unified Scaling Relation for Interfacial Fluxes." Journal of Physical Oceanography 36, no. 5 (2006): 955–61. http://dx.doi.org/10.1175/jpo2903.1.

Повний текст джерела
Анотація:
Abstract Interfacial fluxes, that is, gas exchange at the water–atmosphere interface and benthic fluxes at the sediment–water interface, are often parameterized in terms of wind speed or turbulent friction velocity, with numerous empirical relationships obtained from individual experiments. The present study attempts to combine the general outcome of such experiments at both interfaces into a universal scaling relation for the thicknesses of the viscous and diffusive sublayers in terms of the Kolmogorov and Batchelor length scales, respectively. Transfer velocities can then be described in ter
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Fan, Wenyuan, and Henryk Anglart. "Progress in Phenomenological Modeling of Turbulence Damping around a Two-Phase Interface." Fluids 4, no. 3 (2019): 136. http://dx.doi.org/10.3390/fluids4030136.

Повний текст джерела
Анотація:
The presence of a moving interface in two-phase flows challenges the accurate computational fluid dynamics (CFD) modeling, especially when the flow is turbulent. For such flows, single-phase-based turbulence models are usually used for the turbulence modeling together with certain modifications including the turbulence damping around the interface. Due to the insufficient understanding of the damping mechanism, the phenomenological modeling approach is always used. Egorov’s model is the most widely-used turbulence damping model due to its simple formulation and implementation. However, the ori
Стилі APA, Harvard, Vancouver, ISO та ін.
24

WESTERWEEL, J., C. FUKUSHIMA, J. M. PEDERSEN, and J. C. R. HUNT. "Momentum and scalar transport at the turbulent/non-turbulent interface of a jet." Journal of Fluid Mechanics 631 (July 17, 2009): 199–230. http://dx.doi.org/10.1017/s0022112009006600.

Повний текст джерела
Анотація:
Conditionally sampled measurements with particle image velocimetry (PIV) of a turbulent round submerged liquid jet in a laboratory have been taken at Re = 2 × 103 between 60 and 100 nozzle diameters from the nozzle in order to investigate the dynamics and transport processes at the continuous and well-defined bounding interface between the turbulent and non-turbulent regions of flow. The jet carries a fluorescent dye measured with planar laser-induced fluorescence (LIF), and the surface discontinuity in the scalar concentration is identified as the fluctuating turbulent jet interface. Thence t
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Silva, Tiago S., Marco Zecchetto, and Carlos B. da Silva. "The scaling of the turbulent/non-turbulent interface at high Reynolds numbers." Journal of Fluid Mechanics 843 (March 21, 2018): 156–79. http://dx.doi.org/10.1017/jfm.2018.143.

Повний текст джерела
Анотація:
The scaling of the turbulent/non-turbulent interface (TNTI) at high Reynolds numbers is investigated by using direct numerical simulations (DNS) of temporal turbulent planar jets (PJET) and shear free turbulence (SFT), with Reynolds numbers in the range $142\leqslant Re_{\unicode[STIX]{x1D706}}\leqslant 400$. For $Re_{\unicode[STIX]{x1D706}}\gtrsim 200$ the thickness of the TNTI ($\unicode[STIX]{x1D6FF}_{\unicode[STIX]{x1D714}}$), like that of its two sublayers – the viscous superlayer (VSL, $\unicode[STIX]{x1D6FF}_{\unicode[STIX]{x1D708}}$) and the turbulent sublayer (TSL, $\unicode[STIX]{x1D
Стилі APA, Harvard, Vancouver, ISO та ін.
26

HASEGAWA, SUSUMU, KATSUNOBU NISHIHARA, and HITOSHI SAKAGAMI. "NUMERICAL SIMULATION OF MIXING BY RAYLEIGH-TAYLOR INSTABILITY AND ITS FRACTAL STRUCTURES." Fractals 04, no. 03 (1996): 241–50. http://dx.doi.org/10.1142/s0218348x96000339.

Повний текст джерела
Анотація:
Turbulent interface caused by the 2-dimensional Rayleigh-Taylor instability is investigated by direct numerical simulation. It is shown that the interface becomes fractal spontaneously in the case where there are initially multimode perturbations on the interface. The generalized dimensions and the singularity spectrum are obtained by applying the multifractal theory to the turbulent interface. The fractal dimension of the line interface is found to be 1.7–1.8, which is greater than that of turbulent/nonturbulent interface in a turbulent flow. Time evolution of the fractal dimensions of the in
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Watanabe, Tomoaki, Yasuhiko Sakai, Kouji Nagata, Yasumasa Ito, and Toshiyuki Hayase. "Vortex stretching and compression near the turbulent/non-turbulent interface in a planar jet." Journal of Fluid Mechanics 758 (October 13, 2014): 754–85. http://dx.doi.org/10.1017/jfm.2014.559.

