Добірка наукової літератури з теми "Interface turbulent/non-Turbulent"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Interface turbulent/non-Turbulent".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Interface turbulent/non-Turbulent"
Teixeira, M. A. C., and C. B. da Silva. "Turbulence dynamics near a turbulent/non-turbulent interface." Journal of Fluid Mechanics 695 (February 13, 2012): 257–87. http://dx.doi.org/10.1017/jfm.2012.17.
Повний текст джерелаElsinga, G. E., and C. B. da Silva. "How the turbulent/non-turbulent interface is different from internal turbulence." Journal of Fluid Mechanics 866 (March 5, 2019): 216–38. http://dx.doi.org/10.1017/jfm.2019.85.
Повний текст джерелаBorrell, Guillem, and Javier Jiménez. "Properties of the turbulent/non-turbulent interface in boundary layers." Journal of Fluid Mechanics 801 (July 26, 2016): 554–96. http://dx.doi.org/10.1017/jfm.2016.430.
Повний текст джерелаFerrey, P., and B. Aupoix. "Behaviour of turbulence models near a turbulent/non-turbulent interface revisited." International Journal of Heat and Fluid Flow 27, no. 5 (October 2006): 831–37. http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.03.022.
Повний текст джерелаBISSET, DAVID K., JULIAN C. R. HUNT, and MICHAEL M. ROGERS. "The turbulent/non-turbulent interface bounding a far wake." Journal of Fluid Mechanics 451 (January 25, 2002): 383–410. http://dx.doi.org/10.1017/s0022112001006759.
Повний текст джерелаLi, Sicheng, Yanguang Long, and Jinjun Wang. "Turbulent/non-turbulent interface for laminar boundary flow over a wall-mounted fence." Physics of Fluids 34, no. 12 (December 2022): 125113. http://dx.doi.org/10.1063/5.0128609.
Повний текст джерелаLee, Jin, Hyung Jin Sung, and Tamer A. Zaki. "Signature of large-scale motions on turbulent/non-turbulent interface in boundary layers." Journal of Fluid Mechanics 819 (April 18, 2017): 165–87. http://dx.doi.org/10.1017/jfm.2017.170.
Повний текст джерелаYu, Jia-Long, and Xi-Yun Lu. "Topological evolution near the turbulent/non-turbulent interface in turbulent mixing layer." Journal of Turbulence 20, no. 5 (May 4, 2019): 300–321. http://dx.doi.org/10.1080/14685248.2019.1640368.
Повний текст джерелаSteiner, Helfried, and Christian Walchshofer. "Small-scale mixing at the turbulent/non-turbulent interface in turbulent jets." PAMM 11, no. 1 (December 2011): 601–2. http://dx.doi.org/10.1002/pamm.201110290.
Повний текст джерелаNeuhaus, Lars, Matthias Wächter, and Joachim Peinke. "The fractal turbulent–non-turbulent interface in the atmosphere." Wind Energy Science 9, no. 2 (February 22, 2024): 439–52. http://dx.doi.org/10.5194/wes-9-439-2024.
Повний текст джерелаДисертації з теми "Interface turbulent/non-Turbulent"
Cocconi, Giacomo. "Numerical investigation of turbulent/non-turbulent interface." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/5237/.
Повний текст джерелаEr, Sarp. "Structure interne, transfert turbulent et propriétés de cascade de l'interface turbulent/non-turbulent d'un jet turbulent." Electronic Thesis or Diss., Université de Lille (2022-....), 2023. http://www.theses.fr/2023ULILN048.