Повний текст джерела
Анотація:
AbstractVortex stretching and compression, which cause enstrophy production by inviscid processes, are investigated near the turbulent/non-turbulent (T/NT) interface in a planar jet by using a direct numerical simulation (DNS). The enstrophy production is investigated by analysing the relationship among a vorticity vector, strain-rate eigenvectors and strain-rate eigenvalues. The statistics are calculated individually for three different interface orientations. The vorticity near the T/NT interface is oriented in the tangential direction to the interface. The enstrophy production is affected b
Стилі APA, Harvard, Vancouver, ISO та ін.
28

BRIGGS, DAVID A., JOEL H. FERZIGER, JEFFREY R. KOSEFF, and STEPHEN G. MONISMITH. "Turbulent mixing in a shear-free stably stratified two-layer fluid." Journal of Fluid Mechanics 354 (January 10, 1998): 175–208. http://dx.doi.org/10.1017/s0022112097007672.

Повний текст джерела
Анотація:
Direct numerical simulation is used to examine turbulent mixing in a shear-free stably stratified fluid. Energy is continuously supplied to a small region to maintain a well-developed kinetic energy profile, as in an oscillating grid flow (Briggs et al. 1996; Hopfinger & Toly 1976; Nokes 1988). A microscale Reynolds number of 60 is maintained in the source region. The turbulence forms a well-mixed layer which diffuses from the source into the quiescent fluid below. Turbulence transport at the interface causes the mixed layer to grow under weakly stratified conditions. When the stratificati
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Voermans, J. J., M. Ghisalberti, and G. N. Ivey. "The variation of flow and turbulence across the sediment–water interface." Journal of Fluid Mechanics 824 (July 6, 2017): 413–37. http://dx.doi.org/10.1017/jfm.2017.345.

Повний текст джерела
Анотація:
A basic framework characterising the interaction between aquatic flows and permeable sediment beds is presented here. Through the permeability Reynolds number ($Re_{K}=\sqrt{K}u_{\ast }/\unicode[STIX]{x1D708}$, where$K$is the sediment permeability,$u_{\ast }$is the shear velocity and$\unicode[STIX]{x1D708}$is the fluid viscosity), the framework unifies two classical flow typologies, namely impermeable boundary layer flows ($Re_{K}\ll 1$) and highly permeable canopy flows ($Re_{K}\gg 1$). Within this range, the sediment–water interface (SWI) is identified as a transitional region, with$Re_{K}$i
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Chandrasekhara, M. S., and B. R. Ramaprian. "Intermittency and Length Scale Distributions in a Plane Turbulent Plume." Journal of Fluids Engineering 112, no. 3 (1990): 367–69. http://dx.doi.org/10.1115/1.2909413.

Повний текст джерела
Анотація:
Previous studies have shown that normalized Reynolds shear stress and turbulent heat fluxes in asymptotic plane turbulent plumes are significantly higher than in asymptotic plane turbulent jets. This paper describes an attempt to relate this increase to the length scales in the flow. Hot/cold interface intermittency and integral-length-scale distributions were measured in both these flows. The interface-intermittency distributions were found to be bell-shaped in the plume in contrast to a nearly top-hat shape in a jet, thus providing confirmation of the role of buoyancy in generating larger sc
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Wu, Zhao, Tamer A. Zaki, and Charles Meneveau. "High-Reynolds-number fractal signature of nascent turbulence during transition." Proceedings of the National Academy of Sciences 117, no. 7 (2020): 3461–68. http://dx.doi.org/10.1073/pnas.1916636117.