Повний текст джерелаThe turbulent/non-turbulent interface (TNTI) is a very sharp interface layer between turbulent and non-turbulent regions of the flow. This study aims to gain insight into the kinetic energy balance in the vicinity of the TNTI. The K'arm'an-Howarth-Monin-Hill equation (KHMH) is used to characterize the local kinetic energy balance including interscale/interspace energy transfers. The analysis is conducted by using a data set obtained by highly resolved direct numerical simulation (DNS) of a temporally developing turbulent planar jet. The scalings for the velocity and length scales of the temporally developing turbulent planar jet are shown to be different from its spatially developing counterpart in the sense that these scalings are independent of the turbulent dissipation scaling, whether equilibrium or non-equilibrium. The variation of the mean propagation velocity across the thickness of the TNTI is shown as a function of the fractal dimension of the surface at each location. Furthermore, a methodology based on a TNTI-averaging operation is used for the analysis of the local flow field in the vicinity of the TNTI. The analysis of the normal vector associated with the local facing direction of the TNTI provides valuable insights into the predominant geometric characteristics of the interface. The TNTI-averaged statistics are further conditioned on the mean curvature and the local propagation velocity of the interface, in order to characterize the variation of the local flow field and KHMH balance in various regions of the interface. The thickness of the TNTI and its sublayers are shown to reduce significantly in regions of fast entrainment. The interscale/interspace transfer terms are decomposed into solenoidal/irrotational parts showing the central importance at the TNTI of the irrotational interscale/interspace transfers of kinetic energy associated with pressure-velocity correlation. Compression and stretching are observed on average at the TNTI location, in the normal and tangential directions of the interface respectively. Investigation of the interscale transfer term shows the presence of a forward cascade in the normal direction and an inverse cascade in the tangential direction. In regions of detrainment, the local statistics display stretching in the normal direction and compression in the tangential direction, which is in contrast with the statistics observed for the entire TNTI and the local entrainment regions. Close to the location of TNTI, on the turbulent side, an unexpected Kolmogorov-like balance is observed between the interscale transfer and the dissipation rate for a wide range of scales. For these scales, unlike the usual Kolmogorov balance for homogeneous turbulence, the interscale transfer consists solely of the irrotational part which is directly associated with the pressure-velocity correlations
Padovani, Lorenzo. "Enstrophy Analysis of a Turbulent Temporal Plume." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Знайти повний текст джерелаHernandez, Medina Santiago. "Turbulent interface phenomena in a temporally developing boundary layer." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14721/.
Повний текст джерелаXayasenh, Arunvady. "Étude numérique du dépôt turbulent de particules non-browniennes en suspension dans un liquide : application aux inclusions dans l'acier liquide." Phd thesis, Ecole Centrale Paris, 2013. http://tel.archives-ouvertes.fr/tel-00978528.
Повний текст джерелаXayasenh, Arunvady. "Étude numérique du dépôt turbulent de particules non-browniennes en suspension dans un liquide : application aux inclusions dans l’acier liquide." Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2013. http://www.theses.fr/2013ECAP0078/document.
Повний текст джерелаThe deposition of metallic oxide inclusions (of about 10 µm in diameter) suspended in liquid steel is studied by numerical simulation. Two types of deposition surface are investigated, i.e., the liquid steel/solid wall interface and the liquid steel/liquid slag interface. In both cases, we focus on the boundary layer adjacent to the interface. The inclusion behavior is examined thanks to Lagrangian particle tracking: Newton’s second law governing inclusion motion includes the buoyancy force, the pressure gradient force, the added mass force and the steady drag force.For the liquid steel/solid wall interface, the inclusion behavior is analyzed in the buffer layer and in the viscous layer. These layers are described according to Ahmadi’s model, which provides a kinematic representation of the turbulent structures responsible for deposition, i.e., the sweeps and the bursts of liquid. The numerical simulations show that the deposition is mainly controlled by sedimentation. However, since the direct interception contribution increases with the turbulence intensity, direct interception becomes dominant for the highest values of the friction velocity (greater than 0.1 m.s-1). When the hydrodynamic interactions between the inclusions and the solid surface are taken into account, the deposition velocity is significantly reduced. Finally, it should be noted that the inertial forces have a negligible effect on the inclusion deposition velocity. For the liquid steel/liquid slag interface, the inclusion turbulent deposition is investigated using direct numerical simulation of the liquid flow combined with Lagrangian particle tracking under conditions of one-way coupling. The interface is modeled as a non-deformable free-slip surface. Unsheared turbulence is generated by random forcing in a finite-height region parallel to the free-slip surface. In between, the turbulence diffuses toward the free surface. The Reynolds number at the interface varies from 68 to 235. The inclusion diameter varies from 10-5m to 5.10-5m and the particle to liquid density ratio from 0.5 (alumina inclusions) to 1 (fictitious inclusions). It appears that the deposition of alumina inclusions is controlled by sedimentation whereas direct interception is the only deposition mechanism for non-buoyant inclusions. In the latter case, the deposition velocity strongly depends on the surface Reynolds number. It is shown that the deposition velocity made dimensionless by the free surface characteristic velocity scales as the inclusion diameter made dimensionless by the Kolmogorov length scale calculated at the free surface. When the hydrodynamic interactions between the inclusions and the free surface are taken into account, the direct interception contribution of the deposition velocity is significantly reduced (about half of the value without hydrodynamic retardation) but the scaling law is conserved
Alhamdi, Sabah Falih Habeeb. "INTERMITTENCY EFFECTS ON THE UNIVERSALITY OF LOCAL DISSIPATION SCALES IN TURBULENT BOUNDARY LAYER FLOWS WITH AND WITHOUT FREE-STREAM TURBULENCE." UKnowledge, 2018. https://uknowledge.uky.edu/me_etds/116.