Повний текст джерела
Анотація:
Transition from laminar to turbulent flow occurring over a smooth surface is a particularly important route to chaos in fluid dynamics. It often occurs via sporadic inception of spatially localized patches (spots) of turbulence that grow and merge downstream to become the fully turbulent boundary layer. A long-standing question has been whether these incipient spots already contain properties of high-Reynolds-number, developed turbulence. In this study, the question is posed for geometric scaling properties of the interface separating turbulence within the spots from the outer flow. For high-R
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Ali, S. Firasat, and E. A. Ibrahim. "Coincidence of turbulent-nonturbulent interface and hot-cold interface in a plane turbulent wake." Mechanics Research Communications 23, no. 1 (1996): 91–102. http://dx.doi.org/10.1016/0093-6413(95)00082-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

HUNT, J. C. R., D. D. STRETCH, and S. E. BELCHER. "Viscous coupling of shear-free turbulence across nearly flat fluid interfaces." Journal of Fluid Mechanics 671 (February 24, 2011): 96–120. http://dx.doi.org/10.1017/s0022112010005525.

Повний текст джерела
Анотація:
The interactions between shear-free turbulence in two regions (denoted as + and − on either side of a nearly flat horizontal interface are shown here to be controlled by several mechanisms, which depend on the magnitudes of the ratios of the densities, ρ+/ρ−, and kinematic viscosities of the fluids, μ+/μ−, and the root mean square (r.m.s.) velocities of the turbulence, u0+/u0−, above and below the interface. This study focuses on gas–liquid interfaces so that ρ+/ρ− ≪ 1 and also on where turbulence is generated either above or below the interface so that u0+/u0− is either very large or very sma
Стилі APA, Harvard, Vancouver, ISO та ін.
34

GERASHCHENKO, S., G. GOOD, and Z. WARHAFT. "Entrainment and mixing of water droplets across a shearless turbulent interface with and without gravitational effects." Journal of Fluid Mechanics 668 (January 26, 2011): 293–303. http://dx.doi.org/10.1017/s002211201000577x.

Повний текст джерела
Анотація:
We describe experiments of the entrainment and mixing of water (sub-Kolmogorov scale) droplets across a turbulent–non-turbulent interface (TNI) as well a turbulent–turbulent interface (TTI) in shearless grid turbulence, over a time scale in which evaporation is insignificant. The flow is produced by means of a splitter plate with an active grid and water sprays on one side and screens or an active grid on the other side. The Taylor microscale Reλ on the turbulent side is 275 and the average dissipation scale Stokes number, Stη ≈ 0.2, and based on the integral scale, Stl ≈ 0.003. By changing th
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Neuhaus, Lars, Matthias Wächter, and Joachim Peinke. "The fractal turbulent–non-turbulent interface in the atmosphere." Wind Energy Science 9, no. 2 (2024): 439–52. http://dx.doi.org/10.5194/wes-9-439-2024.

Повний текст джерела
Анотація:
Abstract. With their constant increase in size, wind turbines are reaching unprecedented heights. Therefore, at these heights, they are influenced by wind conditions that have not yet been studied in detail. With increasing height, a transition to laminar conditions becomes more and more likely. In this paper, the presence of the turbulent–non-turbulent interface (TNTI) in the atmosphere is investigated. Three different on- and offshore locations are investigated. Our fractal scaling analysis leads to typical values known from ideal laboratory and numerical studies. The height distribution of
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Yu, Jia-Long, and Xi-Yun Lu. "Topological evolution near the turbulent/non-turbulent interface in turbulent mixing layer." Journal of Turbulence 20, no. 5 (2019): 300–321. http://dx.doi.org/10.1080/14685248.2019.1640368.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Steiner, Helfried, and Christian Walchshofer. "Small-scale mixing at the turbulent/non-turbulent interface in turbulent jets." PAMM 11, no. 1 (2011): 601–2. http://dx.doi.org/10.1002/pamm.201110290.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

FERNANDO, H. J. S., and J. C. R. HUNT. "Turbulence, waves and mixing at shear-free density interfaces. Part 1. A theoretical model." Journal of Fluid Mechanics 347 (September 25, 1997): 197–234. http://dx.doi.org/10.1017/s0022112097006514.

Повний текст джерела
Анотація:
This paper presents a theoretical model of turbulence and mixing at a shear-free stable density interface. In one case (single-sided stirring) the interface separates a layer of fluid of density ρ in turbulent motion, with r.m.s. velocity uH and lengthscale LH, from a non-turbulent layer with density ρ+Δρ, while in the second case (double-sided stirring) the lower layer is also in turbulent motion. In both cases, the external Richardson number Ri=ΔbLH/ u2H (where Δb is the buoyancy jump across the interface) is assumed to be large. Based on the hypotheses that the effect of the interface on th
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Variano, Evan A., and Edwin A. Cowen. "Turbulent transport of a high-Schmidt-number scalar near an air–water interface." Journal of Fluid Mechanics 731 (August 14, 2013): 259–87. http://dx.doi.org/10.1017/jfm.2013.273.