Повний текст джерелаLacassagne, Tom. "Oscillating grid turbulence and its influence on gas liquid mass transfer and mixing in non-Newtonian media." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEI103/document.
Повний текст джерелаThe study of turbulence induced mass transfer at the interface between a gas and a liquid is of great interest in many environmental phenomena and industrial processes. Even though this issue has already been studied for several decades, its understanding is still not good enough to create realistic models (RANS or sub-grid LES), especially when considering a liquid phase with a complex rheology. This experimental work aims at studying fundamental aspects of turbulent mass transfer at a flat interface between carbon dioxide and a Newtonian or non-Newtonian liquid, stirred by homogeneous and quasi isotropic turbulence. Non-Newtonian fluids studied are aqueous solutions of a model polymer, Xanthan gum (XG), at various concentrations, showing viscoelastic and shear-thinning properties. Optical techniques for the acquisition of the liquid phase velocity field (Stereoscopic Particle Image Velocimetry, SPIV) and dissolved gas concentration field (Inhibited Planar Laser Induced Fluorescence, I-PLIF) are for the first time coupled, keeping a high spatial resolution, to access velocity and concentration statistics in the first few millimetres under the interface. A new version of I-PLIF is developed. It is designed to be more efficient for near surface measurements, but its use can be generalized to other single or multiphase mass transfer situations. Bottom shear turbulence in the liquid phase is generated by an oscillating grid apparatus. The mechanisms of turbulence production and the characteristics of oscillating grid turbulence (OGT) are studied. The importance of the oscillatory component of turbulence is discussed. A mean flow enhancement effect upon polymer addition is evidenced. The mechanisms of turbulent mass transfer at a flat interface are finally observed in water and low concentration polymer solutions. A conditional analysis of turbulent mass fluxes allows to distinguish the type of events contributing to mass transfer and discuss their respective impact in water and polymer solutions
Cristancho, Juan. "Statistics of the turbulent/non-turbulent interface in a spatially evolving mixing layer." Thesis, 2012. http://hdl.handle.net/10754/277454.
Повний текст джерелаКниги з теми "Interface turbulent/non-Turbulent"
National Aeronautics and Space Administration (NASA) Staff. Aspects of Turbulent / Non-Turbulent Interfaces. Independently Published, 2018.
Знайти повний текст джерелаЧастини книг з теми "Interface turbulent/non-Turbulent"
Rao, Samrat, G. R. Vybhav, P. Prasanth, S. M. Deshpande, and R. Narasimha. "Turbulent/Non-turbulent Interface of a Transient Diabatic Plume." In Lecture Notes in Mechanical Engineering, 355–61. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-5183-3_38.
Повний текст джерелаZhang, Xinxian. "Direct Numerical Simulation on Turbulent/Non-turbulent Interface in Compressible Turbulent Boundary Layers." In Frontiers of Digital Transformation, 155–68. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-1358-9_10.
Повний текст джерелаCocconi, G., A. Cimarelli, B. Frohnapfel, and E. De Angelis. "A Numerical Study of the Shear-Less Turbulent/Non-turbulent Interface." In Springer Proceedings in Physics, 37–40. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29130-7_6.
Повний текст джерелаJahanbakhshi, Reza, and Cyrus K. Madnia. "Scalar Transport Near the Turbulent/Non-Turbulent Interface in Reacting Compressible Mixing Layers." In Modeling and Simulation of Turbulent Mixing and Reaction, 25–46. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2643-5_2.
Повний текст джерелаFerrey, P., and B. Aupoix. "Behaviour of Turbulence Models near a Turbulent/Non-Turbulent Interface Revisited." In Engineering Turbulence Modelling and Experiments 6, 137–46. Elsevier, 2005. http://dx.doi.org/10.1016/b978-008044544-1/50012-1.
Повний текст джерелаLaunder, Brian E. "Turbulence Modelling Near Interfaces: The Case for TCL Closures." In Wind-over-Wave Couplings, 313–26. Oxford University PressOxford, 1999. http://dx.doi.org/10.1093/oso/9780198501923.003.0030.
Повний текст джерелаThrush, Simon F., Judi E. Hewitt, Conrad A. Pilditch, and Alf Norkko. "The sedimentary environment." In Ecology of Coastal Marine Sediments, 3–18. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198804765.003.0001.
Повний текст джерелаWatanabe, Tomoaki, Koji Nagata, and Carlos B. da Silva. "Vorticity Evolution near the Turbulent/Non-Turbulent Interfaces in Free-Shear Flows." In Vortex Structures in Fluid Dynamic Problems. InTech, 2017. http://dx.doi.org/10.5772/64669.
Повний текст джерелаТези доповідей конференцій з теми "Interface turbulent/non-Turbulent"
Taveira, Rodrigo M. R., and Carlos B. da Silva. "SCALAR MIXING AT TURBULENT/NON-TURBULENT INTERFACE OF A TURBULENT PLANE JET." In Eighth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2013. http://dx.doi.org/10.1615/tsfp8.520.
Повний текст джерелаWesterweel, Jerry, A. Petracci, Rene Delfos, and Julian C. R. Hunt. "THE TURBULENT/NON-TURBULENT INTERFACE OF A COOLED JET." In Fifth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2007. http://dx.doi.org/10.1615/tsfp5.1640.
Повний текст джерелаKohan, Khashayar F., and Susan Gaskin. "The Turbulent/Non-Turbulent Interface Characteristics in an Axisymmetric Jet." In 7th International Conference on Fluid Flow, Heat and Mass Transfer (FFHMT'20). Avestia Publishing, 2020. http://dx.doi.org/10.11159/ffhmt20.162.
Повний текст джерелаda Silva, Carlos B., and Rodrigo M. R. Taveira. "CHARACTERISTICS OF THE TURBULENT/NON-TURBULENT INTERFACE AND VISCOUS SUPERLAYER IN TURBULENT PLANAR JETS." In Eighth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2013. http://dx.doi.org/10.1615/tsfp8.2170.
Повний текст джерелаGhasemi, Abbas, Vesselina Roussinova, Ronald Barron, and Ram Balachandar. "Analysis of Entrainment at the Turbulent/Non-Turbulent Interface of a Square Jet." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-65355.
Повний текст джерелаGampert, Markus, Philip Schaefer, Jonas Boschung, and Norbert Peters. "GRADIENT TRAJECTORY ANALYSIS OF THE TURBULENT/NON-TURBULENT INTERFACE IN A JET FLOW." In Eighth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2013. http://dx.doi.org/10.1615/tsfp8.2180.
Повний текст джерелаAttili, Antonio, Juan C. Cristancho, and Fabrizio Bisetti. "STATISTICS OF THE TURBULENT/NON-TURBULENT INTERFACE IN A SPATIALLY EVOLVING MIXING LAYER." In Eighth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2013. http://dx.doi.org/10.1615/tsfp8.480.
Повний текст джерелаTichenor, Nathan R. "Turbulent / Non-Turbulent Interface and Uniform Momentum Zones of High-Speed Turbulent Boundary Layers Subjected to Streamline Pressure Gradient." In AIAA Aviation 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-3341.
Повний текст джерелаTerashima, Osamu, Yasuhiko Sakai, and Kouji Nagata. "Study on the Interfacial Layers Between the Turbulent/Non Turbulent Regions in Two Dimensional Turbulent Jet." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-21003.
Повний текст джерелаDerksen, Jos. "Turbulent Mixing With Density Differences." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-21002.
Повний текст джерела