Повний текст джерела
Анотація:
AbstractWe measure solute transport near a turbulent air–water interface at which there is zero mean shear. The interface is stirred by high-Reynolds-number homogeneous isotropic turbulence generated far below the surface, and solute transport into the water is driven by an imposed concentration gradient. The air–water interface is held at a constant concentration much higher than that in the bulk of the water by maintaining pure${\mathrm{CO} }_{2} $gas above a water tank that has been initially purged of dissolved${\mathrm{CO} }_{2} $. We measure velocity and concentration fluctuations below
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Gu, Li, Hang Yuan, Qiu Lan Li, Zi Nan Jiao, and Lan Lan Wang. "Comparison of Turbulent Intensity Component of the Stratified Flow in the Braided River with Different Upstream Flowrates." Applied Mechanics and Materials 448-453 (October 2013): 554–58. http://dx.doi.org/10.4028/www.scientific.net/amm.448-453.554.

Повний текст джерела
Анотація:
The physical model experiment was carried out to study the effect of velocity ratio of two layers on the turbulence intensity of stratified flow in the typical braided rivers with two symmetrical anabranches. Two velocity ratios were selected, and the distributions of depth-averaged turbulent intensity component in the left anabranch were analyzed. When velocity ratio became smaller, the turbulent intensity increased and peak turbulent intensity zone transferred from the left area of centerline to the right area of centerline at the section before the bend apex of the anabranch. In the outlet
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Tavares, H. S., L. Biferale, M. Sbragaglia, and A. A. Mailybaev. "Validation and application of the lattice Boltzmann algorithm for a turbulent immiscible Rayleigh–Taylor system." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, no. 2208 (2021): 20200396. http://dx.doi.org/10.1098/rsta.2020.0396.

Повний текст джерела
Анотація:
We develop a multicomponent lattice Boltzmann (LB) model for the two-dimensional Rayleigh–Taylor turbulence with a Shan–Chen pseudopotential implemented on GPUs. In the immiscible case, this method is able to accurately overcome the inherent numerical complexity caused by the complicated structure of the interface that appears in the fully developed turbulent regime. The accuracy of the LB model is tested both for early and late stages of instability. For the developed turbulent motion, we analyse the balance between different terms describing variations of the kinetic and potential energies.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Kadasch, Eckhard, Matthias Sühring, Tobias Gronemeier, and Siegfried Raasch. "Mesoscale nesting interface of the PALM model system 6.0." Geoscientific Model Development 14, no. 9 (2021): 5435–65. http://dx.doi.org/10.5194/gmd-14-5435-2021.

Повний текст джерела
Анотація:
Abstract. In this paper, we present a newly developed mesoscale nesting interface for the PALM model system 6.0, which enables PALM to simulate the atmospheric boundary layer under spatially heterogeneous and non-stationary synoptic conditions. The implemented nesting interface, which is currently tailored to the mesoscale model COSMO, consists of two major parts: (i) the preprocessor INIFOR (initialization and forcing), which provides initial and time-dependent boundary conditions from mesoscale model output, and (ii) PALM's internal routines for reading the provided forcing data and superimp
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Otsuka, Junichi, and Yasunori Watanabe. "LABORATORY OBSERVATIONS OF DISSOLVED CARBON DIOXIDE TRANSPORT UNDER REGULAR BREAKING WAVES." Coastal Engineering Proceedings, no. 36 (December 30, 2018): 77. http://dx.doi.org/10.9753/icce.v36.waves.77.

Повний текст джерела
Анотація:
Air bubbles and strong turbulence that form in water from breaking waves play important roles in gas transfer across the air-sea interface (Melville, 1996). The entrained bubbles increase the total area of air-water interface per unit volume and enhance local gas dissolution into water. The dissolved gases mix in the water mass diffuse by the strong turbulence. These gas transfer-enhancing factors have been parameterized by only wind speed in models of gas transfer velocity in the deep ocean. Bulk parameters based on wind speed cannot be used for a surf zone, where waves break due to shoaling.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

da Silva, Carlos B., Ricardo J. N. dos Reis, and José C. F. Pereira. "The intense vorticity structures near the turbulent/non-turbulent interface in a jet." Journal of Fluid Mechanics 685 (September 5, 2011): 165–90. http://dx.doi.org/10.1017/jfm.2011.296.

Повний текст джерела
Анотація:
AbstractThe characteristics of the intense vorticity structures (IVSs) near the turbulent/non-turbulent (T/NT) interface separating the turbulent and the irrotational flow regions are analysed using a direct numerical simulation (DNS) of a turbulent plane jet. The T/NT interface is defined by the radius of the large vorticity structures (LVSs) bordering the jet edge, while the IVSs arise only at a depth of about $5\eta $ from the T/NT interface, where $\eta $ is the Kolmogorov micro-scale. Deep inside the jet shear layer the characteristics of the IVSs are similar to the IVSs found in many oth
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Nokes, R. I. "On the entrainment rate across a density interface." Journal of Fluid Mechanics 188 (March 1988): 185–204. http://dx.doi.org/10.1017/s0022112088000692.

Повний текст джерела
Анотація:
Mixed-layer deepening due to grid-generated turbulence is studied experimentally with the aim of explaining the contradictory results of previous studies. Entrainment rates are calculated at fixed distances from the grid in order to avoid the necessity of using an empirical expression for the decay of the turbulent velocity scale. It is shown that an incorrect form of this decay law can cause large errors in the predicted Richardson number dependence of the entrainment rate. For this study this dependence can be expressed as a power law of the form E = KRi−1,2. The spread of the results imply
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Bhowmick, Taraprasad, and Michele Iovieno. "Direct Numerical Simulation of a Warm Cloud Top Model Interface: Impact of the Transient Mixing on Different Droplet Population." Fluids 4, no. 3 (2019): 144. http://dx.doi.org/10.3390/fluids4030144.

Повний текст джерела
Анотація:
Turbulent mixing through atmospheric cloud and clear air interface plays an important role in the life of a cloud. Entrainment and detrainment of clear air and cloudy volume result in mixing across the interface, which broadens the cloud droplet spectrum. In this study, we simulate the transient evolution of a turbulent cloud top interface with three initial mono-disperse cloud droplet population, using a pseudo-spectral Direct Numerical Simulation (DNS) along with Lagrangian droplet equations, including collision and coalescence. Transient evolution of in-cloud turbulent kinetic energy (TKE),
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Ura, Masaru, and Nobuhiro Matsunaga. "ENTRAINMENT DUE TO MEAN FLOW IN TWO-LAYERED FLUID." Coastal Engineering Proceedings 1, no. 21 (1988): 189. http://dx.doi.org/10.9753/icce.v21.189.

Повний текст джерела
Анотація:
The entrainment phenomena have been investigated across an interface between two-layered stratified flow induced by wind shear stress. The velocities of mean flow, turbulence and entrainment have been measured under three different conditions of water surface by using a wind-wave tank. When the entrainment velocity ue is expressed on the basis of the turbulent quantities at the interface, the turbulent entrainment coefficient E ( = ue/u) is given by E = A-(egl/u2)-3I1 ( A = 0.7). Here Eg, u and 1 are the effective buoyancy, the turbulence intensity and the integral lengthscale of turbulence at
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Westerweel, Jerry, Alberto Petracci, René Delfos, and Julian C. R. Hunt. "Characteristics of the turbulent/non-turbulent interface of a non-isothermal jet." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, no. 1937 (2011): 723–37. http://dx.doi.org/10.1098/rsta.2010.0308.

Повний текст джерела
Анотація:
The turbulent/non-turbulent interface of a jet is characterized by sharp jumps (‘discontinuities’) in the conditional flow statistics relative to the interface. Experiments were carried out to measure the conditional flow statistics for a non-isothermal jet, i.e. a cooled jet. These experiments are complementary to previous experiments on an isothermal Re =2000 jet, where, in the present experiments on a non-isothermal jet, the thermal diffusivity is intermediate to the diffusivity of momentum and the diffusivity of mass. The experimental method is a combined laser-induced fluorescence/particl
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Zhang, Xinxian, Tomoaki Watanabe, and Koji Nagata. "Passive scalar mixing near turbulent/non-turbulent interface in compressible turbulent boundary layers." Physica Scripta 94, no. 4 (2019): 044002. http://dx.doi.org/10.1088/1402-4896/aafbdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Yang, Jongmin, Min Yoon, and Hyung Jin Sung. "The turbulent/non-turbulent interface in an adverse pressure gradient turbulent boundary layer." International Journal of Heat and Fluid Flow 86 (December 2020): 108704. http://dx.doi.org/10.1016/j.ijheatfluidflow.2020.108704.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!